355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Афонькин » Секреты наследственности человека » Текст книги (страница 11)
Секреты наследственности человека
  • Текст добавлен: 6 октября 2016, 18:57

Текст книги "Секреты наследственности человека"


Автор книги: Сергей Афонькин


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 11 (всего у книги 26 страниц)

Резус-фактор

Нобелевскую премию за открытие групп крови разделил с Карлом Ландштейнером его коллега Филипп Левин, который в начале XX века был привезен в Нью-Йорк из России в возрасте 8 лет. Перед начало которой мировой войны Левин и Ландштейнер обнаружили в крови людей еще одно вещество, которое присутствовало в крови большинства женщин и отсутствовало у некоторых из них. Такое же вещество было обнаружено у макак-резусов, образны крови которых брали для опытов. Поэтому вещество назвали резус-фактором и стали обозначать латинскими буквами Rh.

Выяснилось, что резус-фактор является белком, и всех людей можно разбить по его наличию или отсутствию в крови на две группы: резус-положительных (Rh+) и резус-отрицательных (Rh-). Несовпадение крови матери и крови плода по резус-фактору может приводить к серьезному осложнению протекания беременности – так называемому «резус-конфликту». Возникает он следующим образом. Резус-отрицательная женщина, вступив в брак с резус-положительным мужчиной, может зачать резус-положительного ребенка. Вероятность такого зачатия зависит от генотипа отца. Если он является гомозиготой (Rh+/Rh+), все его дети в таком браке будут резус-положительными. Если мужчина – гетерозигота (Rh+/Rh-), он может стать отцом резус-положительного ребенка с вероятностью 50 %.

Как известно, кровь матери и плода не смешивается. Питательные вещества из ее кровяного русла проходят через капилляры плаценты и попадают в кровяное русло ребенка. При этом ни клетки, ни белки через этот барьер не проходят, ведь многие белки матери будут чужеродными для ребенка, поскольку в его организме лишь половина ее генов. Остальные гены – отцовские. Значит, с иммунологической точки зрения созревающий в матке женщины плод – совершенно чужеродное по отношению к ней образование!

Иногда, впрочем, за счет нарушения целостности капилляров часть крови ребенка может попасть в кровь матери. Если ребенок является резус-положительным, в крови матери появится новый (и чужеродный!) для нее белок Rh. В полном соответствии с законами иммунологии на него выработаются антитела. Если же такие антитела попадут обратно в кровь будущего младенца, произойдет катастрофа – его эритроциты начнут слипаться и разрушаться. Так начинается тяжелая патология – гемолитическая болезнь новорожденных (греч. haima – кровь, lysis – растворение, разрушение).

Первые описания этого недуга были сделаны еще в конце XIX века.

У новорожденных увеличена печень и селезенка (в них происходит уничтожение старых и распадающихся эритроцитов), уровень гемоглобина резко снижен, дети отечны, страдают анемией, у них появляются признаки неинфекционной желтухи. В крайних случаях гемолитическая болезнь новорожденных может закончиться их смертью в первые несколько суток жизни. Бороться с недугом можно путем заменного переливания крови новорожденным. Вероятность возникновения резус-конфликта увеличивают перенесенные в процессе беременности острые заболевания, повышающие проницаемость плацентарного барьера. Обычно такой конфликт развивается лишь у одной из 25–30 резус-отрицательных женщин, которые имеют резус-положительных мужей. Однако и это немалый риск. Поэтому любой человек должен не только знать свою группу крови, но и резус-фактор. Семейные пары, у которых при вынашивании ребенка может возникнуть резус-конфликт, обязательно должны обращать внимание на такую возможность.

ГемофилияМудрость Талмуда

Классическим примером врожденного заболевания, сцепленного с полом, является гемофилия. История изучения этого до последнего времени таинственного дефект а кровеносной системы уходит своими корнями в далекое прошлое.

