355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роза Мария Рос » Музыка сфер. Астрономия и математика » Текст книги (страница 9)
Музыка сфер. Астрономия и математика
  • Текст добавлен: 21 октября 2016, 21:57

Текст книги "Музыка сфер. Астрономия и математика"


Автор книги: Роза Мария Рос


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 9 (всего у книги 11 страниц)

Решение, найденное часовщиком

Требовалось создать точные механические часы, пригодные для мореплавателей. С их помощью моряки смогли бы определять точное время в порту отплытия (с известной долготой). Если бы часы были идеально точными, то достаточно было определить по Солнцу полдень, посмотреть на часы, показывающие время в порту отплытия, и найти разницу во времени. А уж на её основании очень просто определить долготу корабля. Первые маятниковые часы изготовил Гюйгенс, однако они сохраняли точность лишь в определённых погодных условиях. Следовательно, использовать такие часы в открытом море было нельзя.

Разные страны предлагали премии тому, кто сможет изготовить механические часы необходимой точности: так, король Испании Филипп III пообещал пожизненную пенсию тому, кто решит задачу о долготе; британский парламент во времена правления королевы Анны, в 1714 году, принял Декрет о долготе, согласно которому того, кто решит задачу с погрешностью менее половины градуса (то есть 50 километров на экваторе), ждала премия в 20 тысяч фунтов. Как видите, требуемая точность была очень велика, а огромный размер премии наводит на мысли, что англичане были на грани отчаяния – от решения задачи о долготе зависела экономика всей страны. Чтобы автор решения получил премию, его часы должны были сохранять требуемую точность хода во время плавания до Вест-Индии и обратно. Для контроля был учреждён Совет по долготе, куда вошли глава Гринвичской королевской обсерватории, глава Лондонского королевского общества, морской министр, председатель палаты общин, делегат от вооружённых сил и несколько учёных. Получить премию пытались многие. Мы отметим лишь Джереми Такера: он сконструировал часовой механизм, позднее дополненный двумя усовершенствованиями, которые используются и по сей день. Речь о вакуумной камере со стеклянными стенками и особой системе, благодаря которой часы не останавливались во время завода.

Решение задачи о долготе нашёл плотник Джон Гаррисон, который сконструировал первые часы из маленьких латунных деталей, когда ему не было и двадцати лет. Гаррисон дополнил часы таблицей уравнения времени для сравнения фактического и солнечного времени. Он же придумал маятник, состоящий из двух стержней, изготовленных из чередующихся полос различных металлов, чтобы компенсировать воздействие перепадов температуры на точность хода. Однако в морских часах маятнику было не место, поэтому Гаррисон разработал особый механизм, обеспечивавший равномерную передачу энергии от сжатой пружины.

* * *

СОЛНЕЧНОЕ ВРЕМЯ И ЗВЁЗДНОЕ ВРЕМЯ

Из соображений удобства мы делим сутки на 24 часа – именно за такой промежуток времени Солнце проходит через меридиан одного и того же места два раза подряд. Мы уже говорили, что в действительности используем среднее солнечное время: движение Земли вокруг Солнца описывается законом равенства площадей, поэтому Земля иногда движется чуть медленнее, иногда – чуть быстрее, но в среднем Солнце совершает полный круг над горизонтом и дважды проходит через меридиан места за 24 часа.

Если в качестве точки отсчёта мы будем использовать не Солнце, а неподвижные звёзды, то увидим, что период обращения Земли несколько меньше: любая неподвижная звезда проходит два раза подряд через один и тот же меридиан места за 23 часа 56 минут 4 секунды, так как Земля при вращении вокруг Солнца движется в опережением в 3 минуты 56 секунд.

Разница между звёздным и солнечным временем.

Джон Гаррисон обеспечивал точность своих часов по результатам наблюдений за определёнными звёздами из своей примитивной обсерватории. Он обнаружил, что звёзды постоянно появлялись на небе на 3 минуты 56 секунд раньше, чем прошлой ночью. Таким образом он добился расхождения всего в одну секунду в месяц – стандартной погрешностью для часов того времени была одна минута в сутки. Гаррисон получил займ от Совета по долготе на изготовление своего первого морского хронометра H1. На работу ушло пять лет. Хронометр был изготовлен из дерева, весил 34 кг и находился внутри стеклянного резервуара объёмом в 1 м(отметим, что первый хронометр Гаррисона работает до сих пор). Он был погружён на корабль, отплывавший в Лиссабон, и очень пригодился в плавании. В 1737 году Совет по долготе был созван в первый раз и единогласно утвердил хронометр H1. Единственным, кто счёл хронометр несовершенным, был сам Гаррисон, который попросил новый займ на внесение необходимых изменений. В 1739 году был создан хронометр H2, в 1751-м – H3. Лишь хронометр H4 отличался существенно меньшим весом и размером.

