355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Руперт Шелдрейк » Новая наука о жизни » Текст книги (страница 14)
Новая наука о жизни
  • Текст добавлен: 7 октября 2016, 00:15

Текст книги "Новая наука о жизни"


Автор книги: Руперт Шелдрейк



сообщить о нарушении

Текущая страница: 14 (всего у книги 22 страниц)

9.7. Моторные поля и чувства

Посредством морфического резонанса животное попадает под влияние специфических моторных полей вследствие своей характерной структуры и внутренней организации колебательных процессов. Эти процессы изменяются в результате изменений, происходящих в теле животного, и влияний извне.

Если различные стимулы вызывали одинаковые изменения внутри животного, тогда начинают работать одни и те же моторные поля. По-видимому, это именно то, что происходит в одноклеточных организмах, которые проявляют одну и ту же реакцию избегания в ответ на разнообразные физические и химические стимулы: возможно, все они оказывают одинаковое воздействие на физико-химическое состояние клетки, например изменяя проницаемость клеточной мембраны для кальция или других ионов.

У простых многоклеточных животных с относительно слабой сенсорной специализацией диапазон реакций на стимулы ненамного больше, чем у одноклеточных. Например, гидра демонстрирует одинаковые реакции избегания на множество различных физических и химических стимулов и отвечает на объекты, такие как частицы пищи, только при механическом контакте. Однако, как и у некоторых одноклеточных организмов, ее реакция на твердые объекты изменяется под влиянием химических стимулов. Это можно показать на простом эксперименте: если к щупальцам голодной гидры подаются маленькие кусочки фильтровальной бумаги, реакции не наблюдается; но если они предварительно смочены в мясном соусе, щупальца несут их в рот, и затем они проглатываются.[202]202
  Jennings (1906).


[Закрыть]

Напротив, животные, имеющие глаза, которые формируют образы, могут чувствовать объекты, еще находящиеся на некотором расстоянии от них; следовательно, моторные поля здесь распространяются дальше в окружающую среду; диапазон и разнообразие поведения животных значительно возрастают. Подобным же образом чувство слуха позволяет обнаруживать удаленные объекты и поэтому позволяет расширить пространственную протяженность моторных полей даже до тех областей, где объект не может быть виден. У некоторых животных, особенно у летучих мышей, это чувство заменило зрение как основу протяженных моторных полей. А у некоторых видов, живущих в воде, таких как электрические рыбы (виды Mormyrid и Gimnotid), специализированные рецепторы обнаруживают изменения электрического поля вокруг них с помощью импульсов, испускаемых их электрическими органами; это позволяет им определять местонахождение добычи и других объектов в загрязненных тропических реках, где они обитают.

Когда животные движутся, чувственные стимулы, возникающие как внутри их тел, так и под влиянием среды, изменяются в результате их собственных движений. Эта непрерывная обратная связь играет существенную роль в координации движений их моторными полями.

Подобно морфогенетическим полям, моторные поля являются вероятностными структурами, которые с помощью морфического резонанса связываются с физическими системами через их трехмерные колебательные структуры. Поэтому фундаментальное значение имеет тот факт, что все колебательные вводы переводятся в пространственно-временные структуры, в которых осуществляется деятельность нервной системы. В чувстве осязания стимулы действуют на определенные участки тела, которые отмечены («картарованы») в мозгу в результате действия особых нервных путей; в зрении образы, попадающие на сетчатку, вызывают распределенные в пространстве изменения в оптических нервах и зрительной коре; и хотя обонятельные, вкусовые и слуховые стимулы не носят непосредственно пространственный характер, нервы, которые они возбуждают через соответствующие органы чувств, находятся в определенных местах и импульсы, проходящие по этим нервам в центральную нервную систему, создают характерные объемные распределения возбуждения.

Таким образом, отдельные стимулы и их комбинации производят характерные пространственно-временные эффекты. Эти динамические картины активности приводят нервную систему в морфический резонанс с подобными прошлыми нервными системами в аналогичных состояниях, и, следовательно, она попадает под влияние особых моторных полей.

