Текст книги "Секреты наследственности человека"
Автор книги: Сергей Афонькин
Жанр:
Биология
сообщить о нарушении
Текущая страница: 10 (всего у книги 26 страниц)
Мышечная система является самой крупной системой органов в теле человека. Еще в древности люди подметили, что перекатывающиеся упругие мышцы похожи на шныряющих под кожей мышек, поэтому они назвали такие образования мускулами (от лат. musculus – мышка). Мускул похож на сплетенный из волокон канат. Сверху он покрыт защитной оболочкой из соединительной ткани. Каждое волокно мускула состоит из тончайших белковых нитей – миофибрилл (от греч. myos – мышь, мышца и лат. fibra – волокно). Основой миофибрилл являются два белка – актин и миозин. Каждая миофибрилла состоит примерно из 2,5 тысяч белковых нитей актина и миозина. Во время сокращения мускула они не укорачиваются, а лишь скользят друг по другу. В результате длина мускула становится меньше, он сокращается. Представить, как происходит такой процесс легко, если вставить пальцы одной руки между пальцами другой, держа ладони в одной плоскости.
Миофибриллы могут сокращаться только в том случае, если мышца получает от нервной системы слабые сигналы – электрические импульсы. Роль нервов в сокращении мышц был впервые замечен еще древнеримским врачом Клавдием Галеном, который изучал анатомию в школах гладиаторов. Там-то он и подметил, что повреждение нервов часто приводит к потере мышечной подвижности.
Время подтвердило этот вывод. Теперь мы знаем, что для сокращения мускульного волокна оно должно получить нервный сигнал. В результате внутри волокна из специальных мембранных емкостей высвобождаются ионы кальция, которые стимулируют актин и миозин ко взаимному скольжению. Для электрохимически изоляции каждое мышечное волокно покрыто специальной ёлочкой – сарколеммой. Запомните этот термин. Он нам еще пригодится!
У каждого человека ровно столько мышц, сколько и у Арнольда Шварценеггера, различается лишь их сила. Она зависит от числа мышечных волокон, входящих в состав мышцы, и от интенсивности проходящих к ним нервных сигналов. Такие сигналы поступают к мышцам всегда, даже вовремя сна. В результате каждая наша мышца постоянно находится в состоянии тонуса (от греч. tonos – напряжение), то есть слегка напряжена. Тонус мышц исчезает только после кончины человека.
Из этих школьных знаний из области анатомии и физиологии мышц можно сделать следующий вывод. Врожденные дефекты мышечной системы могут возникать как в результате дефектов мышечных белков, так и вследствие нарушений иннервации разных групп мышц. Нервно-мышечные заболевания, следствием которых является их быстрая утомляемость, слабость, снижение мышечного тонуса и даже атрофия, называются миопатиями. Рассмотрим некоторые врожденные формы таких недугов.
Наиболее распространенным наследственным нервно-мышечным заболеванием человека является мышечная дистрофия Дюшена. Ее частота составляет около 1/5000 от общего числа новорожденных мальчиков. Причиной дистрофии этого типа являются мутации водном-единственном гене. Он хранит информацию о строении белка, весьма образно названного дистрофином. Этот белок входит в состав сарколеммы (оболочки) мышечных волокон, обеспечивая стабильность этой своеобразной «изолирующей упаковки» мышц. Дефектный белок не в состоянии выполнять эту функцию, следствием чего является нарушение целостности мембраны. В результате начинается запуск процессов дегенерации мышечного волокна. Мембраны мышц становятся проницаемыми, словно дырявый полиэтиленовый пакет. В них появляются разрывы, что приводит к оттоку ферментов из мышц в сыворотку крови. На начальных стадиях заболевания дегенерация мышечных волокон еще как-то компенсируется активной регенерацией мышечных фибрилл, благодаря делению и слиянию вспомогательных клеток. Однако с возрастом этот процесс становится все менее эффективным, вызывая прогрессирующую мышечную слабость. Мышцы постепенно замещаются фиброзной и жировой тканью. Мальчики к 12 годам уже оказываются привязаны к креслу-каталке. Смерть при мышечной дистрофии Дюшена обычно наступает в возраст около 30 лет в результате нарушения работы сердца и диафрагмы.
