355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роза Мария Рос » Музыка сфер. Астрономия и математика » Текст книги (страница 8)
Музыка сфер. Астрономия и математика
  • Текст добавлен: 21 октября 2016, 21:57

Текст книги "Музыка сфер. Астрономия и математика"


Автор книги: Роза Мария Рос


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 8 (всего у книги 11 страниц)

Зодиакальные линии и конические сечения

В течение года Солнце находится на разной высоте над горизонтом (его склонение изменяется), и эту информацию можно использовать в солнечных часах для определения времени года. К примеру, тень гномона горизонтальных солнечных часов летом будет короче, чем зимой, потому что летом Солнце стоит выше над горизонтом.

В вертикальных солнечных часах тень гномона, напротив, будет тем длиннее, чем выше Солнце над горизонтом.

На циферблатах солнечных часов иногда изображают линию, которую описывает конец тени в разные дни. Так как построить эту линию для всех дней невозможно, её обычно изображают только для четырёх первых дней каждого сезона. Так, в Северном полушарии на циферблатах солнечных часов изображают следующие линии: линия 21 марта, первого дня весны (здесь рассматриваются астрономические времена года, которые отсчитываются от дней солнцестояния и равноденствия), когда Солнце находится в созвездии Овна; 21 июня – первый день лета, когда Солнце находится в созвездии Рака; 23 сентября – первый день осени, день осеннего равноденствия, когда Солнце находится в созвездии Весов, и 21 декабря, когда Солнце находится в созвездии Козерога. Следует отметить, что эти дни указаны лишь приближённо, день, когда Солнце входит в созвездие Овна, для каждого года рассчитывается отдельно. В Южном полушарии в первый день лета Солнце находится в созвездии Козерога, в первый день зимы – в созвездии Рака.


Слева – фотография вертикальных солнечных часов, где, помимо часовых линий, изображены зодиакальные линии. Справа – карманные солнечные часы с часовыми и зодиакальными линиями и компасом, необходимым для точного ориентирования часов.

На циферблаты многих часов нанесены не только эти линии, но и все зодиакальные линии, указывающие положение конца тени в первый день каждого знака зодиака. Строятся они по тем же правилам, что и линии для четырёх времён года.

Зодиакальных линий на солнечных часах не двенадцать, а линий, отмечающих времена года – не четыре, так как некоторые из них совпадают. В первый день весны Солнце движется по небесному экватору, во второй день – вдоль линии, параллельной ему и расположенной чуть выше, в третий день весны – по линии, расположенной ещё чуть выше. Так день за днём Солнце постепенно поднимается над горизонтом, пока не достигает максимального склонения в 23,5° в первый день лета. Во второй день лета Солнце начинает постепенно опускаться, и в конце концов в первый день осени оно вновь следует вдоль небесного экватора (напомним, что рассматриваются не календарные, а астрономические времена года).

Таким образом, весна, лето и дни равноденствий перекрываются. Следовательно, зодиакальные линии, соответствующие месяцам весны, совпадут с зодиакальными линиями летних созвездий, подобно тому как линия Овна (весеннего равноденствия) совпадает с линией Весов (осеннего равноденствия), линия Тельца совпадает с линией Девы, линия Близнецов – с линией Льва. Аналогично совпадают линии осенних и зимних знаков зодиака: Скорпиона и Рыб, Стрельца и Водолея, как показано на следующем рисунке.


Теперь посмотрим, как связаны солнечные часы и конические сечения. Для этого надо представить траекторию, вдоль которой следует Солнце каждый день относительно оси вращения Земли. Если мы представим, что Солнце испускает единственный луч, который проходит точно через конец гномона, то при вращении Солнца вокруг оси мира этот луч опишет коническую поверхность, вершиной которой будет конец гномона (напомним, что гномон всегда направлен вдоль оси вращения Земли).

Если мы рассечём этот конус плоскостью, параллельной экватору, то есть перпендикулярной оси вращения Земли, получим окружность. Подобные окружности будут зодиакальными линиями экваториальных солнечных часов. Радиус этих окружностей зависит только от склонения Солнца и длины гномона.


