355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роза Мария Рос » Музыка сфер. Астрономия и математика » Текст книги (страница 2)
Музыка сфер. Астрономия и математика
  • Текст добавлен: 21 октября 2016, 21:57

Текст книги "Музыка сфер. Астрономия и математика"


Автор книги: Роза Мария Рос


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 2 (всего у книги 11 страниц)

Как оценить параллакс на пальцах

Это очень простое упражнение заключается в том, чтобы посмотреть на палец руки на фоне какого-то удалённого объекта, например стены. Вытянем вперёд правую руку и поднимем указательный палец вверх. Закроем левый глаз и запомним, где находится палец относительно фона. Затем закроем правый глаз и вновь отметим, где находится палец относительно стены. Положение пальца будет меняться в зависимости от того, каким глазом мы смотрим.

Это же явление используется в астрономии, единственным различием является масштаб. Именно благодаря тому, что мы смотрим на мир двумя глазами, наш мозг может оценивать расстояния до предметов. В любом сувенирном магазине продаются картинки, на которых дважды изображена одна и та же фотография. В действительности эти фотографии сделаны с разных точек, отстоящих друг от друга на несколько сантиметров. Если мы посмотрим на эти фотографии через специальные очки, наш мозг объединит два изображения в одно объёмное. В подобных игрушках используется эффект параллакса.


Наблюдение параллакса на пальцах.


Если мы посмотрим на две одинаковые фотографии через окуляры, наш мозг объединит два изображения в одно, объёмное, в то время как по отдельности фотографии кажутся совершенно плоскими.

При показе фильмов в формате 3D используется точно такой же принцип. Фильм снимается с двух камер, расположенных на определённом расстоянии, а затем оба изображения показываются на экране кинотеатра одновременно. Для просмотра фильма в 3D нужны специальные очки, в которых каждый глаз видит только одно из демонстрируемых изображений. Когда наш мозг объединяет эти изображения в единое целое, нам кажется, что мы смотрим трёхмерный фильм. Эффект 3D создаётся разными способами. К примеру, можно использовать поляризационные очки с разной поляризацией линз или очки, в которых одна линза окрашена в красный цвет, другая – в синий: в этом случае две версии фильма снимаются через фильтры разного цвета.

* * *

ЧТО НУЖНО ЗНАТЬ ПРИ ПОКУПКЕ ТЕЛЕСКОПА

Любой телескоп состоит из двух частей: монтировки и оптической системы. Пока не будем говорить об оптике и вкратце расскажем, чем отличаются друг от друга различные монтировки. Каждой системе небесных координат соответствует своя разновидность монтировки.

Телескопы с альт-азимутальной монтировкой устойчивее телескопов с экваториальной монтировкой, однако вести наблюдения с них сложнее, так как скорректировать вращение небесной сферы непросто. Если вы хотите следить за движущимся астрономическим объектом, то телескоп такого типа нужно будет постоянно двигать по высоте и азимуту так, что траектория движения объектива будет напоминать лесенку. Однако такая монтировка дешевле и проще в установке, так как она схожа с обычным штативом для фотоаппарата. Телескоп можно поставить где угодно и направить в любую сторону.

Экваториальная монтировка устроена иначе и выглядит намного сложнее. Телескопы с ней менее устойчивы, поэтому при их установке следует грамотно расположить противовес. Недостаток этого типа монтировки заключается в том, что ось телескопа всегда должна быть направлена вдоль оси вращения Земли. Большое преимущество заключается в том, что для корректировки вращения небесной сферы достаточно слегка изменять прямое восхождение, например с помощью простого мотора. Эта монтировка, несомненно, куда интереснее для астрономов-любителей.


