355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Руперт Шелдрейк » Новая наука о жизни » Текст книги (страница 15)
Новая наука о жизни
  • Текст добавлен: 7 октября 2016, 00:15

Текст книги "Новая наука о жизни"


Автор книги: Руперт Шелдрейк



сообщить о нарушении

Текущая страница: 15 (всего у книги 22 страниц)

10.4. Обучение

Можно сказать, что происходит обучение, когда имеется какое-либо относительно постоянное адаптивное изменение в поведении в результате прошлого опыта. Здесь можно выделить четыре общие категории:[215]215
  Thorpe (1963).


[Закрыть]

(1) Наиболее универсальным типом, который обнаруживается даже у одноклеточных организмов,[216]216
  Например, Jennings (1906).


[Закрыть]
является привыкание, которое можно определить как ослабление реакции в результате повторения стимула, не сопровождающегося каким-либо подкреплением его значимости. Известный пример такого рода – исчезновение реакций тревоги или избегания на новые стимулы, которые оказываются безвредными: животные к ним привыкают.

Этот феномен предполагает существование своего рода памяти, позволяющей узнавать стимулы, когда они повторяются. По гипотезе формативной причинности это узнавание обусловлено главным образом морфическим резонансом организма с его собственными прошлыми состояниями, включая те, которые были вызваны новыми сенсорными стимулами. Этот резонанс служит для поддержания и фактически для определения идентичности организма с самим собой в прошлом (раздел 6.5). Повторяющиеся стимулы от окружения, отклики на которые не подкрепляются, станут действующей частью собственного «фона» организма. Наоборот, любые новые особенности окружения будут выделяться, поскольку они не распознаются как «свои»: обычно реакцией животного будет тревога или избегание именно потому, что стимулы ему незнакомы.

В случае некоторых стереотипных ответов, – таких как рефлекс отдергивания рожек у улитки Aplysia, привыкание может происходить квазимеханистическим образом на основе предсуществующих структурной и биохимической специализаций в нервной системе (раздел 10.1). Но если так, эта специализация является вторичной и возникает, вероятно, в результате ситуации, в которой привыкание более непосредственно зависит от морфического резонанса.

(2) У всех животных врожденные модели двигательной активности выявляются по мере того, как индивид взрослеет. В то время как одни прекрасно действуют в первый же раз, когда они выполняются, другие совершенствуются со временем. Например, первые попытки птенца взлететь или детеныша млекопитающего – ходить могут быть успешными лишь отчасти, но они улучшаются после повторных усилий. Не все такие улучшения обусловлены практикой: в некоторых случаях это просто результат созревания и происходит в такой же степени с течением времени у животных, которые были иммобилизованы.[217]217
  Hinde(1966).


[Закрыть]
Тем не менее многие виды двигательных приемов улучшаются таким способом, который нельзя приписать созреванию.

С точки зрения гипотезы формативной причинности этот тип обучения можно интерпретировать как регуляцию поведения. Морфический резонанс от бесчисленных прошлых особей данного вида автоматически дает усредненную хреоду, которая руководит первыми попытками животного осуществить определенную врожденную модель движения. Эта стандартная хреода может дать лишь приблизительно удовлетворительные результаты, например из-за отклонений от нормы органов чувств у животного, или его нервной системы, или двигательных структур. По мере того как движения совершаются, регуляция самопроизвольно вызывает к жизни «тонкие подстройки» к общей хреоде, а также к хреодам низшего уровня, которые она контролирует. Эти «подстроенные» хреоды будут стабилизироваться путем морфического резонанса с прошлыми состояниями самого животного, по мере того как будет повторяться эта модель поведения.

(3) Животные могут начать отвечать на какой-либо стимул реакцией, которая в норме вызывается другим стимулом. Такой тип обучения имеет место тогда, когда новый стимул действует одновременно или сразу же после начального стимула. Классическими примерами являются условные рефлексы, установленные И. П. Павловым на собаках. Например, у собак выделяется слюна, когда им предлагают пищу. В повторяющихся экспериментах, когда предлагалась пища, звонил колокольчик, и через некоторое время при звуке колокольчика у них начинала выделяться слюна даже в отсутствие пищи.