Зодиакальные линии экваториальных солнечных часов – это концентрические окружности с центром в точке пересечения гномона и плоскости часов.

Если мы рассечём поверхность конуса горизонтальной или вертикальной плоскостью, полученные сечения будут ветвями гиперболы. Их форма определяется широтой места и, очевидно, склонением Солнца в каждом из зодиакальных созвездий. В зависимости от склонения Солнца ветви гиперболы будут выпуклыми или вогнутыми, а в день равноденствия примут вид прямых линий. Если мы изобразим небесную сферу бесконечного радиуса и будем считать Землю точкой, то изображение конических сечений на плоскости горизонта в упрощённом виде будет выглядеть так, как показано на предыдущей странице.

Если конец тени гномона движется вдоль одной из зодиакальных линий или вдоль линии, заключённой между двумя зодиакальными линиями, то мы можем приблизительно определить день месяца. Единственно возможная ошибка, которую можно допустить в тёплом климате, это перепутать времена года. К примеру, если конец тени гномона находится между линиями Овен – Весы и Скорпион – Рыбы, а с деревьев облетают листья, то на дворе октябрь, если же листьев на деревьях нет – февраль.


Зодиакальные линии горизонтальных и вертикальных солнечных часов – это гиперболы, которые обращаются в прямые линии в дни равноденствий.

На рисунке выше показаны сечения конической поверхности, определяемые положением Солнца и концом гномона на плоскости горизонта. Если рассматривать небесную сферу бесконечно большого радиуса, Земля, как и гномон, будет точкой. Пересечением конуса, определяемого суточной параллелью со склонением D=+23,5°, с плоскостью горизонта будет гипербола, пересечением конуса, определяемого суточной параллелью со склонением D=−23,5°, также будет гипербола.

При других значениях склонения, отличных от 0, сечениями также будут гиперболы. Если склонение равно 0°, конус обращается в круг, а линией его пересечения с плоскостью горизонта будет прямая.


Как устранить проблемы, связанные с измерением времени

От солнечных часов не требовалось особой точности. В XVII–XVIII веках люди были не слишком пунктуальны, и опозданию на полчаса не придавалось особого значения.


На древних солнечных часах не прочерчены часовые линии.

Определить время можно только по цифрам на циферблате, то есть очень примерно. Современный ритм жизни требует от нас всё большей точности, и создатели солнечных часов стараются успеть за временем. Все мы знаем, когда действует летнее или зимнее время. Если указать на солнечных часах долготу места, то любой, взглянув на циферблат, сможет внести необходимую поправку (1 градус долготы соответствует 4 минутам времени).

Во многих случаях солнечные часы дополняют уравнением времени в той или иной форме: в виде таблицы, графика, «восьмёрки», или аналеммы, которую изображают на одной или нескольких часовых линиях. На некоторых часах эта поправка учтена при расположении гномона, таким образом, корректировка вносится постоянно, однако если вы не знаете, как именно следует рассчитывать поправку, определить время с помощью таких часов затруднительно.

Благодаря всем этим усовершенствованиям солнечные часы становятся намного удобнее для обычных людей. Главное – чтобы они были правильно расположены.


На этих солнечных часах указаны долгота и график уравнения времени. На всех часовых линиях изображена аналемма.

* * *

ГДЕ ОШИБКА?

Горизонтальные солнечные часы, изображённые на фотографии, установлены неверно. Мы предлагаем читателю обнаружить ошибку самостоятельно. Если вам это не удалось, то вспомните, что линия север-юг должна совпадать с линией, указывающей 12 часов, однако стрелка компаса говорит, что это не так. Таким образом, часы могут указывать совершенно произвольное время.

