Текст книги "Фантастика 1973-1974"
Автор книги: Роман Подольный
Соавторы: Север Гансовский,Генрих Альтов,Валерий Брюсов,Дмитрий Биленкин,Исай Лукодьянов,Михаил Пухов,Владимир Фирсов,Игорь Дручин,Олег Лукьянов,Наталья Соколова
Жанр:
Научная фантастика
сообщить о нарушении
Текущая страница: 23 (всего у книги 30 страниц)
ЗАКЛЮЧЕНИЕ
Грубое морщинистое лицо старухи негритянки и ее иссохшие руки – вот было первое, что я увидел, когда очнулся. Челнок мой прижало ветром к краю озера, образовавшегося на месте Проклятой пустыни, и выбросило на траву. Меня подобрало кочевавшее здесь племя бечуанов. Обо мне заботились и, как умели, лечили. Много дней пролежал я в горячке и, очнувшись, был так слаб, что не мог шевелиться. Добрые бечуаны кормили меня сушеным мясом и поили водой из скорлупки страусовых яиц. Только через две недели встал я на ноги и лишь через месяц мог выйти за пределы деревни.
Первую свою прогулку я совершил по направлению к Горе Звезды. Вновь образовавшееся озеро уже отхлынуло, и на месте прежней каменистой степи простиралась равнина, покрытая илом, кое-где начинавшая порастать первым мохом и робкой травой. Ясно было, что впоследствии здесь образуется степь и появится жизнь. Пальмы вырастут над могилой Сеаты. Напрягая зрение, я всматривался в даль, но силуэт конусообразной Горы уже не рисовался на фоне ясного утреннего неба.
С трудом оторвав глаза от дали, повернул я к ближнему леску.
Трава шелестела под моими ногами, попугаи испуганно перескакивали с ветки на ветку. Мне вздумалось испробовать, изменила ли мне рука. Со мной был бечуанский лук, которым прежде я свободно владел.
Прицелившись, я спустил тетиву, стрела простонала, и попугай, как бывало, повалился с ветки на берег ручья. С несчастной улыбкой пошел я за бесполезно убитой птицей. Да!
Немногое изменилось во мне, только сердце стало живым и страдающим.
Я нагнулся, чтобы поднять попугая, и увидел свое отражение в зеркале ручья. Длинные волосы попрежнему смело падали мне на лоб, на шею, но они сверкали, как серебро. На меня из ручья смотрело лицо еще молодого человека, но с уже совершенно седой головой.
Еще печальнее улыбнулся я.
Прошлая жизнь была погребена под этим снегом, а в новую я не верил. Подняв убитого попугая, я побрел в крааль друзей моих бечуанов. Больше мне некуда было идти.
Публикация Р. Щербакова
КЛУБ ФАНТАСТОВ
Виктор Глушков. Кибернетика XXI века…
Сегодня мы представляем “Фантастике” видного советского ученого академика Виктора Михайловича Глушкова.
Наука, которой он занимается, очень близка к фантастике, многие из выдвигаемых им идей.на первых порах тоже казались фантастическими, да и сам стремительный путь его в науку мог стать неплохим сюжетом для научно-фантастического романа.
Хотя, пожалуй, нет, путь этот закономерен и является ярким примером, демонстрирующим возможности упорного, настойчивого человека в нашем социалистическом обществе.
На физмат Ростовского университета он поступил в 1947 году и блестяще закончил его… на следующий год. В двадцать восемь он уже кандидат наук, в тридцать два – доктор, в сорок – академик. Ныне он випе-президент Академии наук Украины, директор Института кибернетики и руководитель одного из его отделов, главный редактор журнала “Кибернетика” и член редколлегии многих других научных изданий, консультант на самом ответственном уровне, лектор в самых высоких аудиториях, советник разнообразных комиссий и подкомиссий… Всего просто невозможно перечислить.
И одна из отличительных черт Глушкова в том и состоит, что он относится ко всем своим обязанностям не формально, а с полной ответственностью, каким-то понятным ь только ему одному способом успевая заниматься всем этим разнообразием дел.
Вторая его отличительная черта – увлеченность. Он увлекается многими вещами и всегда подходит к заинтересовавшим его вопросам с обстоятельностью настоящего ученого. А увлечений у него было много, и начались они с детства. В третьем классе – животные и растения, в пятом – геология и минералогия, в седьмом – телеуправляемые модели, в десятом – математика, физика и даже идеи моделирования человеческого мозга.