Крайняя степень выражения обучения этого типа встречается в запечатлении (импринтинге) у птенцов, особенно у утят и гусят. Вскоре после вылупления из яиц они инстинктивно реагируют на любой достаточно большой движущийся объект, следуя за ним. В нормальных условиях это их мать, но они будут следовать также за приемными матерями, людьми или даже неодушевленными предметами, которые перед ними двигают. Через сравнительно короткое время они научаются распознавать общие черты движущегося объекта, а позднее и его особые черты. Тогда отклик в виде следования вызывается только определенной птицей, человеком или объектом, который был у них запечатлен.

Аналогичным образом животные часто научаются узнавать индивидуальные особенности своих партнеров или детенышей по виду, запаху или прикосновению. Для развития такого узнавания требуется время: например, пара птиц лысух с только что вылупившимися птенцами будет кормить и даже «усыновлять» чужих птенцов, внешне похожих на их собственных, но когда их детенышам исполняется две недели, родители узнают их по индивидуальным особенностям и уже далее не терпят никаких пришельцев, как бы они ни были похожи на их птенцов.[218]218
  Thorpe (1963), p. 249.


[Закрыть]

Подобный же процесс, вероятно, является причиной узнавания определенных мест, таких как гнездовья, с помощью меток и других связанных с ними особенностей. По-видимому, такой тип обучения играет важную роль в развитии зрительного распознавания вообще. Поскольку стимулы от объекта различаются в зависимости от угла, под которым он наблюдается, животное должно понять, что все они связаны с одной и той же вещью. Подобно этому, ассоциации между различными видами чувственных стимулов от одного и того же объекта – зрительных, слуховых, обонятельных, вкусовых и тактильных – обычно должны быть установлены в процессе обучения.

Когда новый и первоначальный стимулы действуют одновременно, на первый взгляд может показаться вероятным, что различные наборы физико-химических изменений, вызываемых этими стимулами в мозгу, постепенно становятся взаимосвязанными вследствие частого повторения. Но такая, кажущаяся простой интерпретация сталкивается с двумя трудностями.

Во-первых, новый стимул может иметь место не одновременно с обычным, но предшествовать ему. В этом случае кажется необходимым предположить, что влияние стимула некоторое время сохраняется, так что оно еще присутствует, когда обычный стимул начинает действовать. О таком виде памяти можно думать по аналогии с эхом, которое постепенно затихает вдали. Существование такой краткосрочной памяти было продемонстрировано на опыте;[219]219
  Spear (1978).


[Закрыть]
предположительно ее можно было объяснить действием резонансных (ревербераторных) цепей электрической активности мозга.[220]220
  Хотя эта идея, высказанная Хеббом (Hebb, 1949), отстаивалась в течение многих лет, она не была ни обоснованно отвергнута, ни убедительно подтверждена экспериментальными свидетельствами.


[Закрыть]

Во-вторых, обучение включает, по-видимому, определенные разрывы, оно происходит по ступеням или стадиям. Это может объясняться тем, что связь между новым и начальным стимулами включает установление нового моторного поля: поле, ответственное за начальный отклик, должно быть каким-то образом увеличено, чтобы оно могло вместить новый стимул. В сущности, происходит синтез, в котором возникает новая моторная единица. А она не может появиться постепенно, но лишь в результате внезапного «квантового скачка» (или нескольких последовательных «скачков»).

(4) Наряду с обучением ответу на определенный стимул после его получения животные также могут научиться вести себя так, что они достигают цели в результате своих действий. На языке школы бихевиоризма в этой «обусловленности действием» (operant conditioning) ответ, «выдаваемый» животным, предшествует подкрепляющему стимулу. Классические примеры такого рода дают крысы в ящиках Скиннера. В этих ящиках имеется рычаг, который, если на него нажать, выдает съедобный шарик. После ряда попыток крыса уже может связывать нажатие рычага с наградой. Подобным же образом крысы научаются нажимать рычаг, чтобы избежать болезненной стимуляции электрошоком.