9.8. Регуляция и регенерация

Подобно морфогенетическим полям, моторные поля направляют системы, находящиеся под их влиянием, к характерным конечным формам. Обычно они достигают этого, стимулируя серию движений в определенной последовательности. Промежуточные стадии стабилизируются с помощью морфического резонанса, другими словами, они являются хреодами. Но хреоды представляют собой просто наиболее вероятные пути к конечным формам. Если нормальный путь заблокирован или если система отклонилась от него по какой-либо причине, та же самая конечная форма может быть достигнута другим путем: система регулируется (раздел 4.1). Многие, но не все морфогенетические системы способны к регуляции; таковы и двигательные системы.

Регуляция происходит под действием моторных полей на всех иерархических уровнях: например, если несколько мускулов или нервов в ноге у собаки повреждены, организация сокращений в других мускулах регулируется таким образом, что конечность функционирует нормально. Если нога ампутирована, движения оставшихся ног изменяются так, что собака все же может ходить, хотя и хромает. Если повреждены части коры ее головного мозга, через некоторое время он восстанавливается более или менее полно. Если ее ослепить, ее способность двигаться постепенно улучшается, по мере того как она начинает более полагаться на оставшиеся чувства. А если прегражден обычный путь к дому, ее еде или щенкам, она изменяет привычную последовательность движений, пока не находит новый путь для достижения цели.

Поведенческий эквивалент регенерации встречается тогда, когда конечная форма хреоды была актуализирована, но затем разрушена: представьте, например, кота, который поймал мышь, что является конечной точкой хреоды поимки добычи. Если мышь ускользает из его когтей, то движения кота направлены на то, чтобы снова ее поймать.

Из всех примеров поведенческой регенерации ее соответствие регенерации морфогенетической лучше всего обнаруживается в морфогенетическом поведении, связанном с созданием характерных структур. В некоторых случаях животные улучшают эти структуры после их повреждения. Например, было сделано наблюдение, что осы-горшечники иногда заполняют отверстия, сделанные экспериментатором в стенках их горшочков, с помощью действий, которые они никогда не совершают при нормальном построении горшочков.[203]203
  Hingston (1928).


[Закрыть]
А термиты чинят повреждения в своих галереях и гнездах кооперативными и координированными усилиями множества отдельных насекомых.[204]204
  Marais (1971); von Frisch (1975).


[Закрыть]

Эти и подобные действия иногда интерпретировались как свидетельства существования разума на том основании, что животные, действующие строго фиксированным образом, задаваемым инстинктом, не были бы способны столь гибко реагировать на необычные ситуации.[205]205
  Hingston (1928).


[Закрыть]
Но, следуя этой логике, можно было бы сказать, что регулирующиеся эмбрионы морских ежей и регенерирующие плоские черви также проявляют признаки разума. Однако такое расширение физиологической терминологии, скорее, внесло бы путаницу, нежели оказалось полезным. С точки зрения гипотезы формативной причинности такие подобия признаются, но интерпретируются иначе. Способность животных достигать поведенческих целей необычными путями, рассматриваемая с позиций морфогенетической регуляции и регенерации, не дает оснований вводить новые фундаментальные принципы. А когда у высших животных некоторые типы поведения более не следуют стандартным хреодам – когда поведенческая регуляция становится, так сказать, скорее, правилом, чем исключением, – эту подвижность можно рассматривать как расширение возможностей, заложенных в самой природе морфогенетических и моторных полей.

Глава 10. Инстинкт и обучение

10.1. Влияние прошлых действий

Подобно морфогенетическим полям, моторные поля задаются морфическим резонансом от прошлых подобных систем. Детали строения животного и организация колебательной активности его нервной системы обычно подобны таковым у него самого более, нежели у какого-либо другого животного. Таким образом, наиболее специфическим морфическим резонансом, действующим на данное животное, будет резонанс от его собственной формы в прошлом (ср. раздел 6.5). Следующий наиболее специфический резонанс будет от генетически подобных животных, которые жили в тех же условиях, и наименее специфический – от животных других пород, живущих в других условиях. В «долинной» модели хреоды {рис. 5] последний стабилизирует общую форму, тогда как более специфический резонанс определяет детали топологии дна этой долины.


Рис. 27. Схематическое изображение глубоко канализированной хреоды (А) и хреоды, слабо канализированной на начальных стадиях (В)

«Контуры» долины хреод зависят от степени подобия между поведением родственных животных той же породы или вида. Если их модели движения варьируются слабо, морфический резонанс порождает глубокие и узкие хреоды, представленные долинами с крутыми краями {рис. 27 А). Такие хреоды оказывают сильное канализирующее действие на поведение последующих индивидуумов, которые по этой причине будут стремиться вести себя весьма сходным образом. Стереотипные модели поведения, обусловленные такими хреодами, на низших уровнях проявляются как рефлексы, а на высших уровнях – как инстинкты.