По чертежам, опубликованным в журнале “Техника – молодежи”, он собственными руками смастерил электрическую пушку, стрелявшую снарядами, сделанными в виде ракет.
Чтобы усовершенствовать ее и рассчитать траекторию полета снаряда, он занялся математикой и уже к восьмому классу знал ее в объеме технического вуза.
Когда началась Великая Отечественная война, он подал заявление в артиллерийское училище. Но, несмотря на увлечение детства, артиллерия так и не стала его профессией – в училише его не приняли из-за сильнейшей близорукости. И тогда он оказался на трудфронте под Сталинградом. Когда фронт подходил к городу, Глушков рыл окопы, противотанковые рвы.
После окончания института он стал математиком, увлекся теорией автоматов и конструированием ЭВМ.
За работы именно в этой области Виктор Михайлович был удостоен Ленинской и Государственной премий, звания Героя Социалистического Труда. Эти работы выдвинули его и в ряд крупнейших мировых авторитетов по кибернетике.
Но вот опять новое увлечение – проблемы экономики и применение компьютеров в управлении народным хозяйством. Это были идеи, о которых в Директивах XXIV съезда КПСС говорится как о первоочередной задаче. Он поставил перед собой поистине фантастическую проблемусоздание таких автоматизированных систем, которые стали бы настоящим “искусственным интеллектом”, верным помощником как в управлении народным хозяйством всей страны, так и в науке, литературе, искусстве и во многих других областях, расширяя и углубляя возможности человека.
На вопросы журналиста Г Максимовича отвечает академик В. М. Глушков.
Кибернетика XXI века
– Виктор Михайлович, сегодня на страницах газет, журналов, книг все чаще появляются слова “кибернетика, автоматизация”, “АСУ”. И это легко понять. Сейчас, когда научно-техническая революция прочно вошла в нашу жизнь, без средств автоматизации обойтись просто невозможно. Скажите, а какой станет кибернетика и какие функции она возьмет на себя где-то на рубеже XX и XXI веков?
– Делать какие-либо прогнозы о такой быстро развивающейся области, как кибернетика, нелегко. История знает, как крупные неожиданные открытия нередко коренным образом меняли направление и характер развития многих, казалось бы, полностью устоявшихся областей науки и техники.
Разве мог кто-нибудь лет пятьдесят назад предугадать, например, пути развития атомной энергии? Даже крупные специалисты прошлого века не могли бы поверить, что обыкновенный луч света способен за секунды разрезать стальной лист или приварить отслоившуюся сетчатку глаза, как это делает сегодня лазер.
А мог ли человек, разъезжавший на тройке, поверить, что пройдет не так уж много времени, и путь от Москвы до Нью-Йорка он будет покрывать всего за несколько часов, а от Земли до Луны – за несколько суток?
Так и мне сейчас довольно трудно точно сказать, что будет представлять собой кибернетика XXI века и какие новые функции возьмет она на себя. И все же, опираясь на тенденции развития этой науки и на то, что сделано уже сегодня, я попытаюсь это сделать. С чего же мы начнем?
– Лучше всего давайте с основы основ – с производства. ЗАВОДЫ БЛИЖАЙШЕГО БУДУЩЕГО
– Вполне понятно, что основой производства завтрашнего дня станут заводы-автоматы. Но они в корне будут отличаться от тех автоматических предприятий, которые существуют сегодня. Сегодняшние заводы такого типа рассчитаны на выпуск стабильной, неменяющейся продукции, такой, как цемент, хлеб, молочные продукты. И для того чтобы изменить что-либо в технологии или же просто сменить выпускаемую продукцию, такой завод надо полностью останавливать.
Чтобы избежать этого, работу таких предприятий в будущем надо строить не на механическом, а на кибернетическом принципе. Что это значит?
Основой производства на таком заводе станут автоматические линии, созданные на базе станков с программным управлением. Наша промышленность уже выпускает такие станки, они хорошо зарекомендовали себя и позволяют в три-четыре раза увеличить производительность труда.