Ассоциация определенной модели движения с наградой или с избеганием наказания наступает обычно в результате проб и ошибок. Но у приматов, особенно у шимпанзе, было обнаружено существование разума в общем более высокого порядка. В некоторых хорошо известных экспериментах, проведенных более пяти– десяти лет назад, У. Кёлер выяснил, что эти приматы способны решать проблемы с помощью своей «проницательности».[221]221
  Kohler(1925).


[Закрыть]
Например, несколько шимпанзе помещали в высокую камеру с гладкими стенками, на которые нельзя было влезть, с потолка свисала гроздь спелых бананов, причем они были слишком высоко, чтобы их можно было достать. После нескольких попыток добыть этот фрукт, вставая на задние ноги и подпрыгивая, они отказывались от такого способа. Через некоторое время какая-либо из обезьян бросала взгляд вначале на один из множества деревянных ящиков, которые были положены в камеру в начале эксперимента, а потом на бананы. Затем эта обезьяна подтаскивала ящик под бананы и вставала на него. Это не позволяло подняться достаточно высоко, и тогда она приносила другой ящик, ставила его на первый, но и этого было недостаточно, тогда она добавляла третий, вскарабкивалась на него и срывала бананы.

Многие другие примеры такой сообразительности были продемонстрированы впоследствии другими экспериментаторами: например, в одном эксперименте шимпанзе научились использовать палки, чтобы подгребать к себе еду, помещенную за пределами клеток и вне их досягаемости. Они делали это быстрее, если им разрешалось играть с палками за несколько дней до эксперимента – в течение этого времени они учились использовать палки в качестве функциональных «удлинителей» своих рук. Так, применение палок для приближения к себе еды представляло «интеграцию двигательных компонент, приобретенных во время предшествующего опыта, в новые подходящие модели поведения».[222]222
  Loizo(1967),p.203.


[Закрыть]

При обучении как типа «проб и ошибок», так и с помощью «улавливания отношений» (инсайта) существующие хреоды объединяются в одно целое (интегрируются) с новыми моторными полями высшего уровня. Такие синтезы могут происходить только путем внезапных «скачков». Если новые модели поведения оказываются успешными, они приобретают тенденцию к повторению. Следовательно, новые моторные поля будут стабилизированы морфическим резонансом, когда поведение, усвоенное в результате обучения, станет привычным.

10.5. Врожденное стремление учиться

Оригинальность обучения может быть абсолютной: новое моторное поле может возникнуть не только первый раз в истории индивида, но и вообще впервые. С другой стороны, животное способно научиться чему-то такому, что другие особи этого вида уже выучили в прошлом. В этом случае появление соответствующего моторного поля вполне может облегчаться действием морфического резонанса от предшествовавших подобных животных. Если моторное поле все более прочно утверждается в результате повторения у многих индивидов, обучение, вероятно, будет становиться все более легким: образуется сильная врожденная склонность к усвоению именно такой модели поведения.

Таким образом, «обученное» поведение, которое очень часто повторяется, стремится сделаться полуинстинктивным. В результате обратного процесса инстинктивное поведение может стать полуобученным. Этот последний тип, промежуточный между инстинктивным и обученным поведением, особенно ярко иллюстрируется песнями птиц.[223]223
  Thorpe (1963).