С другой стороны, если подобные друг другу животные достигают конечных форм своих моторных полей различными способами движения, хреоды не будут столь четко определены {рис. 27 В); поэтому здесь диапазон индивидуальных различий в поведении больше. Но после того как отдельное животное достигло цели своего поведения собственным путем, его последующее поведение будет канализироваться по тому же пути вследствие морфического резонанса с его же собственными прошлыми состояниями; и чем чаще такие действия повторяются, тем сильнее становится эта канализация. Такие характерные индивидуальные хреоды проявляют себя как привычки.

Таким образом, с точки зрения гипотезы формативной причинности между инстинктами и привычками разница лишь в степени: и те и другие зависят от морфического резонанса, первые – с бесчисленными предшествовавшими индивидуумами того же вида, а вторые – преимущественно с прошлыми состояниями того же индивидуума.

Этим мы не хотим сказать, что рефлексы и инстинкты не зависят от весьма специфически организованного морфогенеза нервной системы. Очевидно, что такая зависимость существует. Мы не хотим также сказать, что в процессах обучения не происходят физические или химические изменения в нервной системе, которые облегчают повторение данного вида движения. Возможно, в простой нервной системе, осуществляющей стереотипные функции, потенциал для таких изменений может быть уже «встроен» в систему «проводов» таким образом, что обучение происходит квазимеханически. Например, было обнаружено, что у улитки Aplysia строение нервной системы почти одинаково у разных особей, вплоть до мельчайших деталей расположения возбуждающих и ингибирующих синапсов на отдельных клетках. Очень простые виды обучения встречаются в связи с рефлекторным втягиванием жабер во впадину под покровной пластинкой, а именно привыкание к безвредным и приобретение чувствительности к опасным стимулам; при этих процессах функционирование отдельных возбуждающих и ингибирующих синапсов, действующих на индивидуальные клетки, определенным образом изменяется.[206]206
  Kandel (1979).


[Закрыть]
Конечно, простое описание этих процессов само по себе не выявляет причин таких изменений; в настоящее время можно лишь строить предположения на этот счет. Одно из них состоит в том, что эти модификации химического происхождения и связаны, вероятно, с изменениями в фосфорилировании белков.[207]207
  Там же.


[Закрыть]
Но как возникла эта тонкая специализация структуры и функций нервов и синапсов? Проблема переносится в область морфогенеза.

Нервные системы высших животных значительно больше варьируются от индивидуума к индивидууму, чем у беспозвоночных типа Aplysia, и они гораздо сложнее. Очень мало известно о том, каким образом сохраняются заученные способы поведения,[208]208
  Н. A.Buchtel и G. Berlucchi в Duncan and Weston-Smith (eds) (1977).


[Закрыть]
но накоплено уже достаточно сведений, чтобы утверждать, что здесь не может быть простого объяснения на уровне специфически локализованных физических и химических «следов» в нервной ткани.

Многочисленные исследования показали, что у млекопитающих привычки, образовавшиеся при обучении, часто сохраняются после значительного повреждения коры и участков подкорки головного мозга. Более того, когда происходит потеря памяти, она не является тесно связанной с местонахождением таких повреждений, но зависит, скорее, от общего количества поврежденной ткани. К. С. Лэшли суммировал результаты сотен экспериментов следующим образом:

«Невозможно продемонстрировать изолированный участок как след памяти где-либо в нервной системе. Ограниченные области могут быть существенными для обучения или сохранения определенной активности, но в таких областях их части в функциональном отношении эквивалентны».[209]209
  Lashley(1970),c. 478.


[Закрыть]

Подобный же феномен был продемонстрирован на беспозвоночном – осьминоге: наблюдения сохранения приобретенных привычек после разрушения различных частей вертикальной доли мозга привели к кажущемуся парадоксальным выводу, что «память находится везде одновременно и нигде в частности».[210]210
  Boycott (1965).