Четыре телескопа, образующие VLT (Very Large Telescope – англ. «очень большой телескоп») на Серро-Параналь в Чили. Телескопы больших размеров имеют альт-азимутальную монтировку, так как она более устойчива. При использовании этих телескопов следить за небесными телами очень удобно – движением монтировки управляют компьютеры. Сегодня романтический образ астронома, приникшего к телескопу, ушёл в прошлое, ведь учёные во время наблюдений смотрят на экран компьютера.


Два любительских телескопа с различными монтировками: слева – телескоп с экваториальной монтировкой, к которой можно подключить мотор для компенсации вращения; справа – телескоп с альт-азимутальной монтировкой.

* * *
Определение параллакса

При определении параллакса рассматривается новая единица длины – парсек.

Парсек – это расстояние, с которого одна астрономическая единица (напомним, что она равняется 150 млн километров) видна под углом в одну угловую секунду. Парсек эквивалентен 30,9 млрд километров, или, что аналогично, 3,26 светового года.


Один парсек соответствует параллаксу величиной в одну угловую секунду. Справа – годовой параллакс звезды 61 Лебедя.

Эта единица и кратные ей широко применяются в астрономии: килопарсек (тысяча парсек) – для измерения расстояний в масштабах галактик, мегапарсек (миллион парсек) – для измерения межгалактических расстояний (однако эти расстояния слишком велики, чтобы на них можно было наблюдать реальный параллакс).

Параллакс был известен уже древнегреческим астрономам, однако они не располагали измерительными инструментами необходимой точности для наблюдения годового параллакса, поэтому пришли к выводу: Земля неподвижна относительно Солнца.

Первым определил параллакс звезды (это была звезда 61 созвездия Лебедя) немецкий математик и астроном Фридрих Вильгельм Бессель в 1838 году. Чтобы представить, насколько мал параллакс даже ближайшей к нам звезды, рассмотрим ближайшую к Земле звёздную систему Альфа Центавра. От Проксима Центавра, ближайшей к нам звезды, нас отделяет примерно 40 млрд километров, или 4,3 световых года. Следовательно, параллакс этой звезды меньше одной угловой секунды и равен 0,765'' – меньше чем 1/3600 часть градуса, иными словами, 1/3600 части угла, под которым виден мизинец на вытянутой руке.

Чем больше расстояние, тем меньше параллакс, и ошибки измерения становятся всё более значимыми: на дистанциях, превышающих 100 световых лет, определить расстояния между звёздами на основе годового параллакса уже нельзя.

* * *

ФРИДРИХ ВИЛЬГЕЛЬМ БЕССЕЛЬ (1784–1846)

Немецкий математик и астроном Фридрих Вильгельм Бессель родился в Миндене, был главой Кёнигсбергской обсерватории, описал так называемые функции Бесселя (открытые Даниилом Бернулли), занимался вычислениями орбит и положений небесных тел, изучал аберрации и рефракцию света в атмосфере. Он начал работу над решением сферических многоугольников и вывел известные формулы Бесселя, в том числе для решения уже упомянутого треугольника «полюс-зенит-звезда». Учёному удалось достичь высокой точности измерений и в 1838 году определить годовой параллакс звезды 61 Лебедя по итогам 18 месяцев наблюдений. В 1844 году, анализируя положение Сириуса и Проциона, он показал, что движение этих звёзд можно объяснить только присутствием невидимого тела, под действием которого они смещаются с орбиты. Бессель даже рассчитал орбиту звезды Сириус В, которая была открыта лишь в 1862 году, а также звезды-спутника Проциона, открытой в 1895 году. Кроме всего прочего, Бессель известен благодаря публикации каталога, в котором приведены точные координаты 75 тысяч звёзд, наблюдаемых из Северного полушария.

Портрет Фридриха Вильгельма Бесселя и изображение звёзды Сириус A (большая звезда) и Сириус B (малая звезда, расположенная внизу слева), полученное космическим телескопом «Хаббл».