Достаточно побывать на современном предприятии, чтобы увидеть, как они работают. Подчиняясь командам, записанным на перфорированной или магнитной ленте, станок сам обрабатывает деталь; весящую нередко тонны. Он сам меняет режим работы, знает, когда надо нарезать резьбу, отфрезеровать, обточить или произвести другие операции.
– Да, но менять ленту и деталь должен все же человек. Как же совместить это с идеей заводов без рабочих?
– Но вы забываете, что речь шла о станках с программным управлением, работающих в обычном цехе, на заводе сегодняшнего дня. Мы же говорим о заводах будущего. А на них и эта принадлежащая сегодня человеку часть работы перейдет к машинам.
Как же это будет выглядеть? Да почти так же, как в произведениях писателей-фантастов. Между станками заснуют механические существа – роботы. Конечно, они наверняка не станут этакими металлическими красавцами, напоминающими человека.
Это будет, вероятно, небольшая тележка на колесах с одним или двумя манипуляторами, способными двигаться во всех плоскостях.
Не думайте, что такие роботы – дело далекого будущего. Уже то оборудование с программным управлением, о котором мы говорили выше, является, по сути дела, первым шагом на пути к эпохе роботов. А электронная техника с ее новыми возможностями приближает эту эпоху стремительно. Уже сегодня создаются “видящие” роботы, способные распознавать простейшие геометрические тела.
Правда, они довольно громоздки и дороги, и вряд ли в ближайшее время у них будет искусственный глаз, сравнимый по способностям с человеческим, в котором пять миллионов нервных клеток.
Безусловно, проще и экономичнее “слепой” робот, подающий на сборку или обработку детали, не видя их: ему достаточно знать лишь, где они лежат.
– Интересно, а кто же будет управлять подобным устройством? Как-то не верится, чтобы удалось запрограммировать его нг все случаи жизни.
– Конечно, запрограммировать машину так, чтобы она могла найти вы. ход из всех непредвиденных ситуаций, пожалуй, невозможно. Хотя роботы, приспосабливающиеся к меняющимся условиям работы, уже есть; существуют, например, станки с адаптивным управлением, которые сами выбирают режимы резания в зависимости от твердости металла, величины припуска на заготовке, степени износа инструмента… Но для роботов, обслуживающих станки, это и не нужно. Ими, как и всем заводом-автоматом, будет руководить автоматизированная система управления АСУ. Она-то и станет следить за работой станков и деятельностью роботов. Кому, как не ей, знать, какие детали нужны каждому из цехов, какие надо переправить из одного цеха в другой, а какие доставить со склада. Она же будет отдавать распоряжения линиям или отдельным станкам на выпуск новой продукции.
Эта же вычислительная машина будет составлять программы для всех станков и роботов.
– А как вы, Виктор Михайлович, представляете себе работу заводаавтомата в целом?
– В общих чертах картина такого завода уже ясна. Как я уже говорил, основными “производителями” станут станки с программным управлением и роботы. Но это, так сказать, нижняя ступень иерархии на предприятии. И без верхней, руководящей ступени она вряд ли справится с работой. Поэтому давайте рассмотрим все производство по порядку.
Одно из основных звеньев управленческой ступени – автоматизированная система проектирования. Онато и будет разрабатывать новую продукцию предприятия Правда, работать она будет пока под руководством человека, и, по-видимому, до конца века ему не удастся полностью устраниться от проектирования. Но это не так уж важно для завода-автомата. Несколько человек на нем все равно будут трудиться, допустим, – всего десять-пятнадцать, но они все-таки останутся на таких предприятиях. И, возможно, проектирование станет чуть ли не единственным участком, где они будут заняты.
Но продолжим нашу мысленную экскурсию по заводу будущего. Итак, новый вид продукции спроектирован ЭВМ, пускай даже при содействии незначительного числа людей. Автоматически разработанные конструкции передаются на другую машину, которая отвечает за управление. Чтобы производить сразу несколько видов продукции, детали нужно посылать на сборочные линии в определенном порядке. Вот за этим и проследит управляющая машина, точнее, она организует выпуск изделий по предварительным заказам.
И не думайте, что выпуск продукции по индивидуальным, предварительным заказам – это блажь. Нет, это насущная необходимость наших дней. Дело в том, что в потреблении, к сожалению, еще нередки спады и подъемы. И с годами тенденция к колебаниям спроса все заметнее. В такой ситуации на предприятии нужны резервы.