Любопытно, что Гаррисон начал работу над принципиально иным хронометром после того, как получил от одного из учеников в подарок карманные часы. H4 имел 133 мм в диаметре и весил 1300 г, одного завода хватало на 30 часов, при этом во время завода хронометр не останавливался. В октябре 1761 года Гаррисон отправился на Ямайку и по прибытии в Порт-Ройял, после двух месяцев в пути, астрономическими методами определил, что отставание хронометра составило всего 5 секунд, что соответствовало ошибке в 1,25 минуты долготы, или примерно 2000 м – намного меньше, чем требовалось Декретом о долготе. Однако Совет постановил, что проведённых экспериментов недостаточно для определения долготы в открытом море. Дело в том, что в Совет вошли три новых участника, три математика, которые настаивали на том, что долгота Порт-Ройяла не была установлена по результатам наблюдения за спутниками Юпитера. При этом капитан корабля не знал и не мог знать, что должен определить долготу таким способом. Хронометр H4 был вновь погружён на борт корабля в 1764 году, и на этот раз по результатам испытаний Совет постановил: «часы идут с достаточной точностью». Однако Совет предложил Гаррисону лишь половину премии и внёс дополнительное условие: изобретатель должен изготовить ещё два хронометра и открыть свои секреты, чтобы можно было начать серийное производство.

На изготовление копии, H5, у Гаррисона ушло три года. Ему было уже семьдесят девять лет, и он не знал, успеет ли закончить работу. К счастью, король Георг III настоял, чтобы Совет выплатил Гаррисону оставшуюся часть премии. Погрешность хода хронометра H5 составила всего 1/3 секунды в день, а само устройство было подлинным шедевром.

В хронометрах Гаррисона практически отсутствовало трение, им не требовалась смазка, они были прекрасно сбалансированы и поддерживали точность хода в любой температуре. Так что стоит отдать должное искусству мастера.

Гаррисон умер в 1776 году, и доступ к его наработкам получили многие часовые мастера, которые приступили к изготовлению собственных хронометров. В 1860 году на 200 кораблей английского флота приходилось 800 хронометров. За короткое время это устройство стало привычным средством навигации и заняло важное место в мореходном деле. Можно сказать, что морское господство Британии, да и вообще появление Британской империи стало возможным благодаря быстрому и точному определению координат кораблей в открытом море. Этот способ применялся ещё совсем недавно, пока ему на смену не пришли системы спутниковой навигации.

* * *
Дорогу указывают спутники. Система глобального позиционирования

GPS (от англ. Global Positioning System – «система глобального позиционирования») – это глобальная система спутниковой навигации, позволяющая определять положение любого объекта на поверхности Земли с точностью до нескольких метров. Система включает 32 спутника, которые находятся на околоземной орбите на высоте 20200 км. Траектории спутников синхронизированы так, что они обеспечивают покрытие всей поверхности Земли. Кроме того, ряд наземных станций отправляют им контрольную информацию. Для определения местоположения с помощью GPS требуются специальные приёмники, каждый из них использует сигнал как минимум трёх спутников. Приёмник синхронизирует часы GPS и рассчитывает время прохождения сигнала со спутника, после чего определяет расстояние до спутника с помощью триангуляции и, наконец, реальные координаты точки, в которой он находится.

Глава 5. Большие времена

В прошлой главе мы рассказали об измерении времени, имея в виду то понятие времени, которое мы используем в повседневной жизни. Однако в самой астрономии нужно рассматривать гораздо большие интервалы времени, описывающие астрономические и космологические явления. И в этом масштабе математика играет ключевую роль. Так как результаты астрономических наблюдений охватывают лишь около 300 лет, для изучения «больших времён» необходимо компьютерное моделирование.

Именно математика позволяет создавать модели, которые вкупе с результатами наблюдений помогают определить, что произошло и что произойдёт на временном интервале в несколько миллиардов лет. А именно такие интервалы характерны для астрономических явлений.

Звёзды, их эволюция и другие характеристики

Все звёзды рождаются из облаков газа и пыли в межзвёздном пространстве. Под действием сил притяжения эти облака сжимаются, и внутри них образуются звёзды. Процесс длится тысячи лет – при сжатии облако нагревается, и его сжатие замедляется, после чего оно вновь охлаждается, так как часть энергии переходит в излучение. Когда новые звёзды очищаются от остатков газового облака под действием звёздного ветра, окружающий их газ начинает светиться, и звёзды становятся ярче.