* * *
Охотники за планетами

Помимо парсеков и кратных им единиц, которые мы определили выше, также используются световые года (св. г.). Один световой год равен расстоянию, которое свет проходит за один год. Так как скорость света составляет 300 000 километров в секунду, световой год равен 9,46 трлн километров. Если в качестве точки отсчёта используется Солнечная система, то, как вы уже знаете, в качестве единицы длины выступает астрономическая единица, равная 150 млн километров. Мы не способны представить себе расстояния в миллиарды километров, однако будет намного понятнее, если мы скажем, что Юпитер находится в 5 раз дальше от Солнца, чем Земля, то есть на расстоянии в 5 астрономических единиц (а.е.), а Сатурн – на расстоянии в 10 а.е.

Выбор подходящих единиц измерения позволяет упростить работу и лучше понять полученные результаты. Ярким подтверждением этому служит правило Тициуса-Боде, согласно которому расстояния между планетами Солнечной системы связаны фиксированным соотношением. С открытием этого правила началась настоящая охота за новыми небесными телами.

Правило Тициуса-Боде предложил Иоганн Даниэль Тициус в 1766 году, однако длительное время его авторство приписывалось главе Берлинской обсерватории Иоганну Элерту Боде, усилиями которого оно стало широко известным.


Иоганн Даниэль Тициус (слева) и Иоганн Элерт Боде.

Правило Тициуса-Боде можно представить в виде последовательности, общий член которой описывается следующим образом:

аn= 0,4+0,32n−2 для n=2,3,4… При n=1 а1= 0,4.

Следовательно, это правило описывает последовательность планет, удалённых друг от друга на следующие расстояния.


Последовательность планет Солнечной системы, известных в конце XVIII века, описываемая правилом Тициуса-Боде.

Как видите, в первом приближении это правило достаточно точное. В классической формулировке знаменатель прогрессии равен 2, однако более точные результаты достигаются при использовании значения 1,71.

На момент открытия правила Тициуса-Боде были известны только планеты, указанные в таблице. Представьте себе, какой интерес научного сообщества вызвала предполагаемая планета, расположенная между Марсом и Юпитером. Другие учёные принялись за поиски следующей планеты после Сатурна. В 1781 году, вскоре после публикации правила Тициуса-Боде, британский учёный Уильям Гершель открыл Уран, удалённый от Солнца на 19,81 а.е., что было всего на несколько миллионов километров больше, чем теоретический результат в 19,6 а.е., следующий из правила. Это открытие Урана в значительной степени подтвердило корректность работ Тициуса и Боде.

На астрономическом конгрессе в немецком городе Гота в 1796 году выдающийся французский астроном Жозеф Жером Лефрансуа де Лаланд убедил коллег приняться за поиски затерянной планеты, и в 1800 году немецкий учёный Франц Ксавер фон Цах с группой из 24 астрономов, которые называли себя звёздной полицией, начал тщательное наблюдение зодиакальной полосы. Фон Цах и его коллеги открыли множество астероидов (сам термин «астероид» появился позднее), однако главный приз достался астроному, не входившему в группу фон Цаха: итальянский учёный Джузеппе Пиацци 1 января 1801 года обнаружил недостающую планету, которую назвал Церерой. Эта планета располагалась на расстоянии 2,8 а.е. от Солнца. После 24 дней наблюдений Пиацци написал Боде письмо, где рассказал о своём открытии. Письмо попало в руки Боде лишь в конце марта, когда новая планета находилась так близко к Солнцу, что её нельзя было увидеть в телескоп. Пиацци попытался определить положение этой планеты, однако в то время были известны только методы расчёта круговых и параболических орбит, поэтому итальянский астроном, который не считал открытое небесное тело кометой, вычислил его круговую орбиту. После того как Церера достаточно удалилась от Солнца, Пиацци вновь начал её поиски, однако не обнаружил планету в расчётном месте.