[Закрыть]
У некоторых видов, таких как лесной голубь и кукушка, мелодия песни является почти полностью врожденной и поэтому мало различается у разных птиц данного вида. Но у других, например у зяблика, хотя песня имеет общую структуру, характерную для вида, в деталях она отличается от птицы к птице; эти различия могут улавливаться другими птицами и играть важную роль в их семейной и общественной жизни. Пение птиц, выращенных в изоляции, представляет собой упрощенную и довольно невыразительную версию песни их вида; это говорит о том, что ее общая структура является врожденной. Однако при нормальных условиях они разрабатывают и совершенствуют свое пение, имитируя других птиц того же вида. Этот процесс идет гораздо дальше, например, у пересмешника, который заимствует элементы из песен птиц других видов. А некоторые птицы, особенно попугай и майна, в искусственных условиях неволи часто заходят так далеко, что имитируют людей – своих приемных родителей. У видов птиц, песни которых являются почти полностью врожденными, недостаток индивидуальных вариаций является одновременно причиной и следствием хорошо определенных и высокостабильных моторных хреод (ср. рис. 27 А): чем более повторяется одна и та же схема движения, тем выраженнее станет ее тенденция повторяться в будущем. Но у видов с индивидуальными различиями песни морфический резонанс будет давать менее четко определенные хреоды (ср. рис. 27 В): общая структура хреоды будет задаваться процессом автоматического усреднения, но детали будут зависеть от индивидуума. Структура движений, которые совершает птица, когда она впервые начинает петь, будет влиять на ее пение в дальнейшем благодаря специфичности морфического резонанса от ее собственных прошлых состоянии; по мере повторения характерная структура песни станет привычной, когда ее индивидуальная хреода углубляется и стабилизируется.

Глава 11. Наследование и эволюция поведения

11.1. Наследование поведения

Согласно гипотезе формативной причинности, наследование поведения зависит от генетической наследственности, а также от морфогенетических полей, которые контролируют развитие нервной системы и всего животного в целом, а также от моторных полей, создаваемых морфическим резонансом от предыдущих подобных животных. В отличие от этого в общепринятой теории считается, что врожденное поведение «программируется» в ДНК.

Экспериментов по наследованию поведения проводилось сравнительно немного, главным образом потому, что их трудно интерпретировать количественно. Тем не менее были сделаны различные попытки такого рода: например, в экспериментах на крысах и мышах поведение «измерялось» скоростью их бега в «колесе», частотой и длительностью их половой активности, интенсивностью дефекации, определяемой как число фекальных шариков, оставляемых на данной площади в единицу времени, способностью к обучению в лабиринте и восприимчивостью к аудиогенным инсультам, вызываемым очень сильными шумами. Наследуемый компонент этих реакций демонстрировался выведением потомства от животных с большим или малым количеством полученных очков: потомство обнаруживало тенденцию к получению очков, близких к тем, которые были у родителей.[224]224
  Parsons (1967).


[Закрыть]
Проблема с исследованиями такого рода состоит в том, что они дают очень мало сведений о наследовании моделей поведения; более того, результаты трудно интерпретировать, поскольку на них может влиять множество различных факторов. Например, меньшая скорость вращения колеса или пониженная частота спаривания может быть следствием общего снижения тонуса в результате наследуемой метаболической недостаточности.

В некоторых случаях причины генетических изменений поведения исследовались довольно подробно. У маленького круглого червя (нематоды) Caenorhabditis у некоторых мутантов, которые извиваются ненормально, имеются структурные изменения в нервной системе.[225]225
  Brenner (1973).


[Закрыть]
У дрозофил различные поведенческие мутации, устраняющие нормальный отклик на свет, влияют на фоторецепторы или периферические зрительные нейроны.[226]226
  Benzer(1973).


[Закрыть]
Известно, что у мышей многие мутации влияют на морфогенез нервной системы, что приводит к дефектам целых участков мозга. У человеческих существ различные врожденные аномалии нервной системы связаны с аномалиями в поведении, например при синдроме Дауна, разновидности монголизма. На поведение могут влиять также наследственные физиологические и биохимические дефекты: например, у человека состояние фенилкетонурии, связанное с умственной неполноценностью, обусловлено недостатком фермента фенилаланингидроксилазы.