Однако резервы резервам рознь.
Одно дело, когда предприятие имеет в резерве сырье, материалы, инструмент, детали, и совсем другое – запасы готовой продукции. Несколько лет назад они действительно считались необходимыми, да и сегодня сохранили свое значение, но лишь в тех случаях, когда речь идет о традиционных видах продукции. Промышленная же продукция с развитием научно-технической революции обновляется все быстрее. Не проходит и нескольких месяцев, как в самые, казалось бы, современные и совершенные машины и конструкции проектировщики вносят изменения, улучшая их.
Возьмите, к примеру, то же кибернетическое машиностроение; разве можно делать впрок запоминающие устройства вычислительных машин?
Ведь пройдет не так уж много времени – и они устареют, так и не дойдя до потребителя. Можно взять и другую, более знакомую всем область – бытовую продукцию. Спрос на нее очень изменчив и зависит как от моды, так и от “репутации” товара. Зайдите в магазин радиотоваров, и вы увидите, что одни, скажем, телевизоры пылятся на полках, а другие раскупаются сразу же. Так разве можно в этом случае говорить о каких-то запасах? Они не только не устранят дефицит, а, наоборот, будут тормозить выпуск новых моделей, нанося производству вред, так как в них омертвляются средства и труд.
Происходит это оттого, что в большинстве случаев производство ориентируется на безличный рынок, на абстрактного потребителя, тогда как надо ориентироваться на выполнение предварительных заказов. К примеру, французская фирма “Рено” уже много лет больше половины автомобилей делает по индивидуальным заказам.
– Но мы опять отвлеклись от путешествия по заводу завтрашнего дня. Так кто же будет отвечать за производство на таком предприятии?
– Вся производственная информация будет поступать на третью машину. Ее обязанности – расчет программы для каждого станка и для каждого робота. Она же скорее всего будет заниматься и таким вопросом, как, скажем, раскрой основного материала, будь то металл, пластик или же обычная ткань. Вы не думайте, что раскрой – легкий процесс. Он довольно сложен и требует больших математических расчетов, а нередко и просто интуиции.
Сегодня только большой опыт людей является критерием при раскрое материала на заготовки. Ведь заниматься в цехе “математикой” часто просто нет времени, и приходится угадывать, какое количество заготовок получится из оставшегося материала, как до минимума свести его отходы.
На заводе-автомате, как я уже говорил, этим станет заниматься скорее всего третья ЭВМ. Она же будет подбирать и необходимые материалы, инструменты. Если чего-то на заводе не окажется, она же сама выдаст заказ на завод-поставщик или на центральную базу снабжения. Кстати, эта же машина отправит на ремонт испортившихся роботов, заменив их на время другими, со склада. Думаю, что ремонт таких автоматов будет идти централизованно, в специально созданных мастерских.
Когда все сырье, материалы, инструменты будут получены и доставлены в цехи, машина, отвечающая за производство, включит механизмы, и они один за другим начнут работать, а роботы будут послушно передавать детали с одной операции на другую.
Заготовки пойдут от станка к станку, с линии на линию, из цеха в цех, приобретая все более законченный вид.
Наконец роботы-сборщики соединят отдельные узлы и детали в машину.
Для наглядности рассказанного возьмем, к примеру, завод, выпускающий автомобили. Допустим, пришел заказ – нужна машина с окраской номер 5 (это код определенного цвета), внешней отделкой номер 7, внутренней облицовкой номер 2, радиоприемником второго класса и так далее. Специальное устройство наносит эти данные на магнитную карту, которая крепится к шасси, и электронная машина рассчитывает, в какой момент производства и какой из станков с программным управлением должен выпустить определенную, отличающуюся от других деталь. Она же рассчитывает, в какой момент и к какому месту конвейера эта деталь должна быть подана.
Вот шасси пришло туда, где на нем крепится мотор. Считывающее устройство знакомится с записью на магнитной карте и, узнав, какой двигатель необходимо установить, крепит именно его (к этому времени он уже подан другим конвейером). То же самое происходит и там, где на шасси крепится корпус, производится отделка и все остальное. В конце концов из сборочного цеха выходит автомобиль, отвечающий индивидуальным требованиям заказчика.