В это же время юный немецкий математик Карл Фридрих Гаусс работал над методом расчёта эллиптических орбит по трём известным параметрам. В октябре 1801 года Гаусс получил письмо фон Цаха, в котором тот подробно описывал результаты наблюдений Пиацци и объяснял, сколь сложно вновь отыскать потерянную планету. Гаусс применил свой новый метод к полученным данным, и 7 декабря 1801 года фон Цах увидел Цереру в месте, указанном Гауссом.

Однако Церера вызывала подозрения – расчёты показывали, что она была меньше Луны. Кроме того, годом позже соотечественник Гаусса Генрих Ольберс открыл ещё одно небесное тело с похожей орбитой, которое назвал Паллада, а в 1807 году – ещё два: Весту и Юнону. Все они напоминали планеты, но были ещё меньше, чем Церера. Гершель счёл, что из-за малых размеров эти небесные тела не могут считаться планетами, и назвал их астероидами. Ввиду технических ограничений телескопов того времени обнаружить другие астероиды было невозможно, и Цереру стали считать недостающей планетой.

С возникновением астрономической фотографии ситуация изменилась, в 1900 году было известно уже 436 астероидов, и Церера лишилась статуса планеты. Сегодня мы знаем, что пояс астероидов, расположенный между орбитами Марса и Юпитера, содержит примерно 400 тысяч астероидов общей массой 4 % от массы Луны. Это не остатки какой-то планеты, разрушенной катаклизмом, как считалось ранее, а фрагменты недосформированного небесного тела.

В 1846 году был открыт Нептун, который находился на расстоянии 30 а.е. от Солнца, в то время как по правилу Тициуса-Боде расстояние должно было составлять 38,8 а.е. Таким образом, спустя более ста лет это правило стало считаться не более чем математической диковинкой, хотя именно оно было одним из главных стимулов развития астрономии с конца XVIII до начала XIX века.

Нептун: планета, открытая на бумаге

Гершель сконструировал лучший телескоп своего времени и принялся наблюдать за небосводом с таким упорством, что открытие Урана было лишь вопросом времени. Произошло это в 1781 году. Открытие Нептуна, в отличие от Урана, стало результатом не наблюдений, а математических расчётов.


Крупнейший телескоп Уильяма Гершеля имел апертуру в 1,2 м. Его постройка длилась около 2 лет и завершилась в 1789 году.

После открытия Гершеля орбита Урана была подробно изучена. Появились таблицы, указывающие, где должна была находиться эта планета в определённые дни. Однако со временем астрономы заметили, что Уран отклоняется от вычисленной орбиты. Интерес научного сообщества к этой загадке был столь велик, что в 1842 году Гёттингенская академия наук учредила премию тому, кто решит её.

История открытия Нептуна напоминает телесериал. Два математика, авторитетный француз Урбен Жан Жозеф Леверье и молодой, никому в то время не известный англичанин Джон Куч Адамс, проанализировали небольшие отклонения Урана от расчётной орбиты и совершенно независимо друг от друга выдвинули одну и ту же гипотезу: отклонение Урана было следствием притяжения неизвестной планеты, расположенной ещё дальше от Солнца. И Леверье, и Адамс указали примерно одно и то же место, где эта планета может находиться.


Литография Урбена Жана Жозефа Леверье (слева) и портрет юного Джона Куча Адамса.

Сегодня обоим учёным приписывают открытие последней планеты Солнечной системы.

В октябре 1843 года Адамс нашёл математическое решение задачи и попросил королевского астронома Джорджа Бидделя Эйри предоставить ему самые подробные данные о движении Урана, чтобы произвести расчёты максимально точно.

В сентябре 1843 года Адамс отправил Эйри результаты своих расчётов, однако тот ими не заинтересовался и предложил Адамсу обратиться к Джеймсу Чэллису, главе Кембриджской обсерватории, чтобы тот сам обнаружил новую планету.