* * *
Древняя задача определения долготы

Из Гибралтара, на юге Пиренейского полуострова, на родину отплывает пять английских кораблей. Туманной ночью 22 октября 1701 года в условиях плохой видимости, неподалёку от архипелага Силли (к юго-западу от Англии) адмирал Клаудесли Шовелл собирает офицеров, чтобы определить координаты кораблей и дальнейший курс. Все сходятся на том, что нужно следовать на север. Однако матрос с флагманского корабля «Содружество» сообщает капитану, что, по его подсчётам, корабли следуют неверным курсом, так как их координаты были определены неверно. На борту поддерживается строжайшая дисциплина, и матроса немедленно вешают за нарушение субординации. Спустя несколько часов «Содружество» налетает на огромные подводные камни близ архипелага Силли и тонет за несколько минут.

Эта же судьба постигает ещё три корабля, и лишь одному удаётся спастись. При кораблекрушении погибло более 2 тысяч человек.

Это далеко не единственная история подобного рода. Прокладывать курс вдали от побережья было очень сложно, поскольку моряки не умели точно вычислять координаты корабля в открытом море. Конечно, любой опытный моряк умел определять широту по высоте Полярной звезды (в Северном полушарии) или по расположению Солнца в полдень. Однако с долготой всё было намного сложнее.

Угловая высота Полярной звезды над горизонтом равна широте корабля.

Этим же свойством обладают и другие звёзды, в частности Южный Крест или Пояс Ориона, однако оценить их положение на небе несколько сложнее. Аналогично, широту нетрудно определить по Солнцу в момент прохождения меридиана в 12 часов по солнечному времени, когда тени предметов будут самыми короткими.

Чтобы определить широту места, нужно измерить высоту Солнца над горизонтом A, зная склонение Солнца в день наблюдений.

С помощью простейшего инструмента (квадранта или поперечного жезла) или более современного приспособления (секстанта или октанта) несложно измерить высоту Солнца над горизонтом в момент, когда оно пересекает меридиан север-юг, то есть когда оно находится в наивысшей точке над горизонтом. Этот угол, как показано на рисунке дальше, равен A=90°−ф+D, склонение Солнца в любой день года можно узнать из астрономического ежегодника. Имеем ф=90°−A+D.


Высота Солнца в момент прохождения местного меридиана равна 90ф (где ф широта) с поправкой на склонение Солнца, которое может быть положительным (летом и весной) или отрицательным (зимой и осенью).

Однако определить долготу совсем не просто. Христофор Колумб в 1492 году попытался достичь Индии, следуя вдоль параллели с момента отплытия с Канарских островов. Широта его кораблей была постоянной, и Колумб не достиг Японии только потому, что путь ему преградила Америка. При таком выборе курса решения задачи о долготе удалось избежать. Но если бы корабли Колумба не достигли Америки, участники экспедиции погибли бы, поскольку Колумб преуменьшил размеры Земли, и когда на горизонте показалась земля, запасы провианта уже подходили к концу. Колумбу повезло…

Почему же определить долготу так сложно? Как мы уже говорили, в силу вращения Земли ось вращения и экватор определяются однозначно. Окружности, параллельные экватору, имеют разные размеры, но обладают одним общим свойством: все они меньше экватора. Однако меридианы, представляющие собой большие круги земной сферы, проходящие через её полюса, имеют совершенно одинаковую длину, и нулевой меридиан выбирается только из соображений удобства. Основная проблема заключается в том, чтобы определить угловое расстояние из любой точки земной поверхности до этого меридиана, который выбран не из астрономических, а из политических соображений. В этом и заключается основная проблема при определении долготы. Несколько веков назад, когда корабли отправлялись в плавание, моряки располагали лишь примитивными методами определения координат. Они обычно определяли пройденное расстояние, выбрасывая за корму верёвку и подсчитывая число узлов, ушедших за борт, в определённый интервал времени. Измерив этот интервал с помощью примитивных песочных часов, моряки вычисляли мгновенную скорость корабля и на основе этого значения примерно оценивали координаты. Однако скорость судна изменялась в зависимости от ветра, течений и других факторов. Иными словами, определить точное положение корабля в открытом море было практически невозможно. Путешествия длились месяцами, недостаток витамина С угнетал сердечно-сосудистую систему, моряки страдали от цинги. Власти всех морских держав были озабочены проблемой определения долготы, которая более 300 лет волновала умы великих учёных.