[Закрыть]

С механистической точки зрения эти результаты сильно озадачивают. В попытках найти им объяснение было высказано предположение, что «следы» памяти каким-то образом распределены в мозгу способом, аналогичным тому, который используется при сохранении информации в виде интерференционных картин в голограмме.[211]211
  Pribram (1971).


[Закрыть]
Но это пока не более чем неопределенное соображение.

Гипотеза формативной причинности дает альтернативное объяснение, в котором сохранение приобретенных привычек, несмотря на повреждение мозга, выглядит гораздо менее загадочно: привычки зависят от моторных полей, которые вообще не сохраняются в мозгу, но приходят непосредственно от его прошлого состояния путем морфического резонанса.

Некоторые приложения гипотезы формативной причинности применительно к проблемам инстинкта и обучения рассматриваются в следующих разделах, а в главе 11 предлагаются способы, с помощью которых можно экспериментально отличить предсказания, вытекающие из этой гипотезы, от предсказаний механистической теории.

10.2. Инстинкт

У всех животных некие модели двигательной активности являются, скорее, врожденными, нежели приобретенными в результате обучения. Наиболее фундаментальный характер имеют движения внутренних органов, таких как сердце и кишечник, но многие из способов движения конечностей, крыльев и других двигательных структур также являются врожденными. Это наиболее очевидно, когда животные оказываются способными совершать правильные, полезные для них движения почти сразу же после того, как они родились или вылупились из яйца.

Не всегда легко провести различие между врожденным и «обученным» поведением. Вообще говоря, характерное поведение, которое вырабатывается у молодых животных, воспитанных в изоляции, обычно может рассматриваться как врожденное; с другой стороны, поведение, которое появляется только при контакте с другими особями того же вида, также может быть врожденным, но требуются стимулы от других животных, чтобы оно проявилось.

Исследования инстинктивного поведения многих видов животных привели к нескольким общим выводам, которые составляют классические принципы этологии.[212]212
  Обширный обзор и дискуссию см. в Thorpe (1963).


[Закрыть]
Их можно суммировать следующим образом:

(1) Инстинкты организованы в виде иерархии систем или центров, наложенных друг на друга. Каждый уровень активируется главным образом системой вышележащего уровня. Самый высокий центр каждого из основных инстинктов может испытывать влияние многих факторов, таких как гормоны, чувственные стимулы изнутри животного и стимулы из окружаю щей среды.

(2) Поведение, которое происходит под влиянием основных инстинктов, часто состоит из цепей более или менее стереотипных моделей поведения, называемых фиксированными моделями действия. Когда такая фиксированная модель создает конечную точку главной или малой цепи инстинктивного поведения, ее называют завершающим актом (consummately act). Поведение в ранней части инстинктивной цепи поведения, напри мер поиски пищи, может быть более гибким и называется обычно поведением инстинктивной потребности (appetitive behavior).

(3) Для активации, или «освобождения» (release), каждой системе требуется специфический стимул. Этот стимул, или «освободитель» (релизер), может при ходить изнутри тела животного или из окружающей среды. В последнем случае его часто называют знаковым стимулом. Предполагается, что данный релизер, или знаковый стимул, воздействует на специфический нейросенсорный механизм, называемый врожденным релизорным механизмом, который дает выход реакции.

Эти положения очень хорошо согласуются с идеей моторных полей, развивавшейся в предыдущей главе. Фиксированные модели действий находят объяснение на языке хреод, а врожденные освобождающие механизмы можно представить как структуры зародышей соответствующих моторных полей.

10.3. Знаковые стимулы

Инстинктивные отклики животных на знаковые стимулы показывают, что они как-то выделяют специфические и повторяющиеся особенности в своем окружении.

«Животное «слепо» отвечает только на одну часть окружающей его ситуации и пренебрегает другими ее частями, хотя его органы чувств прекрасно могут их воспринимать…Эти эффективные стимулы можно легко обнаружить, проверяя реакцию на разные ситуации, отличающиеся одним или другим из возможных стимулов. Более того, когда орган чувств участвует в «освобождении» реакции, лишь часть стимулов, которые он может получить, действительно являются эффективными. Как правило, инстинктивная реакция отвечает лишь на очень немногие стимулы, а большая часть окружения оказывает незначительное или не оказывает никакого влияния, даже если животное имеет чувствительные структуры для получения многочисленных деталей» (Н. Тимберген).[213]213
  Timbergen (1921), с. 27.