Тот факт, что на врожденное поведение влияют генетически обусловленные изменения в структуре и функциях органов чувств, нервной системы и т. д., конечно, не доказывает, что наследование поведения можно объяснить воздействием одних лишь генетических факторов; он показывает только, что для нормального поведения необходимо нормальное тело. Подумайте снова об аналогии с радио: изменения в приемнике влияют на его работу, но это не доказывает, что музыка, которая исходит из громкоговорителя, рождается внутри самого приемника.

В сфере поведения биохимические, физиологические и анатомические изменения могут предотвратить появление зародышевых структур, и, следовательно, целые моторные поля могут быть не в состоянии действовать, или они могут оказывать разные количественные воздействия на движения, контролируемые этими полями. И действительно, исследования в области наследования фиксированных моделей действия показывают, что «нетрудно найти вариации, которые незначительно влияют на выполнение этого действия, но такая модель все же проявляется во вполне узнаваемой форме, если она проявляется вообще».[227]227
  Manning (1975), с. 80.


[Закрыть]

Наследование моторных полей, возможно, зависит от факторов, которые уже обсуждались в связи с наследованием морфогенетических полей (глава 7). Вообще говоря, у гибридов между двумя породами или видами преобладание моторных полей одного над моторными полями другого, вероятно, зависит от относительной силы морфического резонанса со стороны родительских типов (ср. рис. 19). Если один принадлежит к хорошо установившимся породе или виду, а другой – к относительно новым, с малочисленной предшествующей популяцией, можно ожидать, что моторные поля первого будут доминировать. Но если родительские породы или виды утвердились одинаково хорошо, гибриды будут подпадать под влияние их обоих в одинаковой степени.

И это то, что происходит на самом деле. В некоторых случаях результаты принимают весьма причудливую форму, поскольку модели поведения родительских типов несовместимы друг с другом. Один из примеров дают гибриды, которые получаются при скрещивании двух видов неразлучников (небольших попугаев). Оба родительских вида строят свои гнезда из полосок, которые они вырывают из листьев одинаковым способом; но если один (неразлучник Фишера) несет потом эти полоски к гнезду в клюве, другой (неразлучник персиковоликий) переносит их, засовывая между своими перьями. Гибриды выдергивают полоски из листьев нормально, но затем ведут себя весьма странным образом, иногда засовывая полоски между перьев, иногда перенося их в клюве; но, даже когда они переносят их в клюве, они топорщат перья внизу спины и пытаются спрятать туда свои полоски.[228]228
  Dilger (1962).


[Закрыть]

11.2. Морфический резонанс и поведение: экспериментальная проверка

В механистической биологии проводится резкое различие между врожденным и обученным поведением: предполагается, что первое «генетически запрограммировано», или «закодировано», в ДНК, тогда как последнее рассматривается как результат физико-химических изменений в нервной системе. Невозможно представить, каким способом эти изменения могут специфически модифицировать ДНК (такое требование выдвигали бы последователи ламаркизма); поэтому считается невозможным, чтобы обученное поведение, приобретенное животным, могло наследоваться его потомством (конечно, исключая «культурное наследование», при котором потомство воспринимает модели поведения от своих родителей).

В противоположность этому, согласно гипотезе формативной причинности, нет качественного различия между врожденным и обученным поведением, поскольку оба зависят от моторных полей, даваемых морфическим резонансом (раздел 10.1). Поэтому эта гипотеза допускает возможную передачу обученного поведения от одного животного к другому и приводит к проверяемым предсказаниям, которые отличаются не только от таковых ортодоксальной теории наследования, но также и от предсказаний ламаркизма.