22 марта 1791 г. в частной американской газете была опубликована заметка о смерти 19-летнего юноши, последовавшей от небольшой резаной раны на ноге, которая кровоточила, не закрываясь несколько дней. Это была не первая подобная трагедия в семье несчастного молодого человека. В предыдущие годы пять его единокровных братьев умерли при столь же странных обстоятельствах. Таким образом, в США впервые в истории этой с страны был зафиксирован в печати случай семейной гемофилии – болезни несвертываемости крови. Позже серьезное обобщение подобных случаев осуществил в Филадельфии американский исследователь Джон Отто. Он составил множество генеалогических таблиц наследования гемофилии в Северной Америке, опубликовав свои данные в капитальной книге, вышедшей в свет в 1803 г. Вывод Отто был однозначен – болезнь передается в семьях по женской линии. Врач Грандидьер чуть позже назвал таких женщин «кондукторами-проводницами».

В выводах американских врачей не было ничего оригинального. На наследственную природу заболевания, передающегося по материнской линии, косвенным образом указывалось еще в своде религиозных трактатов иудаизма Талмуде, где было записано буквально следующее: «Если у одной матери двое детей умерло от обрезания, то третий ее сын свободен от этого обрезания, все равно, будет ли он от одного и того же отца, или от другого». Если же в результате операции два сына погибали у отца, который впоследствии вступил в брак с другой женщиной, то сын от последнего брака должен быть обрезан, поскольку на него не должна была распространяться странная кровоточивость погибших родственников.

Аналогичные рекомендации можно найти в содержащемся в Вавилонском талмуде трактате Иебамот: «Сообщалось о четырех сестрах из Сефориса. Первая произвела обрезание своему сыну, и он умер; вторая – и он умер; третья – и он умер. Тогда четвертая сестра пришла к рабби Симеону, сыну Гамалиеля, который сказал ей: откажись от обрезания, потому что есть семьи, у которых кровь жидкая, тогда как в других семьях она свертывается». Религиозный обряд обрезания, столь важный для приверженцев ортодоксальною иудаизма, связан с незначительным кровотечением. Следовательно, Талмуд рекомендовал не подвергать такому риску детей, у которых можно было подозревать наследственное нарушение свертываемости крови, и даже указывал на наследственную природу этого заболевания.

В 1100 г. арабский врач Алза-Гарави из Кордовы описал несколько деревенских семей, в которых многие мужчины страдали кровоточивостью, а в 1793–1798 гг. немецкий врач Ров писал об аналогичных семействах в Вестфалии. Однако это были лишь описания, не более. О семейственной природе заболевания указывал в 1820 г. Нассе в своем капитальном сочинении «О наследственной склонности к смертельным кровотечениям», в котором он обобщил все доступные ему литературные указания на это заболевание. Несмотря на появление подобных обзоров, фактически до конца XIX века причина этой странной болезни оставалась неясной.

Ген кровоточивости

Врачи пытались объяснить болезненную кровоточивость то ненормальным развитием стенок кровеносных сосудов, которые якобы становились слишком тонкими, то гипертонией, то дефектами в строении эритроцитов, то влиянием гипофиза. Первым прозорливо указал на истинную причину заболевания в 1461 г. профессор Деритского университета (ныне г. Тарту в Эстонии) наш соотечественник Александр Александрович Шмидт. Он создал ферментативную теорию семейной кровоточивости. Позже его догадка была блестяще подтверждена, когда выяснилось, что в крови таких больных не хватает некоторых белков плазмы, присутствующих у здоровых людей.

Первое появление термина гемофилия (от греч. haima – кровь и phileo – люблю) историки медицины приписывают диссертации некоего Ф. Хопфа «О гемофилии, или наследственной склонности к смертельным кровотечениям», защищенной им в 1928 г. в Вюрцбюрге. Современникам Хопфа слово не понравилось. «Слово гемофилия столь дико и бессмысленно, что никло им не гордится», – писали они. Тем не менее, несмотря на первое негативное восприятие, термин устоялся, дойдя в неизменном виде до наших дней. Уже знакомые с генетической терминологией и законами наследования признаков немецкие исследователи Бауэр и Шлосман в 1922–1924 гг. указывали на рецессивный характер ее наследования, сцепленного с полом. Это означало, что дефектный ген находится в одной из двух женских X хромосом. При наличии у женщин второго исправного гена во второй X хромосоме заболевание не проявляется. У мужчин из двух половых хромосом только одна является X хромосомой, которую он получает от своей матери. Следовательно, если такая хромосома у мужчины будет содержать дефектный ген, его действие обязательно проявится.