Ген дистрофина является самым большим из известных генов человека и составляет почти 0,1 % всего ДНК. Он находится в X хромосоме. В результате наследование дистрофии Дюшена сцеплено с полом. Страдают от этого недуга, в основном, мальчики. Ген дистрофина работает не только в клетках мышц, но и во многих тканях, в головном мозге, в сетчатке и в клетках потовых и слюнных желез. Однако в первую очередь дефект в его работе проявляется именно в мышцах.
Обычно у детей мышечная дистрофия Дюшена начинается в 3–5 лет. Начинается атрофия мышц таза и бедер с одновременным утолщением (псевдогипертрофией) икроножных мышц голени, реже дельтовидных или ягодичных. Постепенно начинают атрофироваться мышцы плечевого пояса и рук. У детей вначале нарушается походка, она становится «утиной», возникают проблемы при подъеме по лестнице. У многих нарушается сердечный ритм за счет увеличения размеров сердца. Быстрое развитие заболевания в связи с ранним обездвиживанием конечностей часто приводит к летальному исходу. Поставить ребенку диагноз «мышечная дистрофия Дюшена» можно задолго до проявления первых признаков заболевания по высокому уровню активности особого фермента – сывороточной креатинкиназы. Женщины, носительницы аномального гена дистрофина, часто не обнаруживают описанных выше проявлений заболевания, хотя уровень креатинкиназы у них обычно повышен. По этому признаку можно обнаружить женщин – носительниц дефектного гена дистрофина.
Менее злокачественно развивается миодистрофия Беккера. Причина ее та же – дефект белка дистрофина, однако, в отличие от миодистрофии Дюшена этот белок все же продолжает работать, хотя и хуже, чем в норме. Миодистрофия Беккера проявляется медленно, особенно у низкорослых детей. Многие годы они сохраняют удовлетворительное физическое состояние, и только сопутствующие различать, с заболевания и травмы приковывают их к инвалидной коляске. Дистрофия Беккера менее распространена, чем миодистрофия Дюшена.
Помимо миодистрофии Дюшена и Беккера существует еще несколько форм врожденных миопатий. Например, юношеская форма Эрба-Рота возникает в возрасте 10–20-ти лет, когда незаметно начинает проявляться атрофия мышц плечевого пояса и рук, а затем – тазового пояса и ног. Во время ходьбы больной переваливается с выпяченным вперед животом и отодвинутой назад грудной клеткой. Чтобы встать из положения лежа, ему надо повернуться на бок и, опираясь руками на бедра, постепенно поднять свое туловище. Болезнь со временем медленно прогрессирует.
Существует плече-лопаточно-лицевая форма миодистрофии (Ланду-зи-Дежерина), которая может начаться в возрасте от 6-ти до 52-х лет (чаще в 10–15 лет). Для нее характерно поражение мышц лица и постепенная атрофия мышц плечевого пояса, туловища и конечностей. На ранних стадиях болезни веки плохо смыкаются и не закрываются полностью. Губы также не смыкаются, что создает проблемы с дикцией и невозможность надуть щеки. Заболевание протекает медленно. Долгое время больной может передвигаться и сохранять трудоспособность, а затем, через 15–25 лет постепенно начинают атрофироваться мышцы тазового пояса ног, что затрудняет его передвижение.
При невральной амиотрофии Шарко-Мари, происходит постепенная атрофия мелких мышц стоп, затем атрофируются мышцы голеней и нижней части бедер. Мышцы средней и верхней частей бедер при этом не изменяются, и бедро представляет форму бутылки с горлышком, опрокинутым вниз. Затем постепенно атрофируются мышцы кистей рук и предплечий. Мышцы туловища, плечевого пояса и лица не поражаются. Заболевание возникает в возрасте 18–25 лет, медленно прогрессирует и стабилизируется. В его основе лежит нарушение иннервации соответствующих групп мышц.
Снижение тонуса мышц называют амиотонией. При врожденной амиотонии Оппенгейма мышцы новорожденного недоразвиты, их мышечная дистрофия является вторичной. У новорожденных болезнь не прогрессирует, но респираторные инфекции могут вызвать в этом случае серьезное воспаление, которое нередко приводит к смерти на первом году жизни. С возрастом двигательная функция мышц при амиотонии Оппенгейма улучшается.