[Закрыть]

Эти принципы иллюстрируются следующими примерами.[214]214
  Там же.


[Закрыть]
Агрессивная реакция самца рыбы колюшки в отношении других самцов в сезон размножения высвобождается главным образом знаковым стимулом красного брюшка: модели очень грубой формы, но с красными брюшками атакуются гораздо чаще, чем модели правильной формы, но без красной окраски.

Подобные же результаты были получены в экспериментах на красногрудой малиновке: охраняющий территорию самец ведет себя угрожающе по отношению к весьма приблизительным моделям с красными грудками или даже просто к пучку красных перьев, но гораздо слабее реагирует на точные модели птиц без красных грудок.

Молодые утки и гуси инстинктивно реагируют на приближение хищных птиц, причем эта реакция зависит от формы птицы в полете. Опыты с моделями из картона показали, что наиболее важным признаком является короткая шея, характерная для ястребов и других хищных птиц, тогда как размер и форма крыльев и хвоста имеют сравнительно мало значения.

У некоторых мотыльков сексуальный запах, или феромон, который обычно производят самки, заставляет самцов делать попытки к спариванию с любым объектом, обладающим таким запахом.

У саранчи вида Ephippiger ephippiger самцы привлекают самок, желающих спариваться, своей песней. Самки привлекаются к поющим самцам со значительного расстояния, но молчащих самцов они игнорируют, даже если те находятся поблизости. Самцы, которых заставляют молчать, склеивая их крылышки, неспособны привлекать самок.

Курицы приходят на помощь цыплятам в ответ на их крик о бедствии, но не тогда, когда они просто видят цыплят в беде, например за звуконепроницаемым стеклянным барьером.

Согласно гипотезе формативной причинности, распознавание этих знаковых стимулов должно зависеть от морфического резонанса от прошлых подобных животных, подвергнутых тем же стимулам. Благодаря процессу автоматического усреднения этот резонанс будет усиливать только общие черты пространственно-временных моделей активности, вызываемых этими стимулами в нервной системе. Результат состоит в том, что из окружения выделяются лишь некоторые специфические стимулы, тогда как другие игнорируются. Рассмотрим, например, стимулы, действующие на кур, чьи цыплята попали в беду. Вообразим набор фотографий цыплят в беде во многих различных случаях. Фотографии, сделанные ночью, не отобразят ничего; снятые в дневное время покажут цыплят разных размеров и форм, видимых спереди, сзади, сбоку или сверху; более того, они могут быть вблизи других объектов всех форм и размеров или даже спрятаны за ними. Далее, если негативы всех этих фотографий наложить друг на друга, чтобы получить составное изображение, в нем не будут усилены какие-либо черты, результатом будет просто расплывшееся пятно. Теперь вообразите, наоборот, магнитофонные записи, сделанные одновременно с фотографиями. На всех будут крики о бедствии, и если эти звуки накладываются друг на друга, они усиливают друг друга, давая в результате автоматически усредненный крик о бедствии. Это наложение фотографий и магнитофонных записей аналогично эффектам морфического резонанса от нервных систем предыдущих кур с последующей курицей, испытывающей стимул в виде крика цыпленка в беде: зрительные стимулы не возбуждают специфического резонанса и не вызывают инстинктивной реакции, каким бы несчастным ни выглядел цыпленок для наблюдающего человека, в то время как на слуховые стимулы реакция есть.

Этот пример иллюстрирует то, что является, по-видимому, общим принципом: формы очень часто неэффективны в качестве знакового стимула. Возможная причина в том, что они сильно варьируются, поскольку зависят от угла, под которым рассматривается объект. Напротив, цвета гораздо менее зависимы от точки зрения, а звуки и запахи вряд ли вообще зависят от нее.

Существенно, что цвета, звуки и запахи играют важную роль как «освободители» инстинктивных реакций; а в тех случаях, когда оказывается эффективной форма, имеется некоторое постоянство точки наблюдения. Например, птенцы на земле видят хищников, летающих над ними, как силуэты и действительно реагируют на такие формы. А когда формы, или модели, поведения служат сексуальными знаковыми стимулами, они делают это в сценах ухаживания, или в «представлениях», в которых животные принимают различные позы относительно своих потенциальных партнеров. То же справедливо для демонстрации покорности или агрессивных намерений.


    Ваша оценка произведения:

Популярные книги за неделю