В областях, где образуются новые звёзды, наблюдаются разноцветные газовые облака.

Когда Вселенная только зарождалась (это произошло примерно 14 млрд лет назад), почти вся она состояла из атомов водорода и гелия. Первые звёзды появились в результате сжатия облаков газа, практически полностью состоявших из этих химических элементов. Более тяжёлые компоненты образовывались в ходе эволюции этих первых звёзд. После смерти первые звёзды выбрасывали в космос часть своего вещества, обогащённого новыми химическими элементами, в частности кислородом и углеродом, которые сформировались внутри них. Ещё более тяжёлые элементы, например свинец и уран, образовались во время взрывов сверхновых звёзд.

Внутри звёзд средних размеров, подобных Солнцу, водород превращается в гелий, а тот, в свою очередь, в углерод, азот и кислород. В конце жизни такие звёзды раздуваются и выбрасывают часть своей атмосферы в космос, образуя красивые планетарные туманности.


Туманность NGC 7635, в которой можно различить пузырь звёздного ветра – зону расширения, в которой при соударении с межзвёздным веществом образуется ударная волна.


Галактическое гало, окружающее звезду V838 в созвездии Единорога. Эта звезда стала одной из самых ярких во всём Млечном Пути, после чего её блеск вновь уменьшился.

* * *

ДЕТИ ЗВЁЗД

Звезду можно представить как огромную атомную электростанцию – в её реакторе происходят ядерные реакции, в ходе которых водород превращается в более тяжёлые элементы – углерод, азот и кислород. Атомы химических элементов, составляющие человеческое тело, образовались в звёздном ветре, поэтому все мы в некотором роде дети звёзд, и это не красивая метафора, а научный факт!

* * *

Звёзды разных поколений излучают материю, которая смешивается с другими облаками газа, и в результате образуются новые звёзды и планетные системы. Концентрация тяжёлых элементов, например кислорода, в межзвёздном пространстве постоянно увеличивается. Таким образом, возраст звезды можно определить по тому, сколько кислорода она содержит: чем меньше содержание кислорода, тем раньше звезда образовалась.

Подсчитано, что через 4,5 млрд лет Солнце превратится в красный гигант и окончит своё существование в виде прекрасной планетарной туманности. Солнце, Земля и другие планеты будут выброшены в межзвёздное пространство и станут материалом для новых звёзд, а от всей Солнечной системы останется лишь белый карлик. Срок жизни звезды зависит от её массы: чем массивнее звезда, тем меньше она живёт.

Звёзды, меньшие, чем Солнце, в конце жизни не выбрасывают материю в пространство, а просто остывают. Красивее всего заканчивают свою жизнь звёзды, размерами намного превышающие наше Солнце: они взрываются, подобно сверхновой, испускают материю и образуют огромное облако раскалённого газа. Во время этого взрыва формируются самые тяжёлые химические элементы – золото и уран.

Ядро звезды после взрыва превращается в нейтронную звезду или чёрную дыру.

Звёзды в разных галактиках находятся на разных этапах эволюции: где-то их формирование уже завершено, а где-то именно сейчас образуются тысячи и миллионы звёзд.

Как появилась Солнечная система

Солнечная система образовалась из аморфного и протяжённого облака газа, насыщенного молекулами водорода, гелия, углекислого газа, аммиака, воды, а также содержащего лёд и пыль тугоплавких металлов. Считается, что в межзвёздном пространстве это протопланетное облако вращалось и обладало магнитным полем. По какой-то причине, возможно, под действием ударной волны от ближайшей сверхновой, протопланетное облако сжалось настолько, что сила тяготения превысила противодействующие силы и произошёл коллапс.


На этом рисунке изображён момент формирования Солнечной системы.

Вы можете видеть образование звёзды и окружающего её диска.

Под действием центробежной силы облаку было проще сжаться в направлении оси вращения, чем перпендикулярно ей. Следовательно, вращавшееся облако сжалось в диск, перпендикулярный оси вращения, подобно тому, как расправляется пачка балерины, исполняющей фуэте, под действием центробежной силы.

Более тяжёлые частицы пыли стали частью диска этой протопланетной системы быстрее, чем газ. Плотность облака ближе к центру возрастала, и в самой его сердцевине образовалось Солнце, сохранившее магнитное поле облака. Солнце притянуло к себе большую часть материи, расположенной поблизости. Гравитационная энергия газа и пыли при сжатии преобразовалась в тепловую энергию, в результате Солнце нагрелось. Когда температура внутри него достигла нескольких миллионов градусов, начались ядерные реакции, и молодое Солнце стало излучать собственный свет.