Подобным способом можно выпустить не только автомобили, но и телевизоры, холодильники, стиральные машины, станки…
Но вот готовая продукция попадает на контролирующие установки, которыми распоряжается еще одна ЭВМ.
Контроль качества – дело ответственное и кропотливое. Продукция современного машиностроения состоит из сотен и тысяч деталей, и неполадки в некоторых из них могут сказаться не сразу. Вполне возможно, что самые ответственные и сложные узлы придется проверять еще до того, как они попадут на oкончательную сборку. Но это нисколько не изменит структуру завода завтрашнего дня, о котором я говорю.
Испытания тоже будут программно-управляемыми. На одном и том же стенде пройдут проверку различные агрегаты. Обслуживающий робот для обнаружения неполадок, свойственных лишь данному узлу, в каждом отдельном случае будет поступать по-особому.
– Виктор Михайлович, из рассказанного вами получается, что для управления таким заводом-автоматом необходимо четыре электронно-вычислительные машины. Неужели нельзя создать одну, которая справилась бы со всеми задачами?
– Я говорил о четырех, исходя из сегодняшнего состояния электронновычислительной техники и из убежденности, что подобные заводы-автоматы могли бы появиться уже к концу текущей, девятой пятилетки, хотя, к сожалению, создание таких заводов еще не начато. Но одна ЭВМ четвертого поколения успешно может справляться со всей работой по управлению предприятием.
– Какие производства, на ваш взгляд, должны перейти на полную автоматизацию в первую очередь?
– Думаю, сначала надо перевести на автоматизированное производство электронную промышленность. Я это говорю не потому, что я кибернетик и эта проблема касается меня лично.
Дело в том, что как специалист я прекрасно знаю, что стрвить компьютеры старыми методами не только недопустимо, но и просто невозможно.
Хотя машины первого поколения были громоздкими, сложными и работали на десятках тысяч электронных ламп, самих-то типов ламп было всего десятки. Так что сборку можно было вести вручную, и она скорее напоминала составление механизмов из деталей детского конструктора.
Монтировать компьютеры второго поколения оказалось несколько труднее. А вот с машинами третьего и тем более четвертого поколений дело обстоит гораздо сложнее. Попробуйте вручную соединить тысячи маленьких интегральных схем, когда чуть ли не каждая из них непохожа на свою предшественницу.
В этих условиях технология изготовления и проверки интегральных схем должна быть не жесткая, а программно-управляемая. Дело это очень важное. Известно, как велики издержки производства при изготовлении этих схем. Из каждой изготовленной партии нередко удается отобрать всего несколько с безупречными характеристиками. По мере же усложнения схем труднее становятся и их испытания: для схемы, например, из 60 элементов с 14 “концами” надо произвести более 150 испытаний; если в схеме будут сотни элементе”, то несколько тысяч. Все это и означает, что для производства и проверки больших интегральных схем нужна такая технологическая линия, которая сможет с высокой производительностью изготовлять различные большие интегральные схемы.
ЛЕЧИТ… КОМПЬЮТЕР
– Виктор Михайлович, сегодня на страницах научно-популярных журналов часто встречаются описания неких “электронных врачей”, то есть компьютеров, которые в считанные минуты ставят диагноз, назначают лечение, “работают” сиделками и т. Д. Я не сомневаюсь, что почти все из того, что пишут на эту тему, – правда. Расскажите, пожалуйста, каким будет в недалеком будущем труд врача и какова будет судьба медицинских институтов и молодежи, поступающей в них.
– Действительно, несмотря на то, что в некоторых статьях, рассказывающих о внедрении кибернетики в медицинскую практику, нередко желаемое выдают за действительное, электронно-вычислительная техника уже сегодня прочно заняла место во многих больницах и клиниках мира.
Но речь идет опять же не о замене врача машиной, а об их совместной работе. Помощь же эта бывает очень существенной.
В связи с этим мне хочется еще раз повторить, что кибернетика не ставила и не ставит своей целью подменить другие науки. Она просто проникает в них, предоставляя им принципиально новый метод исследования – метод математического моделирования, математического эксперимента, пригодный для всех наук, в том числе и описательных, какой считалась до недавнего времени и медицина. Однако оказалось, что с математикой у нее очень много общего.
Вся жизнедеятельность организма – это постоянная работа его органов, параметры которой вполне можно выражать математическим языком.