Лечение мышечных дистрофии направлено на замедление дистрофических процессов в мышцах, а в идеале – на их полное прекращение. К сожалению, радикального лечения миодистрофий пока не найдено. Существует определенная надежда на генную терапию, которая начинает медленно внедряться в медицинскую практику. Для лечения миодистрофий применяют внутримышечные инъекции АТФ, а также витамин B1, делают переливание крови. Из народных средств применяют проросшие зерна пшеницы, ржи, пчелиное маточное молочко, траву спорыша, хвоща полевого, льнянку обыкновенную, женьшень, корневища топинамбура.
Известно, что врожденные мышечные дистрофии бывают не только у людей. Например, собаки породы золотистый ретривер часто являются носителями дефектного гена белка дистрофина. При этом у них развиваются типичные клинические проявления дистрофии Дюшена. Таких собак экспериментаторы давно используют в качестве модельных объектов для изучения особенностей течения данного заболевания и поисков способов его лечения. Аналогичная ситуация с дефектным геном дистрофина возникает и у некоторых кошек. Нередко эти несчастные животные погибают в результате нарушений работы мышц диафрагмы. Генетики вывели даже особую линию лабораторных мышей с точковой мутацией в гене дистрофина! Оказывается, таким мышам можно помочь, вводя в их мышцы здоровые эмбриональные мышечные клетки.
Проводят аналогичные эксперименты и на больных людях. Суть метода заключается в получении мышечных клеток от здорового донора. Затем их подращивают вне организма (in vitro) и вводят в мышцы больного. Стоимость такой операции составляет около 150 тыс долларов США. Такие опыты были проведены в 6 независимых исследовательских лабораториях, а результаты доложены в Париже в 1999 г. К сожалению, согласно мнению ведущих авторитетов в области биологии мышц и миодистрофий в существующем на данный момент виде этот метод абсолютно неэффективен. Как известно, иммунная система человека отторгает чужеродные (аллогенные) клетки ткани. С этой проблемой исследователи сталкиваются, пытаясь помочь больным миодистрофией. Возможно, прогресс в этой области будет достигнут, когда в дело пойдут эмбриональные клетки. Дело в том, что они еще не обладают специфическими белковыми метками, по которым иммунная система распознает «чужаков».
Другой возможный путь – пересадка собственных стволовых клеток, полученных из костного мозга или скелетных мышц больного. При этом часть инъецированных клеток мигрирует и в скелетные мышцы, где сливается с миофибриллами, восстанавливая синтез дистрофина! Генотерапия же в данном случае пока почти бессильна. Несмотря на то, что ученые умеют выделять ген дистрофина, им пока не удается «доставит его по назначению» – то есть ввести в мышечные клетки, где работает его дефектная копия. Однако ученые не опускают руки. В нашей стране исследования по генной терапии миодистрофии Дюшена ведутся в Институте акушерства и гинекологии им. Д. О. Отта (Санкт-Петербург) в тесном контакте с ведущими лабораториями поданной проблеме в Великобритании и Италии, а также в комплексе с другими научно-исследовательскими институтами России, в частности Институтом молекулярной биологии им. акад. В. А. Энгельгардта, Институтом цитологии в Санкт-Петербурге, научным Центром Медицинской Генетики и Институтом экспериментальной медицины в Санкт-Петербурге. Остается только надеяться, что в обозримом будущем эти исследования увенчаются практическим успехом!
Кровеносная система
Мы с тобой одной крови – ты и я!
Р. Киплинг
Уникальная комбинация
Стремясь победить старость, римский папа Иннокентий VII в конце XV века приказал своим медикам перелить в его тело кровь от двух молодых юношей. В результате такой операции глава римской католической церкви скончался. Вместе с тем, врачам были известны случаи, когда переливание крови буквально возвращало жизнь подопытным животным. В 1666 г. лондонский врач Лоуэр после смерти обескровленной собаки влил в ее вены через пустотелое гусиное перо кровь от живой собаки и буквально воскресил умершую. Собака вернулась к жизни. Эти опыты продолжил французский врач Жан-Батист Дени. Он решился на рискованный эксперимент – перелил человеку более 150 г крови овцы. Пациент выжил. Дени продолжал свои опыты, пока один из его пациентов, Антони Монрой, в результате такого переливания не скончался. Вдова Монроя обвинила Дени в убийстве, и хотя суд оправдал врача, но наложил запрет на подобные рискованный эксперименты с кровью. Это вето затормозило изучение переливания крови на целых два столетия, пока уже в XIX веке перспективами переливания не увлекся английский врач Джеймс Бландел. Он мечтал с помощью таких приемов спасать жизнь роженицам, которые порой умирали от большой потери крови.