От этого излучения находившаяся поблизости ледяная пыль испарилась, а из частиц тугоплавких металлов начали образовываться тела всё большего и большего размера. Они сталкивались друг с другом, в них накапливалось всё больше материи – так образовались планеты. Планеты, близкие к Солнцу, богаты тяжёлыми элементами, которые образовались из частиц тугоплавких металлов. Более далёкие от Солнца планеты, образованные из частиц металлов и мелких льдинок, по составу близки к облаку газа и пыли, из которого сформировалась Солнечная система.

Внешние планеты отличаются большими размерами, имеют кольца и большее число спутников, так как в процессе формирования вблизи них располагалось большее количество вещества.


На этом рисунке изображён протопланетный диск, из которого образуются планеты.

* * *

МОДЕЛЬ ОБРАЗОВАНИЯ СОЛНЕЧНОЙ СИСТЕМЫ В ДОМАШНИХ УСЛОВИЯХ

Если налить в таз с водой растительное масло, то вода и масло не перемешаются, так как имеют разную плотность: масло будет плавать по поверхности, и вы увидите, как постепенно образуется пятно сферической формы. Если мы перемешаем воду ножом так, чтобы образовался водоворот, то увидим, что капельки масла распределятся по поверхности воды, а затем будут сталкиваться друг с другом, образуя всё более и более крупные капли. Именно так (разумеется, в другом масштабе) образовалась наша Солнечная и другие планетные системы.

* * *
Изучение ближайших к Солнцу звёзд

При анализе областей, близких к Солнцу, звёздная материя считается жидкостью, которая подчиняется уравнениям гидродинамики и обладает цилиндрической симметрией (именно этот вид симметрии характерен для нашей спиральной галактики).

С помощью статистических и численных методов рассматривается наложение двух звёздных населений (населения I и населения II) друг на друга. При рассмотрении наложения теоретические результаты намного точнее согласуются с результатами наблюдений, чем при рассмотрении единственного звёздного населения.

Различие между звёздами галактических дисков и звёздами, находящимися в так называемых балджах галактик, открыл немецкий астроном Вальтер Бааде(1893–1960). Он же определил два класса звёзд – звёздное население I и звёздное население II – ещё до того, как был изучен процесс звёздной эволюции. К критериям классификации звёзд относятся скорость их движения в пространстве, расположение внутри галактики, возраст, химический состав и различия в цвете и яркости.


Структура Млечного Пути, на которой отмечены гало, диск и центральный балдж.

Согласно Бааде, звёзды, принадлежащие к звёздному населению I, образуют галактический диск. Они содержат значительные объёмы более тяжёлых элементов, чем гелий. Эти тяжёлые элементы образовались внутри звёзд предыдущих поколений и распространились в межзвёздном пространстве в результате взрывов сверхновых. Наше Солнце принадлежит к звёздному населению I. Звёзды такого типа часто встречаются в спиральных рукавах Млечного Пути и других спиральных галактик.

Звёзды населения II принадлежат к первым поколениям звёзд, образовавшихся после Большого взрыва. Следовательно, в большинстве из них содержание металлов невелико. Крайне маловероятно, что вокруг этих звёзд вращаются планеты. Звёзды населения II располагаются в шаровых скоплениях и в центре Млечного Пути. Находясь в галактическом гало, они действительно обладают низкой металличностью и намного старше, чем звёзды населения I. По результатам изучения звёздной эволюции известно, что звёзды населения II обладают малой массой, так как массивные звёзды, появившиеся одновременно с ними, уже мертвы.

В 1925 году американский астроном Эдвин Хаббл предложил классификацию галактик по схеме, которая используется и сегодня и отчасти позволяет объяснить их эволюцию. В рамках этой классификации выделяются две основные категории галактик: спиральные и эллиптические.

Спиральные галактики делятся на обычные и диффузные в зависимости от формы и относительных размеров балджа. Для них характерен большой объём газа в диске, что приводит к образованию множества звёзд, особенно молодых звёзд населения I. Такие галактики обычно располагаются в зонах с малой галактической плотностью.

Эллиптические галактики делятся на более или менее округлые и вытянутые – от сферических (типа E0) до крайне вытянутых (типа E7). Они обладают равномерной яркостью и внешне выглядят как балдж спиральной галактики без диска.

Эти галактики состоят из старых звёзд населения II, которые практически не содержат газа. Эллиптические галактики обычно располагаются в зонах с высокой галактической плотностью, преимущественно в центрах крупных скоплений галактик.