Это несложное рассуждение хорошо объясняло наследование гемофилии в семьях, где от заболевания страдали только мужчины. Так, например, хорошо известно, что четвертый сын и восьмой ребенок английской королевы Виктории I страдал и умер от гемофилии. Следовательно, его мать являлась носительницей дефектного гена, который она передала двоим из своих пяти дочерей. Они, в свою очередь, передали его далее в ряду поколений. В частности, дочь Виктории Беатрис вышла замуж за Генриха принца Баттенбергского. Двое мальчиков от этого брака умерли во младенчестве от кровотечений. Вторая дочь Виктории – носительница гена гемофилии Алиса вышла замуж за Людовика принца Гессенского. От этого последнего брака на свет появились два сына, один из которых страдал гемофилией, и пять дочерей, две из которых – Ирген и Александра – также унаследовали «ген кровоточивости».

Фибриновая пробка

По счастью, гемофилия встречается достаточно редко – почти в восемь раз реже, чем печально знаменитый синдром Дауна. По статистике, один гемофилик приходится на 8 тысяч рожденных мальчиков. Казалось бы, это мало, однако только в США от гемофилии страдают 20 тысяч американцев – целая армия! Этим людям угрожают не только внешние кровотечения, но и внутренние кровоизлияния. В последнем случае вытекающая из поврежденных сосудов кровь начинает распространяться вдоль мышц, и окружающие их ткани нередко разбухают. В результате возникает тканевой фиброз, последствием которого может быть судорожное сведение пальцев рук – так называемый эффект «когтистой лапы». Кровь, попавшая в суставные сумки, надолго лишает сустав подвижности. Хрящ суставов начинает разрушаться, становится губчатым, рыхлым. Кости подвергаются так называемой кальцификации и становятся ломкими. В общем, быть гемофиликом – удовольствие маленькое. По счастью, в наши дни многие из этих неприятных последствий снимаются специальными препаратами, производство которых стало возможным в результате тщательного изучения образования тромбов – тромбогенеза.

Главными клетками, ответственными за сворачивание крови, являются тромбоциты. Впервые они были описаны в середине XIX века профессором гематологической клиники при Парижской Академии Наук доктором Александром Донне. В 1880 г. наш соотечественник В. П. Образцов доказал, что тромбоциты образуются из огромных клеток мегакариоцитов, буквально отшнуровываясь от их поверхности. Тромбоциты – округлые и самые маленькие клетки крови. Они редко достигают в диаметре 5 микрон – то есть одной двухсотой части миллиметра, – однако их значение трудно переоценить. Есть указания на то, что тромбоциты являются специальными «кормильцами» клеток, образующих внутреннюю поверхность кровеносных сосудов. Прикрепляясь к ним, они отдают питательные вещества, возможно, погибая при этом. Во всяком случае, общий запас тромбоцитов в нашей крови даже при отсутствии каких бы то ни было кровотечений, постоянно пополняется. До 15 % тромбоцитов возникают ежедневно. Однако, для нашего рассказа это сейчас не главное. Как следует из самого названия этих клеток, именно тромбоциты ответственны за образование тромбов при повреждении кровеносных сосудов. Происходит это следующим образом.