К концу XIX века в мире было произведено около 600 переливаний крови пациентам, однако более половины таких случаев привело к гибели людей, которым вводили кровь. Почему же одни такие операции были успешными, а другие заканчивались трагически? В конце XIX века немецкий хирург Теодор Бильрот, анализируя зафиксированные в истории медицины неудачные попытки переливания крови, – впервые высказал предположение, что существуют различные ее типы, несовместимые друг с другом. Эта идея казалась его коллегам странной, к ней относились с подозрением.
Однако зимой 1900 г. скромный 33-летний ассистент патолого-анатомического института Венского университета Карл Ландштейнер проделал простой опыт, который подтвердил предположение Бильрота. Взяв пробы крови у себя и у пяти своих коллег, он отделил сыворотку от кровяных клеток. Затем он смешал эти сыворотки с клетками крови в разных комбинациях. В одной из пробирок эритроциты быстро слиплись вместе и осели на дно кровавыми хлопьями. Так были открыты группы крови. К 1908 г. стало известно, что таких групп существует, как минимум, четыре.
Их стали обозначать латинскими буквами и цифрами. Универсальными донорами оказались люди с группой 0 (I). Их кровь можно было без особой опаски переливать всем остальным реципиентам. Кровь групп А (II) и В (III) можно было переливать людям с четвертой группой АВ (IV). В пределах каждой группы переливания также были безопасными. Открытие Ландштейнера оказалось настолько важным в теоретическом и в практическом планах, что в 1930 г. ему была присуждена Нобелевская премия.
Позже исследователи обнаружили, что четыре группы крови, открытых Ландштейнером и его коллегами, составляют лишь одну из систем. Выяснилось, что существует и другие системы совершенно независимых друг от друга групп крови. Сначала эти системы называли буквами латинского алфавита. Так появились 6 групп крови системы MNS, 7 групп системы Ph, 3 группы системы Р и так далее. Позже ученые стали давать свои фамилии новым, открытым ими системам крови. В наше время существуют группы крови «Даффи», «Кидд», «Хагеман», «Домброк», «Льюис» и некоторые другие. Каждая такая система включает минимум две группы. Эти группы менее известны, чем группы системы AB0, поскольку они почти не учитываются при переливаниях крови от доноров к реципиентам. Вместе с группами AB0 к настоящему времени существует около 12 наиболее распространенных трупп крови, которые образуют более 290 тысяч независимых комбинаций! Это означает следующее. Если учесть не только группы крови AB0, но и другие упомянутые выше, то ваша индивидуальная «формула» крови становится практически уникальной. Вероятность ее случайного совпадения с группой крови другого человека составляет около 1/1000.
Зачем это надо?Что же это за группы такие? Чем именно они определяются? Почему некоторые комбинации несовместимы при переливании? Зачем, наконец, природе было создавать все это разнообразие? Давайте разбираться.
В мембране практически любой клетки находятся белки. Они сидят в ней как морковки на грядке. Часть молекулы белка «заякорена», словно корешок, в мембране, а часть торчит наружу, как ботва. Часто к таким торчащим наружу белкам присоединяются еще и молекулы сахаров (углеводов). Наиболее известные простые сахара (моносахариды) – это глюкоза и фруктоза. Помимо них есть еще много других моносахаридов. По-разному соединяя между собой относительно простые молекулы моносахаридов, можно получить множество более сложных полисахаридов. Иначе говоря, моносахариды – это своеобразные «детальки» молекулярного конструктора, с помощью которых можно строить сложные длинные молекулы. И не только сложные, но и во многом уникальные, поскольку различных сочетаний элементов – море.
Сложные сахара, соединенные с белками, называются гликопротеинами (греч. glykys – сладкий). Таким образом, многие клетки покрыты своеобразной уникальной «сахарной шубкой» из гликопротеинов. Есть она и на поверхности красных клеток крови – эритроцитов. Группы крови как раз и отличаются друг от друга тем, какие именно сахара и белки находятся на поверхности эритроцитов каждой конкретной группы. Более того, иммунная система человека в состоянии отличать одни «сахарные метки» от других и вырабатывать антитела на чужие молекулы.