Как мы уже объясняли, 15° долготы эквивалентны одному часу, или, что аналогично, 1 градус долготы эквивалентен 4 минутам времени. К примеру, на экваторе, где длина земной окружности наибольшая, это расстояние будет равно примерно 111 км. Иными словами, ошибка в одну минуту соответствовала отклонению примерно на 27 километров. К югу или к северу от экватора расстояние, соответствующее одному градусу долготы, уменьшается, что также вносит неточность.

После нескольких месяцев, проведённых в открытом море, определить местонахождение корабля было невозможно. Из-за этого капитаны опасались отклоняться от более или менее известных маршрутов, что приводило к скоплениям судов в определённых регионах и упрощало жизнь пиратам. К примеру, в 1590 году португальский корабль «Мадре де Деуш» был атакован английской эскадрой, которая захватила ценный груз стоимостью полмиллиона фунтов, что в то время составляло половину всего бюджета английского министерства финансов. Задача определения долготы требовала незамедлительного решения.

Учитывая склонность капитанов следовать известным маршрутам, в XVIII веке был предложен любопытный проект. Организаторы проекта хотели поставить на якорь в Атлантическом океане по кораблю каждые 600 миль. Команды этих кораблей должны были стрелять из пушек и запускать фейерверки, видимые на расстоянии в 100 миль, и тем самым указывать курс капитанам других судов. Целью авторов проекта (впрочем, нереализованного) было создание безопасной морской «автомагистрали».

Испанские короли Карл V и Филипп II, король Великобритании Георг II и французский король Людовик XIV потратили много сил на поиски решения. Торговля с Вест-Индией, военные экспедиции, желание открывать новые земли привели к тому, что роль мореходного дела возросла, и, как следствие, увеличилось число кораблекрушений, уносивших множество жизней и ценного груза. Из-за нерешён ной задачи о долготе морские карты до XVII века грешили значительными неточностями. Составлять их вообще было непросто, из-за чего возникали серьёзные споры о принадлежности территориальных вод. Всё это объясняет, почему многие острова в Океании были открыты по два и даже по три раза. Мореплаватель открывал остров, не нанесённый на карту, и объявлял его собственностью своего короля. Несколько лет спустя другой мореплаватель вновь «открывал» этот же остров и отмечал его на морской карте в другом месте. Впоследствии это приводило к проблемам и спорам, особенно между французскими и английскими мореплавателями, которые были искренне уверены, что именно они открыли тот или иной остров.

Наконец было предложено два принципиально разных решения задачи о долготе: астрономическое и механическое. Астрономическое решение основывалось на наблюдениях периодического движения небесных тел с последующим сравнением их положения на небе. Механическое решение заключалось в создании механических часов, позволявших с точностью определять время. Дело в том, что задача определения долготы на самом деле сводится к задаче определения времени: разница во времени эквивалентна разнице в долготе, и требовалось просто точно измерить эту разницу.

Любой достаточно опытный моряк мог определить, когда наступал солнечный полдень, однако для решения задачи этого было недостаточно. Если бы моряк знал, когда наступает солнечный полдень в порту отплытия, то, определив разницу во времени, он смог бы узнать разницу долгот (повторим: один градус долготы соответствует четырём минутам). Требовалось найти способ, позволявший узнавать время в порту отплытия.

Астрономическое решение

Допустим, что наблюдатель находится в центре Земли и у него есть надёжные часы.

Сначала он наблюдает прохождение звёзды через нулевой меридиан в момент времени t1 затем Земля поворачивается на некоторый угол, и наблюдатель видит, что эта же звезда проходит через меридиан места в момент времени t2. Разница во времени t2−t1 соответствует разнице долгот между нулевым меридианом и меридианом места. Так как наблюдатель находится не в центре Земли, а на её поверхности, он может наблюдать только момент прохождения звезды через меридиан места. Момент прохождения звезды через нулевой меридиан определяется по астрономическим таблицам, после чего, определив разницу во времени, наблюдатель сможет решить задачу о долготе.