В конце концов Чэллис начал поиски и действительно увидел Нептун, однако не зафиксировал на нём внимание, потому что прежде всего наблюдал за изменением траектории Урана.

В сентябре 1846 года свои расчёты закончил и Леверье. Он обратился к астроному Иоганну Готтфриду Галле из Берлинской обсерватории, в распоряжении которого находились лучшие телескопы того времени. Леверье попросил Галле провести наблюдения за участком неба, в котором предположительно находится новая планета. Галле немедленно принялся за работу, и спустя пять дней, 23 сентября, планета была обнаружена совсем рядом с расчётной точкой.

К ещё большему разочарованию Адамса, в следующем, 1847 году, Леверье получил премию Британского королевского астрономического общества за проведение расчётов, которые привели к открытию Нептуна. К счастью, в следующем году справедливость восторжествовала, и аналогичная премия была присуждена Адамсу.

Сегодня честь открытия в равной степени принадлежит обоим учёным. Позднее высказывались предположения, что Нептун наблюдал ещё Галилей, однако ввиду несовершенства телескопа принял его за звезду. На рисунках Галилея от 28 декабря 1612 года и 27 января 1613 года Нептун изображён как ближайшая к Юпитеру звезда.

Можно утверждать, что Нептун был открыт благодаря математике. Сделанные на бумаге расчёты указали, куда следует направить телескоп, и наблюдения подтвердили правильность этих расчётов. Открытие стало настоящим триумфом, однако повторить его ещё раз математикам не удалось.

Глава 2. А где находимся мы?

Кажется, что с начала времён человек в некотором роде чувствовал себя центром Вселенной. С развитием современной астрономии мы смогли увидеть огромную часть космоса и почувствовали, что наша планета – лишь крохотная частица, одна из планет, вращающихся вокруг небольшой звезды на окраине галактики. Одной из многих миллиардов галактик.

Геоцентризм и гелиоцентризм: преодоление конфликта

В попытках познать космос люди начали создавать различные модели Вселенной.

В примитивных космологиях древнейших цивилизаций Земля считается центром всего мира. Эта концепция соответствует нашей интуиции и в то же время достаточно проста. Можно сказать, что она вполне разумна, однако с её помощью не стоит и пытаться объяснить движение звёзд.

Согласно Платону, Земля представляла собой сферу, расположенную в центре Вселенной. Звёзды и планеты вращались вокруг Земли по окружностям в следующем порядке (от внутренних к внешним): Луна, Солнце, Венера, Меркурий, Марс, Юпитер, Сатурн и звёзды. Аристотель описал более сложную систему: сферическая Земля располагалась в центре Вселенной, а все небесные тела были закреплены на 56 концентрических сферах вокруг неё, при этом каждой планете соответствовало несколько сфер.

Учитывая, что в то время были невозможны точные астрономические наблюдения, неудивительно, что все предпочли геоцентрическую модель. В результате вращения Земли нам кажется, что небесная сфера и звёзды на ней движутся. Формы созвездий, названия которых мы позаимствовали у древних греков, в течение года не менялись. Из-за больших расстояний до звёзд параллакс был совершенно не заметен.

Главная проблема возникает при объяснении движения планет. Их считали блуждающими звёздами, которые перемещались по небосводу, порой описывая траектории в форме петель, двигаясь вперёд и назад относительно других звёзд. Концентрические модели того времени не позволяли объяснить и другие наблюдаемые явления, например изменение яркости небесных тел. Многие народы считали подобные небесные тела воплощениями божеств.


На этих наложенных друг на друга фотографиях, где изображён Марс на фоне звёздного неба, чётко видно его ретроградное, или возвратное движение.