Вернемся для примера опять к группе крови AB0. У человека с группой крови 0 на поверхности эритроцитов нет молекул А и В, зато есть антитела к ним: анти-А и анти-В. Кровь второй группы А содержит молекулы А и анти-В. Кровь третьей группы В содержит молекулы В и анти-А. Наконец, кровь группы АВ не содержит антител анти-А и анти-В и имеет на поверхности эритроцитов молекулы А и В. Если человеку с нулевой группой крови перелить кровь группы АВ, все эритроциты перелитой крови склеятся, поскольку антитела анти-А и анти-В будут активно связываться с молекулами А и В на их поверхности. Если же поступить наоборот – перелить кровь группы 0 человеку с группой АВ, то с перелитой кровью ничего страшного не произойдет. Собственная же кровь реципиента свернуться под воздействием антител донора не может – этих антител оказывается слишком мало для подобной акции.
В детали описанной выше схемы можно и не вдаваться. Главное – понять, почему вообще в крови некоторых людей существуют антитела против молекул, имеющихся на поверхности клеток крови других людей. Вряд ли природа «придумала» такую ситуацию, стараясь помешать изобретательным людям впоследствии переливать кровь друг другу в любых комбинациях. Кстати, группы крови есть не только у людей, но и почти у всех видов теплокровных животных.
Возможно, дело в следующем. «Сахарные метки» на поверхности клеток нередко служат для «заякоривания» с их помощью разнообразных вирусов и бактерий. Более того, на поверхности многих бактерий также содержатся различные сахара и белки. Поэтому клетки, поверхность которых лишена определенных молекул, как бы становятся «невидимыми» для атак со стороны некоторых микроорганизмов. Присутствие же в сыворотке крови антител против некоторых полисахаридов затрудняет размножение в ней этих патогенных бактерий.
Разнообразие групп крови у человека является отражением его молекулярной индивидуальности, а разнообразие вида – условием его успешного существования. Вспомните: в результате самых опустошительных эпидемий чумы в средние века часть населения, несмотря на отсутствие иммунитета и квалифицированной медицинской помощи, все же выживала. Быть может, это были люди с определенными сочетаниями групп крови?
Любой человек обязан знать свою группу крови. В некоторых ст ранах данные о ней вносят, например, в строку водительских прав или иных документов. Такая информация в критической ситуации может спасти жизнь человека. Хотя времени для определения группы крови требуется не так много, но для этого нужна лаборатория, оборудование… Порой же врачам приходится прибегать к экстренному переливанию крови пострадавшего, когда отсчет времени идет на минуты. Поэтому полезно носить на теле небольшой медальон, кулон или табличку с информацией о вашей группе крови.
Кто отец ребенка?Группы крови, как и многие другие признаки, наследуются в ряду поколений по законам Менделя. Почти уникальное сочетание различных групп крови, о которых говорилось выше, предполагает, что по ним можно четко и однозначно определить родственные связи и, в частности, судить о возможном отце ребенка. На практике же для подобных предсказаний чаще всего используются не все известные группы крови, а лишь самые основные их группы – AB0, тем более что их определение, в отличие от других групп, не составляет большого труда. При этом надо иметь в виду, что сами группы крови AB0 определяются сочетаниями двух генов, каждый из которых может находиться в грех возможных вариантах – А, В или 0. Например, человек с первой группой крови может иметь генотип 0А или АА.
Генотипы и группы крови
На практике обычно известна именно группа крови, а не сочетание определяющих ее генов, поэтому у родителей с известными группами крови в потомстве могут быть дети с различными ее группами. В данном случае важно, что при определенных сочетаниях групп крови родителей на свет не могут появиться дети с некоторыми группами. На этом обычно и строится доказательство невозможности отцовства. Например, если мать имеет группу крови А, а ее ребенок обладает группой крови АВ, то отцом такого ребенка никак не может быть мужчина с группой крови А. Им должен быть мужчина либо с группой крови В, либо с АВ.
Установление отцовства на основании групп крови
В наше время хорошо известно, что «групповыми свойствами» обладает не только кровь, но и многие другие жидкости человеческого тела. Например, слезы, слюна, пот, желчь, материнское молоко. Причем степень выраженности этих групповых качеств у нее даже выше, чем у эритроцитов и других клеток крови. Более того, на поверхности практически всех клеток организма человека есть особые белки, которые являются его своеобразными «индивидуальными метками». Именно эти белки определяют отторжение чужих пересаженных органов или кусочков кожи. Впрочем, это начало уже совсем другого рассказа.