В настоящее время классификацию Хаббла дополняют линзовидными галактиками (типа S0), которые имеют балдж и диск, но не имеют спиральных рукавов. Они практически не содержат газа, а следовательно, состоят из старых звёзд.

Неправильные галактики – это малые галактики без балджа, имеющие неправильную форму. К этому типу относятся Магеллановы Облака.

Хаббл доказал, что галактики удалятся от нас со скоростью, пропорциональной расстоянию до них; иными словами, Вселенная расширяется.


Типы и подтипы галактик.


Слева – эллиптическая галактика М87. Справа – спиральная галактика NGC2997.


Слева – диффузная спиральная галактика NGC 1365, расположенная на расстоянии 56 млн световых лет от нас. Справа – Большое Магелланово Облако – пример неправильной галактики.

* * *

ГАЛАКТИКА В ДОМАШНИХ УСЛОВИЯХ

Эффектнее прочих выглядят спиральные галактики. Построить их модель можно в домашних условиях из подручных материалов. Налейте в круглую форму для выпечки воду и насыпьте в неё ложку очень мелкого песка или земли, просеянной через сито. Перемешав смесь ложкой, вы увидите «спиральную галактику». Этот простой эксперимент помогает увидеть, как распределяется материя при вращении и как образуются спиральные рукава.

* * *
Звёздные величины и логарифмы

Во II веке до н. э. Гиппарх Никейский первым создал метод классификации звёзд по их видимому блеску. В своём «Альмагесте» Птолемей привёл классификацию звёзд, следуя тому же критерию, что и Гиппарх, однако классификация Птолемея оказалась более популярной. Самые яркие звёзды Птолемей назвал звёздами первой величины, звёзды в два раза меньшей яркости – звёздами второй величины и так далее вплоть до шестой величины – эти звёзды едва можно различить невооружённым глазом (их можно наблюдать только на безлунном небе и в отсутствие светового загрязнения). Уильям Гершель(1738–1822) заметил, что звёзды первой величины светят в среднем в сто раз ярче, чем звёзды шестой величины.

В XIX веке Норман Роберт Погсонопределил, что отношение яркостей звёзд, различающихся на одну величину, должно быть постоянным, и создал новый, более точный метод классификации, который используется и сейчас. Он предложил шкалу, в которой разница в пять звёздных величин соответствовала разнице в яркости в 100 раз. Имеем:

1001/5=2,512.

Таким образом, отношение яркостей звёзд таково: звёзды первой величины в 2,512 раза ярче звёзд второй величины; в (2,512)2=6,31 раза ярче звёзд третьей величины; в (2,512)3=15,85 раза ярче звёзд четвёртой величины; в (2,512)5=100 раз ярче звёзд шестой величины. Иными словами, величина звёзд возрастает в арифметической прогрессии, блеск – в геометрической. Для двух звёзд величины m и m' яркость которых равна B и B' соответственно, выполняется следующее соотношение:

Используем логарифмы и получим аналогичное выражение

где достаточно принять:

Удивительно, что наши глаза воспринимают блеск звёзд в логарифмической шкале. Иными словами, если одна звезда в действительности светит в 100 раз ярче, чем другая, то нам кажется, что она блестит всего в пять раз сильнее (5=2,5 ln 100).

Современная система звёздных величин не ограничивается шестью, а очень яркие небесные тела имеют отрицательную величину. К примеру, Сириус, самая яркая звезда в Северном полушарии, имеет видимую величину в интервале от −1,44 до −1,46.

В современную шкалу звёздных величин также включаются Луна и Солнце. Видимая величина Луны равна −12,6, видимая величина Солнца 26,7. Телескоп «Хаббл» позволяет увидеть звёзды величиной до +30. Учитывая, что блеск звезды обратно пропорционален квадрату расстояния до неё, имеем:

где расстояния до звёзд выражены в парсеках.

Видимая звёздная величина и реальная яркость небесного тела – это не одно и то же. Яркая звезда, расположенная очень далеко от нас, будет казаться тусклой.

Таким образом, для сравнения блеска звёзд используется не видимая звёздная величина, а абсолютная звёздная величина. Абсолютная величина M – это звёздная величина, которую имело бы небесное тело видимой величины m, если бы располагалось на расстоянии ровно в 10 парсек от Земли. Имеем:

Таким образом, можно сравнивать абсолютные величины двух и более звёзд, так как в этом случае расстояние до них не будет иметь никакого значения.


    Ваша оценка произведения:

Популярные книги за неделю