В результате разрыва кровеносного сосуда нарушается его эндотелий (эндотелиальная выстилка), то есть повреждаются клетки, которыми он «облицован» изнутри. Под выстилкой лежат длинные волокна основного белка соединительной ткани – коллагена, которому тромбоциты способны прилипать. Прочное прикрепление тромбоцитов к поверхности раны ведет сразу к нескольким важным последствиям. Внутри прикрепившихся тромбоцитов сжимается своеобразное кольцо из микротрубочек, в результате чего меняется форма клеток. На поверхности тромбоцитов начинают возникать многочисленные выросты. Таким образом, площадь поверхности тромбоцитов резко возрастает, что, безусловно, способствует их закреплению в ране. Во-вторых, на их поверхности появляются белки, которые нужны для прикрепления к ним новых тромбоцитов. Образно говоря, проникшие в рану тромбоциты подают сигнал «Сюда, к нам! Здесь нужна экстренная помощь». Из кинувшихся на подмогу тромбоцитов начинает выделяться биологически активное вещество – гормон серотонин. Под его воздействием за счет сокращения гладкой мускулатуры начинается локальная вазоконстрикция. Говоря попросту – местное сокращение сосудов (лат. vas – сосуд). Смысл этого при попытке организма прекратить кровотечение ясен и без комментариев. Наконец, прилипшие к ране тромбоциты выделяют вещество, стимулирующее деление клеток гладких мышц. Тоже понятно – края разрыва надо стянуть с помощью мускулатуры.

Если поврежденным оказался капилляр, нередко кучи навалившихся на место повреждения тромбоцитов оказывается вполне достаточно, чтобы закрыть место разрыва своими телами. Если же побежден более крупный сосуд, включается механизм образования фибриновой пробки. Происходит это следующим образом. Прикрепленные к ране тромбоциты выделяют специальное вещество – так называемый «фактор контакта», – который запускает целый каскад взаимодействий различных белков, участвующих в образовании тромба., Их насчитывается более десятка, и многие из них названы фамилиями пациентов, у которых гемофилия была связана с отсутствием в крови именно этого компонента. Так, например, существует факторы Коллера, Розенталя и Хагемана.

По мнению многих экспериментаторов, в начале XX века номенклатура факторов сворачивания крови была сравнима с Вавилонской башней. Каждый фактор, благодаря сочинениям разных авторов, мог иметь до двадцати синонимов! Порядок удалось навести лишь в начале пятидесятых годов XX века, создав в этой области единую терминологию, которая теперь принята во всем мире. Она включает 12 факторов, пронумерованных латышскими цифрами. Большинство из этих факторов являются сложно устроенными белками.

Первое впечатление от сложной схемы взаимодействий факторов, влияющих на свертываемость крови, точно выразил в одном из своих капитальных сочинений французский исследователь гемофилии Ж. Фермилен, написав следующее: «Сложность этой схемы может охладить интерес к изучению данной проблемы». Поэтому, не вдаваясь в тонкости, отметим лишь ее ключевые моменты. Белок, выделяющийся из тромбоцитов при контакте с раной, стимулирует фермент протромбиназу, которая в свою очередь активирует белок протромбин. В результате из протромбина получается тромбин, который воздействует на главный белок, необходимый, для образования тромба – фибриноген.

Его в нашем теле совсем мало – всего около 10 грамм, однако этот количества оказывается вполне достаточно, чтобы система сворачивания крови эффективно работала. Фибриноген – очень большой белок. В результате действия на него тромбина от фибриногена отщепляется пара участков, которые до этого скрывали места, необходимые для запуска процесса полимеризации. В результате возникает так называемый фибрин-мономер, способный активно соединяться с такими же молекулами мономеров в длинные неразветвленные цепи, на существование которых прозорливо указывал еще Аристотель, назвав основной компонент сгустка крови «волокниной». Мономеры фибрина напоминают строительные блоки конструктора Лего, из которых легко можно построить длинную балку. Образующиеся полимерные нити фибрина стабилизируются специальным белком, фибриназой, приобретая необходимую прочность. Таким образом, в ране образуется настоящая заплатка из густо переплетенных нитей фибрина. Строящиеся в ране нити фибрина угнетают активность тромбина. Смысл такого угнетения ясен: в противном случае активированный тромбин мог бы свернуть всю кровь в организме. Следовательно, этот фермент надо вовремя «выключить».