Рассмотрим следующий эксперимент. Дикие животные помещаются в условия, где они учатся реагировать на данный стимул неким характерным образом. Затем их заставляют повторять эту модель поведения много раз. Согласно гипотезе, новое моторное поле будет усилено морфическим резонансом, который не только приведет к тому, что поведение обученных животных станет все более привычным, но и повлияет так же, хотя и менее специфично, на других животных, подвергаемых тому же стимулу: чем больше будет число животных, научившихся выполнять данное задание в прошлом, тем легче его будет выучить последующим подобным же животным. Поэтому в экспериментах такого типа должна быть возможность наблюдать прогрессивное увеличение скорости обучения не только у животных, происходящих от обученных предков, но также у генетически подобных животных, происходящих от необученных предков. Это предсказание отличается от такового ламаркистской теории, согласно которой только потомки обученных животных должны обучаться быстрее. А по общепринятой теории не должно наблюдаться увеличение скорости обучения потомков как необученных, так и обученных животных.

Сказанное можно суммировать следующим образом: повышенная скорость обучения в последовательных поколениях как тренированных, так и нетренированных линий подтверждала бы гипотезу формативной причинности: увеличение скорости только в тренированных линиях – ламаркизм, а отсутствие такого увеличения в обоих линиях – ортодоксальную теорию.

Эксперименты этого типа фактически уже проводились. Результаты подтверждают гипотезу формативной причинности.

Оригинальный эксперимент был начат в Гарварде в 1920 году У. Мак-Дугаллом, который надеялся провести тщательную проверку возможности наследования приобретенных особенностей поведения, предполагаемых ламаркизмом. Экспериментальными животными были белые крысы уистарской (Wistar) линии, которые – бережно выращивались в лабораторных условиях в течение многих поколений. Их задача состояла в том, чтобы научиться выбираться из специально сконструированного бака с водой, доплывая до одного из двух проходов, из которого можно было выйти наружу. Ложный проход был ярко освещен, тогда как истинный проход не освещался. Если крыса выходила через освещенный проход, она получала удар электрошоком. Два прохода освещались по очереди, один раз – первый, следующий раз – второй. За меру скорости обучения принималось число ошибок, которые допускала крыса, прежде чем она усваивала, что выходить надо через неосвещенный проход:

«Некоторым крысам требовалось целых 330 погружений, причем приблизительно половина из них сопровождалась электрошоком, прежде чем они научались избегать освещенный проход. Во всех случаях процесс обучения внезапно достигал критической точки. В течение длительного времени животное выказывало явное отвращение к освещенному проходу, часто колебалось, прежде чем войти в него, поворачивало назад или отчаянно бросалось внутрь; но, не уловив постоянной связи между ярким светом и шоком, оно продолжало устремляться в этот проход столь же часто, как и в другой. Наконец в обучении наступал момент, когда животные, оказавшись перед освещенным проходом, определенно и решительно поворачивали обратно, искали другой, смутно видимый проход и спокойно вылезали наружу. После достижения этой точки в обучении ни одно животное не делало ошибку, снова выбирая яркий проход, разве что в очень редких случаях».[229]229
  McDougall (1927), с. 282.


[Закрыть]


Рис. 28. Среднее число ошибок у последовательных поколений крыс, отобранных в каждом поколении по медленности обучения (данные из McDougall, 1938)

В каждом поколении крысы, от которых должно было быть выведено следующее поколение, отбирались случайным образом до того, как определялась скорость их обучения, тогда как спаривание происходило после их тестирования. Такая процедура была выбрана для того, чтобы избежать любой возможности сознательного или неосознанного отбора в пользу более быстро обучающихся крыс.

Этот эксперимент продолжался на протяжении 32 поколений крыс в течение 15 лет. В согласии с теорией Ламарка в последовательных поколениях крыс наблюдалась заметная тенденция к увеличению скорости обучения. Об этом свидетельствовало среднее число ошибок, которые делали крысы: в первых восьми поколениях оно превышало 56, а во второй, третьей и четвертой группах из восьми поколений – соответственно, 41, 29 и 20.[230]230
  McDougall (1938).


[Закрыть]
Разница была очевидной не только в количественных данных, но также в фактическом поведении крыс, которые в последующих поколениях становились более осторожными и опытными.[231]231
  McDougall (1930).