Человек – это сложный механизм, состоящий из 200 простейших машин и 1027 атомов. Во время движения он развивает мощность, равную 0,1 лошадиной силы. Его сердце перекачивает в одну минуту около 5 литров крови, капля которой содержит около 5 миллионов красных кровяных телец.
Тело выдерживает огромное давление воздуха – около 20 тонн, – которое уравновешивается таким же изнутри. Примерно пол-литра воздуха забираем мы при вдохе, тогда как общая емкость легких равна примерно 4 литрам. Почки человека пропускают в течение суток 1700 литров крови, а из 14 миллиардов нейронов его нервной системы целесообразно используются всего лишь 4 процента.
В течение одной секунды наш организм расходует 1021 квант энергии.
Если попытаться определить его работоспособность, то придется констатировать, что человек – устройство с довольно низким КПД: средний работник в течение 8 часов выполняет работу, равную 280 тысячам килограммометров. Если сопоставить ее с электроэнергией, то стоимость ее будет равняться… 4 копейкам.
Такова примерная математическая картина человека. Теперь – попробуем составить его кибернетическую картину. Для этого сначала проведем структуризацию, то есть выделим отдельные крупные элементы организма человека. Их окажется не так уж мало – не менее 10 тысяч. Это органы, железы, системы регуляции и т. д.
Потом установим параметры каждой из этих систем. Они, естественно, будут весьма различны, и не всегда их можно выразить числом: например, слизистая кишок может быть нормальной, средней, угнетенной и т. д., и поставить в соответствии с этими определениями какиелибо числа не так-то просто.
Затем попытаемся представить характер общения человека с внешней средой. Здесь и тип гимнастики, которой он занимается (или не занимается) каждое утро (или регулярно), и определенный вид спорта, которым он увлекается, и тип его работы с указанием доли физической нагрузки и доли умственного труда. Оценить все это можно по десятибалльной шкале.
После этого вводятся в компьютер, так сказать, индивидуальные черты характера человека: холерик он или сангвиник и тому подобное, что также можно выразить с помощью чисел.
Так из системы всех структур и параметров получается индивидуальная модель человека. Причем она будет действительно индивидуальной, поскольку не может быть, чтобы все параметры у разных людей совпали; даже близнецы чем-нибудь да отличаются друг от друга.
– Я вижу, какую огромную надо провести работу, чтобы составить модель человека. Но что же дает кибернетика?
– Мы относим человеческий организм к разряду больших систем. И как большой системой – современным предприятием – не может руководить один человек без целого управленческого аппарата, так и один врач не может быть специалистом во всех областях.
Уже давно медицина разделилась на множество направлений. Все возможные процессы, системы и органы человека изучаются узкими специалистами разных наук. И чем больше накапливается знаний, тем глубже и быстрей происходит это разделение.
Врач углубляет свои знания в одной, определенной и нередко очень узкой области. И получается, как говорят, что он “знает все ни о чем”.
Эндокринолог уже не разбирается в нейрофизиологии, хирург-полостник – в операциях на мозге и тому подобное. Но в организме-то все взаимосвязано! И, несмотря на углубление знаний в какой-то одной области, один человек не в силах знать все об организме. Он не может вместить в себя всю богатейшую и разнообразнейшую информацию, содержащуюея в человеческом организме. А для лечения просто необходимо, чтобы у одного врача была целостная картина состояния пациента. Ведь нередко получается, что, скажем, специалист по железам внутренней секреции пришел к определенным выводам и качественно описал влияние этих желез на пищеварение. Предположим, он установил, что при изменении деятельности щитовидной железы в среднем через три месяца происходят определенные изменения в поджелудочной железе, что, э свою очередь, ведет к патологии пищеварения. На этом, к сожалению, цепочка его знаний обрывается. Врач же, изучающий пищеварение, знает, как оно связано с кровеносной системой, с влиянием ее на мозг, но не знает, какие процессы протекают в мозге.
Специалист по мозговой деятельности исследует только процессы мозга и т. д. Как же быть в этих случаях?
Можно, конечно, собирать у постели больного консилиумы специалистов. Но не каждая больвдща укомплектована врачами по всем профилям, а собирать их из других учреждений – дело нелегкое. Кто же решится на обобщение разнообразных сведений, сумеет поставить точный диагноз?