Ясно, что фибриновая пробка не может существовать бесконечно долго. Довольно скоро начавшие делиться клетки эндотелия и гладкой мускулатуры закрывают своими телами образовавшуюся брешь в стенке сосуда, и тогда сгусток начинает только мешать восстановившемуся кровотоку. Сгусток эффективно удаляет еще один белковый участник тромбогенезисной оперы фермент фибринолизин. Под его воздействием фибриновый тромб начинает распадаться, и вскоре полностью исчезает. Для того чтобы фибринолизин не слишком уж рьяно активничал и не растворял сгустки раньше времени, на него тоже есть управа в виде белка антифибринолизина. Кстати сказать, в крови умерших людей активность фибринолизина остается достаточно высокой на протяжении длительного времени. В результате этого трупная кровь не сворачивается, как это можно было бы ожидать, исходя из житейских рассуждений. Кстати, подобный эффект позволил в 1936 г. отечественным хирургам С С. Юдину и В. Н. Шамову разработать и внедрить в практику переливание пациентам крови трупов. В настоящее время такая методика не практикуется, однако ее применение возможно в экстремальных ситуациях дефицита донорской крови.

Избыточная сложность

Помимо 12 пронумерованных факторов, в процессе свертывания крови участвуют в общей сложности около 60 различных соединений. Как объяснить такую, на первый взгляд избыточную, сложность каскада белковых взаимодействий? Дело в том, что процесс образования тромбов очень важный, ответственный и во многом опасный. Только представьте себе, что кровь начнет самопроизвольно сворачиваться в капиллярах. Это же будет полная катастрофа! Или наоборот, ее сворачиваемость упадет ниже всякой критики. Тогда все люди поголовно станут гемофиликами! Не вызывает сомнения, что сама степень свертываемости должна меняться в зависимости от внешних и внутренних физиологических условий. Следовательно, процесс надо тонко регулировать.

Известно, например, что на процесс сворачивания крови оказывают влияние вегетативная нервная система, гормоны и головной мозг. В частности, под воздействием незначительного стресса свертываемость может уменьшаться. Логически такой эффект вполне обоснован. Обычно состояние стресса готовит организм к предстоящим физическим нагрузкам – учащается сердцебиение, увеличивается потоотделение, необходимое для охлаждения при беге или борьбе. Снижение свертываемости и, как следствие, увеличение «жидкостности» крови в этой ситуации будет способствовать ее лучшему и быстрому прохождению через самые тонкие капилляры. С другой стороны, эмоциональное возбуждение и страх перед предстоящей операцией способны увеличить свертываемость. Разумеется, эволюция не готовила человека заранее к полостным операциям, однако факт остается фактом – эмоции влияют на фибриногенез. Именно подобными эффектами можно, кстати, объяснить колдовские способности Григория Распутина, который был способен голосом и взглядом останавливать кровотечения у гемофилика царевича Алексея.

Хороший пример «мудрости» фибриногенеза дают опыты с избытком тромбина. Теоретически содержащегося всею в 10 мл крови протромбина должно оказаться достаточно, чтобы возникший из него тромбин превратил весь фибриноген тела человека в фибрин, то есть, чтобы свернулась вся кровь. На деле же в экспериментах на животных этого не происходит. Более того, инъекции изрядных доз тромбина не убыстряют, а во много раз замедляют свертываемость крови у подопытных крыс. Хотя молекулярный механизм этого явления еще до конца не ясен, логика его действия предельно понятна. Действительно, в нормальных условиях концентрация тромбина в крови не должна выходить за разумные рамки, и если, образно говоря, стрелку зашкаливает и концентрация тромбина подскакивает выше предельно допустимой. Включаются механизмы, тормозящие свертываемость. Другими словами, организм «понимает», что при резком скачке количества тромбина надо не кровь сворачивать, а нормализовывать механизм поступления тромбина в кровь, а заодно обезопасить себя or массового появления тромбов и сгустков, резко уменьшив свертываемость крови.