[Закрыть]

Мак-Дугалл предвидел критику того рода, что, несмотря на случайный отбор родителей в каждом поколении, все же мог вкрасться какой-то отбор в пользу более быстро обучающихся крыс. Чтобы проверить такую возможность, он начал новый эксперимент с другой группой крыс, в которой родители действительно отбирались на основе очков, полученных ими в процессе обучения. В одной серии выбирались только быстро, в другой – только медленно обучающиеся крысы. Как и ожидалось, потомство быстро обучающихся крыс обучалось сравнительно быстро, а потомство медленно обучающихся – сравнительно медленно. Однако даже в последней серии обучение у последних поколений заметно улучшалось, несмотря на повторяющийся отбор в пользу медленно обучающихся крыс {рис. 28).

Эти эксперименты проводились весьма тщательно, и критики не могли отвергнуть результаты по причине технических изъянов. Но они привлекли внимание к недостаткам в постановке экспериментов: Мак-Дугаллу не удалось осуществить систематическую проверку изменения скорости обучения крыс, родители которых не проходили обучения.

Один из этих критиков, Ф. А. Е. Крю из Эдинбурга, повторил эксперименты Мак-Дугалла с крысами, происходившими от той же инбридинговой линии,[232]232
  Инбридинг – родственное спаривание (у животных) или самоопыление (у растений). – Прим. пер.


[Закрыть]
используя бак подобной же конструкции. Он включил также параллельную линию «нетренированных» крыс, отдельные из которых тестировались в каждом поколении на скорость обучения, тогда как другие, которые не тестировались, рождали потомство. Через 18 поколений в таком эксперименте Крю не обнаружил систематического изменения в скорости обучения ни в тренированной, ни в нетренированной линиях.[233]233
  Crew (1936).


[Закрыть]
Вначале казалось, что это порождает серьезные сомнения в результатах Мак-Дугалла. Однако эти две группы результатов нельзя было непосредственно сравнивать в силу трех обстоятельств. Во-первых, по какой-то причине крысы гораздо легче обучались в опытах Крю, чем в более ранних поколениях Мак-Дугалла. Этот эффект был столь сильно выражен, что значительное число крыс как в тренированных, так и в нетренированных линиях «решали» задачу немедленно, не получая ни единого шока! Средние значения очков у крыс в опытах Крю с самого начала были примерно такими же, как у крыс Мак-Дугалла через более чем 30 поколений тренировки. Ни Крю, ни Мак-Дугалл не могли дать удовлетворительного объяснению этому несоответствию. Но, как указывал Мак-Дугалл, поскольку цель исследования состояла в том, чтобы выявить любые воздействия тренировки на последующие поколения, эксперимент, в котором некоторые крысы не тренировались вообще, а многие другие – очень мало, нельзя было рассматривать как способный продемонстрировать такое воздействие.[234]234
  McDougall (1938).


[Закрыть]
Во-вторых, в результатах Крю обнаруживались большие и кажущиеся случайными флуктуации от поколения к поколению, гораздо большие, чем флуктуации в результатах Мак-Дугалла, и эти большие флуктуации вполне могли скрыть любую тенденцию к улучшению очков в более поздних поколениях. В-третьих, Крю выбрал путь очень жесткого инбридинга (скрещивания очень близких родственников), скрещивая в каждом поколении братьев с сестрами. Он не ожидал, что это даст неблагоприятный эффект, поскольку крысы происходили от одной главней инбридинговой семьи, с которой все начиналось:

«Даже история моей главной семьи выглядит как эксперимент по инбридингу. Имеются широкая основа семейных линий и узкий кончик двух оставшихся линий. Скорость воспроизведения падает, и угасает одна линия за другой».[235]235
  Crew (1936), с. 75.