Система Птолемея и эпициклы

Во II веке н. э. Клавдий Птолемей представил космологическую модель, которую использовали астрономы исламского и христианского мира на протяжении следующей тысячи лет. В своём шедевре «Альмагест» Птолемей свёл воедино труды древнегреческих астрономов прошлого и предложил своё объяснение странному движению планет. Движение каждой планеты описывалось взаимодействием различных сфер. Первая из них называлась деферентом. На ней не было никаких небесных тел, а центр деферента обычно совпадал с Землёй. Другая сфера, по которой двигалась планета, называлась эпициклом. Её центр находился в произвольной точке деферента. В результате совокупного движения обеих сфер планета удалялась от Земли и приближалась к ней, скорость её движения уменьшалась, после чего планета двигалась в обратном направлении – происходило так называемое ретроградное движение планет.

Порядок сфер в модели Птолемея, начиная от Земли, был таким: Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн и неподвижные звёзды.


Вверху – геоцентрическая модель Птолемея. Внизу – основные элементы этой модели, показывающие планету, расположенную на эпицикле, её деферент и траекторию, описываемую системой эпициклов.

* * *

ПЕТЛИ В ОРБИТЕ МАРСА

Внешние планеты видны с Земли как блуждающие звёзды, которые движутся вперёд и назад вследствие взаимного движения обеих планет. К примеру, когда Земля проходит через точки 1, 2, 3 и 4, как показано на рисунке, мы видим, что внешняя планета движется вперёд. Когда Земля переходит из точки 5 в точку 6, нам кажется, что планета движется назад, после чего она вновь движется вперёд из точки 7 в точки 8 и 9. Такую траекторию имеют все планеты, за исключением Меркурия и Венеры. Заметнее всего петли в траектории Марса, так как Марс движется быстрее других внешних планет, и для наблюдений требуется меньше времени. Изображения можно получить, сделав ряд фотографий со штатива, расположенного в одной и той же точке, с последующим наложением снимков.

* * *

Однако даже эта сложная модель не объясняла некоторые результаты наблюдений. К примеру, петли на орбите Марса не всегда имеют одинаковый размер, что в системе Птолемея невозможно. Чтобы разрешить это противоречие, модель была дополнена эквантом – точкой, расположенной вблизи орбиты планеты, из которой движение центра соответствующего эпицикла выглядит равномерным. Таким образом, планета движется с разными скоростями в зависимости от того, как расположен эпицикл относительно деферента. Система Птолемея была крайне сложной, так как каждой планете соответствовал эпицикл, вращавшийся вокруг своего деферента. Также казалось странным, что нечто может вращаться вокруг точки, где не находится никакое небесное тело. Возникал вопрос: почему центром вращения была именно эта точка? Однако с помощью эпициклов можно описать практически любую траекторию. Более того, в интернете можно найти системы эпициклов, с помощью которых можно обрисовать даже силуэт Гомера Симпсона, героя популярного мультсериала!

Геоцентрическую модель принимали не все древнегреческие мыслители. Некоторые считали, что Меркурий и Венера движутся по эпициклам вокруг Солнца, а остальные планеты – по эпициклам вокруг Земли. Вызывает интерес модель Аристарха Самосского (ок. 310 года до н. э. – ок. 230 года до н. э.). В его книге, не дошедшей до наших дней и известной по упоминаниям Плутарха и Архимеда, описана модель, в которой Солнце было центром Вселенной, а Земля и остальные планеты вращались вокруг него. Благодаря своей проницательности, Аристарх определил, что Солнце намного больше Земли, поэтому Земля должна вращаться вокруг Солнца. К сожалению, другие учёные эту теорию не приняли, хотя она помогла бы продвинуть астрономию далеко вперёд. Всерьёз гелиоцентризм стал рассматриваться лишь после революции, произведённой Коперником в XVI веке.

В приложении изложена упрощённая схема рассуждений Аристарха Самосского, позволяющая определить диаметры небесных тел и расстояния между ними в системе «Земля-Луна-Солнце». Ознакомившись с этими рассуждениями, вы увидите, сколь велик был ум этого учёного.


    Ваша оценка произведения:

Популярные книги за неделю