Основным решением задачи было наблюдение затмений. Допустим, что наблюдатель находится посреди Атлантического океана и наблюдает лунное затмение.

Если он знает, что затмение произошло в Лондоне в момент времени h1 а сам он увидел затмение в момент времени h2 то, определив разницу во времени h2h1 он сможет вычислить разницу между долготой корабля и долготой Лондона. Основная проблема заключается в том, с какой точностью мореплаватель может определить время h2 по своим песочным часам. Кроме того, затмения наблюдаются не каждую ночь, а определять долготу требуется как минимум раз в сутки.

В 1514 году Иоханнес Вернер создал метод лунных расстояний, позднее улучшенный. Мы знаем, что Луна каждый час проходит расстояние, примерно равное её диаметру, то есть половину градуса. Если у нас есть очень точная карта звёздного неба, показывающая, когда Луна «касается» различных известных звёзд, мы сможем определить, когда это «касание» можно наблюдать с нулевого меридиана. Если наблюдатель определит точный момент времени, в который Луна «касается» звезды, то сможет вычислить разницу во времени между нулевым меридианом и меридианом корабля. Однако время на корабле определяется по неточным песочным часам.

Кроме того, сложная траектория движения Луны была недостаточно хорошо изучена. Метод лунных расстояний стало возможно использовать с удовлетворительной точностью только в середине XVIII века. На тот момент Джон Флемстид провёл более 40 тысяч наблюдений Луны и звёзд, астроном-наблюдатель Тихо Браге составил прекрасный атлас звёздного неба, Галлей подробно изучил взаимное влияние Земли и Луны друг на друга, а Джон Хэдли изобрёл квадрант – астрономический инструмент, при использовании которого с помощью зеркал можно было определять угловую высоту небесных тел над искусственным горизонтом в случаях, когда естественный горизонт не виден. На основе квадранта позднее был создан секстант, дополненный небольшим телескопом и обладавший более высокой точностью.

В 1610 году Галилей открыл спутники Юпитера: Ио, Европу, Ганимед и Каллисто, которые впоследствии стали называться галилеевыми спутниками. Их затмения наблюдались с чёткой периодичностью, и Галилей предложил решение задачи о долготе, основанное на результатах наблюдений затмений. Однако увидеть спутники Юпитера было непросто даже с обсерватории на берегу, поэтому метод Галилея оказался неприменим на практике. Хотя учёный даже сконструировал специальный шлем с подзорной трубой, упрощавший наблюдение, сам он признавал, что на его точность могло повлиять даже биение сердца наблюдателя. После смерти Галилея и с усовершенствованием телескопов этот метод начали применять на суше для более точного определения долготы и, следовательно, составления более точных карт. Людовик XIV говорил, что «потерял больше земель по вине своих картографов, чем по вине своих врагов».

Ещё один метод определения долготы заключался в оценке изменений магнитного поля. Но от этого метода пришлось отказаться, поскольку отклонение магнитного поля зависело не только от места, но и от времени наблюдений.


Галилеевы спутники Юпитера, слева направо: Ио, Европа, Гэнимед, Каллисто.

* * *

ЗАТМЕНИЯ ГАЛИЛЕЕВЫХ СПУТНИКОВ И СКОРОСТЬ СВЕТА

В 1680 году итальянский астроном Джованни Доменико Кассини опубликовал свои таблицы затмений галилеевых спутников Юпитера, в которых приводились дата и время последующих затмений. Юный датский астроном Оле Рёмер показал: когда Земля находилась ближе к Юпитеру, затмения наблюдались раньше расчётного времени, а когда Земля отдалялась от Юпитера, затмения наблюдались позже расчётного времени. Отсюда следует: расхождения возникают из-за того, что лучу света требуется определённое время на то, чтобы пройти расстояние, равное диаметру земной орбиты. Следовательно, скорость света составляет 300000 км/с.

* * *

    Ваша оценка произведения:

Популярные книги за неделю