[Закрыть]

Даже в выживающих линиях многие животные рождались со столь серьезными аномалиями, что их приходилось отбрасывать. Вредные последствия такого жесткого инбридинга вполне могли маскировать любую тенденцию к увеличению скорости обучения. В целом эти дефекты эксперимента Крю означают, что его результаты можно рассматривать только как предварительные, и сам он фактически признавал, что вопрос остается открытым.[236]236
  Tinbergen(1951),c. 201.


[Закрыть]

К счастью, эта история здесь не кончается. Эксперимент был снова проведен У. Е. Эгером и его коллегами в Мельбурне с использованием методов без тех недостатков, которые были у Крю. На протяжении 20 лет они измеряли скорости обучения тренированных и нетренированных линий в 50 последовательных поколениях. В согласии с данными Мак-Дугалла они обнаружили, что у крыс тренированной линии существует явная тенденция к более быстрому обучению в последующих поколениях. Но точно такая же тенденция была обнаружена и в нетренированной линии.[237]237
  Agar, Drummond, Tiegs and Gunson (1954).


[Закрыть]

Можно удивляться, почему же Мак-Дугалл не наблюдал подобный эффект на своих нетренированных линиях? Ответ состоит в том, что он его наблюдал.

Несмотря на то что он тестировал контрольных крыс, происходивших от исходной главной семьи лишь изредка, он заметил «неприятный факт, что группы контрольных крыс, произведенных от этой семьи в 1926, 1927, 1930 и 1932 годах, демонстрировали уменьшение среднего числа ошибок с 1927-го по 1932 год». Он думал, что этот результат мог быть случайным, но добавил следующее:

«Возможно, что выпадение по среднему числу ошибок периода с 1927-го по 1932 год выражает реальное изменение конституции всей семьи, ее улучшение (относительно этой определенной способности), природу которого я не могу предположить».[238]238
  Rhine and McDougall (1933), с 223.


[Закрыть]

С публикацией окончательного отчета группы Эгера в 1954 году закончилась затянувшаяся полемика по поводу «ламаркистского эксперимента Мак-Дугалла». Одинаковое улучшение результатов как в тренированной, так и в нетренированной линиях исключало интерпретацию в духе ламаркизма. Вывод Мак-Дугалла был отвергнут, и это, казалось, исчерпывало вопрос. С другой стороны, его результаты получили подтверждение.

Эти результаты казались совершенно необъяснимыми; они были бессмысленными с точки зрения какой-либо из действующих концепций и никогда не были доведены до конца. Но они вполне осмысленны в свете гипотезы формативной причинности. Конечно, сами по себе они не могут доказать справедливость этой гипотезы; всегда можно предложить другие объяснения, например то, что последовательные поколения крыс становились все более разумными по неизвестной причине, не связанной с их тренировкой.[239]239
  Множество возможных объяснений предлагалось в те времена, когда проводились эти эксперименты; они обсуждаются в статьях Мак-Дугалла, к которым может обратиться заинтересованный читатель. Все эти объяснения при ближайшем рассмотрении оказались неправдоподобными.
  Эгер и др. (1954) заметили, что флуктуации в скорости обучения были связаны с изменениями здоровья и энергичности крыс, простирающимися на несколько поколений. Мак-Дугалл уже отмечал этот эффект. Статистический анализ показал, что действительно существовала низкая, но заметная (на уровне 1 % вероятности) корреляция между энергией (измеряемой в единицах плодовитости) и скоростями обучения в «тренированной» линии, но не в «нетренированной» линии. Однако, если рассматривались только первые сорок поколений, коэффициенты корреляции были несколько выше: 0,40 в «тренированной» и 0,42 в «нетренированной» линиях. Но хотя эта корреляция может помочь объяснить флуктуации результатов, она не может дать правдоподобного объяснения общей тенденции. Согласно стандартной теории статистики, доля вариации, «объясняемой» коррелированной переменной, есть квадрат коэффициента корреляции, в данном случае (0,4)2 – 0,16. Другими словами, вариации в энергии объясняют лишь 16 % изменений в скорости обучения.


[Закрыть]


    Ваша оценка произведения:

Популярные книги за неделю