Гены гемофилии

До начала применения эффективной терапии редко кто из гемофиликов доживал до 20 лет. В настоящее время некоторыми фармакологическими компаниями выпускается целый ряд препаратов, способных восстанавливать сворачиваемость кровь больных гемофилией. Большая часть из них представляет собой лиофилизированные (высушенные) концентраты крови здоровых людей. Стоимость такого лечения достаточно велика и составляет 6–10 тысяч долларов в год. К тому же, всегда существует опасность вместе с таким концентратом получить какой-нибудь вирус (в худшем случае – вирус СПИДа). Поэтому неудивительно, что биологи пытаются наладить выпуск лекарств против гемофилии, используя методы генной инженерии.

80–85 % больных гемофилией страдают от отсутствия в крови фактора VIII (антигемофильного глобулина). Такая гемофилия считается классической и обозначается буквой А. В остальных случаях (гемофилия В) не хватает фактора IX. Фактора VIII в крови совсем немного. Достаточно сказать, что на одну молекулу антигемофильного глобулина в кровяном русле приходится миллион молекул альбумина – одного из основных белков плазмы. Однако фактор VIII играет одну из ведущих ролей в каскаде реакций, стимулирующих превращение фибриногена в фибрин, и поэтому его отсутствие неизбежно приводит к гемофилии.

В 80-е годы XX века американская фирма Genetech начала производить антигемофильный глобулин с помощью генно-инженерных методик. За этим выдающимся достижением стояла поистине ювелирная работа молекулярных биологов Ричарда Лона, Гордона Вихара и их сотрудников. Первой целью ученых было найти ген антигемофильного глобулина среди сотен тысяч генов человеческою организма.

Задача сама по себе нелегкая, однако, если учесть, что значимые, работающие гены составляют далеко не всю ДНК человека, а лишь ее часть, то предстоящая работа представлялась поистине титанической. Доктор биологических наук Б. М. Медников так образно описывал трудность выделения нужного гена из всей ДНК человека: «Представьте полное академическое собрание сочинений Пушкина, изданное тиражом в сотни миллионов экземпляров (с таким количеством исходных клеток в колбе обычно имеют дело молекулярные биологи). Тираж при этом напечатан в одну строчку на телеграфной ленте и перемешан в огромный ворох, который непрерывно перелопачивают (имитация теплового движения молекул в растворе), а стая жизнерадостных обезьян (это аналог ферментов нуклеаз, полностью избавиться от которых при выделении молекул ДНК из клеток невозможно) рвет ленту, где им это понравится. Теперь представьте, что, не прикасаясь руками и не видя текста, с расстояния пятидесяти метров надо из этой кучи выбрать все ленты, на которых отпечатан, например, „Анчар“ или первая глава „Евгения Онегина“».

Однако по счастью в молекулярной биологии давно были отработаны подходы для решения подобных задач. Выделенный ген антигемофильного глобулина человека позволил не только наладить наработку фактора VIII, но и подробно изучить сам белок. Антигемофильный глобулин представляет собой чудовищно огромную молекулу. Этот белок состоит из 2332 аминокислот! Для сравнения, сложно устроенный белок интерферон, помогающий нашим клеткам бороться с вирусными инфекциями, содержит их более чем на порядок меньше.

В результате детального анализа выяснилось, что у разных больных гемофилией А можно найти различные повреждения гена антигемофильного глобулина. В конце XX века были известны как минимум семь подобных нарушений. Из них четыре представляют собой точечные мутации – то есть повреждения единичных нуклеотидов, которые ведут к замене всего одной аминокислоты в белке. Оставшиеся три нарушения представляют собой делении – потери небольших участков гена. Как уже упоминалось, не все случаи гемофилии можно объяснить отсутствием в крови больных антигемофильного глобулина. У меньшей их части не хватает других белков, влияющих на свертываемость крови. Вместе с тем, не вызывает сомнения, что и эти более редкие случаи будут со временем подробно изучены, и в результате биологи создадут соответствующие лекарственные препараты против гемофилии.


    Ваша оценка произведения:

Популярные книги за неделю