Конечно же, только кибернетика!
Только она сможет собрать и объединить достижения всех наук о человеке и показать отклонения в организме данного человека от нормы.
Но для этого в нее необходимо вложить все знания, добытые человечеством за всю историю существования медицины. Чтобы осуществить это, необходимо зафиксировать все упомянутые выше 100 тысяч параметров.
Три или пять крупных специалистов в каждой области медицины сжато опишут данный параметр, укажут его оптимальное значение, изменения, происходящие с ним, выделят несколько самых показательных ситуаций, вызывающих эти изменения.
Так шаг за шагом будет описан весь человеческий организм. Конечно, кое-где это описание окажется не совсем точным, но это не так уж важно. Нам нужен не какой-то один, определенный человек, а скорее человек абстрактный, вобравший в себя все здоровье и все недуги.
Затем все эти параметры будут разделены на группы. В одни из них войдут параметры, значения которых зависят от самого человека: от его поведения, от работы, которой он занят, от питания, которое он употребляет, и даже от тех лекарств, которые ему приходится время от времени принимать. В другие группы войдут параметры, значения которых совершенно не зависят от человека.
Когда же такое разделение будет закончено, за дело примутся кибернетики. Они внесут все эти сведения о человеке в машину. И она окажется тем универсальным врачом, который сможет установить любой диагноз.
– Но вот они введены в компьютер, и он начинает разбираться во всех человеческих недугах не хуже любого профессора. Как же он действует, помогая врачу установить диагноз?
– К нам обращается человек, который, предположим, собирается ехать на курорт.
Мы тут же выясняем (это я насчет тех 100 тысяч параметров), что в данном случае может произойти с его печенью, слизистой оболочкой, сер-.-лем и так далее в этой новой, несколько изменившейся обстановке.
Ведь, как известно, на организм человека влияет и изменение климатических условий, и те или иные процедуры. То есть мы в каждом таком случае делаем как бы по крошечному шажку в ста тысячах направлений. И когда все это проделано, когда выяснено, как отреагирует каждый из органов данного человека на пребывание на курорте, мы уже можем точно сказать, стоит ему туда ехать или нет. Так же мы можем выяснить, полезно ли больному принимать какое-то лекарство или же этого делать не стоит, следует ли ему в данный момент соглашаться на операцию или же лучше несколько обождать, а может быть, и вовсе отказаться от нее.
Конечно, вы можете заметить, что это можно проделать и без машины, как бывало и раньше. Но обычным способом устанавливать все это бесконечно долго, а нередко и просто невозможно.
Но компьютер ускоряет этот процесс в миллиарды раз. Ведь на проверку одного параметра он затрачивает всего одну десятую секунды. То есть через каких-то 10 минут как бы состоится консилиум с самыми лучшими специалистами, и выясняется, что следует делать, а чего лучше остеречься. Мало того, нередко бывают случаи, что машина не только быстрее, но и гораздо правильнее, чем специалист, ставит диагноз. Сколько раз случалось, что уже во время операции хирург убеждался, что диагноз компьютера оказывался более правильным, чем его.
Все это возможно потому, что кибернетика дает средство– собрать все множество фактов вместе и произвести после этого, так сказать, “мысленный” эксперимент с воображаемым больным организмом. Можно взять описание деятельности его органов – один в таком-то состоянии, a другой несколько в ином – и получится прогноз в развитии. Кстати говоря, вот именно эту-то возможность прогнозирования и отрицали когда-то противники кибернетики.
– То есть вы хотите сказать, что применение кибернетики в медицине не только оправдано, но и просто необходимо?
– Да, именно так!
– Но тогда получается, что электронно-вычислительные машины надо устанавливать чуть ли не в каждой больнице?
– А почему бы и нет? Вы заболели и пришли в поликлинику на прием к врачу. Сестра в белом халате провожает вас в небольшую комнату и оставляет одного, точнее сказать, не одного, а в обществе компьютера.
Машина начинает задавать вопросы; сначала они ничем не отличаются от тех, что задают вам сегодня в регистратуре обычной поликлиники. Робот спрашивает ваше имя, отчество, фамилию, возраст, пол, место жительства и тому подобное. Потом он переходит к выяснению состояния вашего здоровья, перечисляя болезни.