355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ник Лейн » Лестница жизни. Десять величайших изобретений эволюции » Текст книги (страница 25)
Лестница жизни. Десять величайших изобретений эволюции
  • Текст добавлен: 29 сентября 2016, 06:06

Текст книги "Лестница жизни. Десять величайших изобретений эволюции"


Автор книги: Ник Лейн


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 25 (всего у книги 27 страниц)

Предполагается, что эффект ограничения калорийности связан, по крайней мере отчасти, с работой биохимических путей, управляемых геронтогенами. Здесь действует принцип переключателя: секс или долгожительство. Главная проблема с ограничением калорий состоит в том, что оно ставит этот переключатель на долгожительство, оставляя мало места для компромисса. Но с геронтогенами так получается не всегда. Некоторые мутации в геронтогенах действительно подавляют механизм полового созревания (например, первая открытая мутация в гене age-1 подавляет его на 75 %), но отнюдь не все. Как выяснилось, некоторые мутации в геронтогенах и продлевают жизнь, и сохраняют здоровье, но почти не подавляют сексуальность – слегка отсрочивают, но отнюдь не останавливают ее развитие. Другие могут останавливать половое созревание у молодых животных, но не имеют явных отрицательных последствий у более зрелых. Подробности здесь не важны, а важно то, что у нас имеется возможность изобрести способ отделить секс от долгожительства и активировать гены, ответственные за долгожительство, без губительных последствий для сексуальности.

В последние несколько лет особое внимание к себе привлекли два геронтогена, по-видимому, играющих ключевую роль в механизме действия ограничения калорийности. В этих генах закодированы белки SIRT-1 и TOR. Оба распространены исключительно широко. Они имеются, например, и у дрожжей, и у млекопитающих, и оба оказывают воздействие на продолжительность жизни, активируя целые наборы белков. Оба чувствительны к присутствию или отсутствию питательных веществ или факторов роста, в частности инсулиноподобных, но работа их запускается в противоположных ситуациях[92]92
  Для тех, кто хочет разобраться, как молекула «чувствует» присутствие или отсутствие питательных веществ, поясню, что белок SIRT-1 активируется, если связывается с «использованной» формой дыхательного кофермента НАД, накапливающегося в клетке, когда в ней заканчиваются такие субстраты, как глюкоза. Белок TOR, в свою очередь, чувствителен к окислительно-восстановительному статусу клетки, тоже отражающему наличие питательных веществ, и меняет в зависимости от него свою активность.


[Закрыть]
. Полагают, что TOR управляет переключением на сексуальность – путем стимуляции роста и деления клеток. Он работает путем включения ряда белков, совместная деятельность которых стимулирует синтез белков и клеточный рост, одновременно блокируя расщепление и оборот компонентов клетки. SIRT-1, в свою очередь, оказывает противоположное воздействие на многие из этих процессов, одновременно запуская «стрессовую реакцию», которая укрепляет клетку. Как часто бывает, области действия двух генов перекрываются, но не все аспекты их работы в точности противоположны. Так или иначе, SIRT-1 и TOR служат главными «координационными центрами», ответственными за многие из выгод ограничения калорийности.

SIRT-1 и TOR привлекли к себе особое внимание отчасти потому, что они важны, а отчасти потому, что мы уже знаем, как прицельно влиять на них фармакологическим путем. Учитывая, как высоки здесь ставки, неудивительно, что последний пункт вызвал в научной среде живейшие споры. Леонард Гуаренте из Массачусетского технологического института и бывший сотрудник его лаборатории Дэвид Синклер, теперь работающий в Гарварде, утверждают, что SIRT-1 отвечает за большинство эффектов ограничения калорийности у млекопитающих и что ген, кодирующий этот белок, можно активировать небольшими молекулами содержащегося в красном вине вещества, известного как ресвератрол. Результаты ряда получивших большой резонанс работ, первая из которых была опубликована в журнале «Нейчур» в 2003 году, показали, что ресвератрол может продлевать продолжительность жизни дрожжей, червей и плодовых мушек. Буря всеобщего интереса к ресвератролу началась в ноябре 2006 года, когда Синклер и его коллеги опубликовали в том же журнале еще одну эпохальную работу, в которой было показано, что у страдающих ожирением мышей ресвератрол на треть снижает риск смерти на втором году жизни. Сообщение об этом открытии попало на первую полосу «Нью-Йорк таймс» и вызвало настоящий шквал публикаций в популярных изданиях. Можно было ожидать, что если ресвератрол оказывает подобное действие на ожиревших мышей, таких же млекопитающих, как и мы сами, он должен оказаться чудодейственным средством и для людей. Широко известная польза красного вина лишь подливала масла в огонь, хотя содержание ресвератрола в одном бокале красного вина составляет лишь 0,3 % той дозы, которую получали мыши.

По иронии, недавно этот вывод поставили под сомнение два исследователя, в бытность свою аспирантами тоже работавшие в лаборатории Гуаренте. Брайан Кеннеди и Мэтт Кеберлайн в настоящее время – сотрудники Вашингтонского университета в Сиэтле. Они сами были в числе первых, кто изучал ген, кодирующий белок SIRT-1, и их обеспокоил целый ряд обнаружившихся исключений из предварительно установленных закономерностей.

Кеберлайн и Кеннеди доказывают, что главную роль в эффекте ограничения калорий играет ген белка TOR, проявления работы которого, как они утверждают, шире распространены у разных видов. Вполне возможно, что они правы, учитывая, что области действия TOR и SIRT-1 перекрываются, но не все свойства кодирующих эти белки генов в точности противоположны друг другу. В частности, выключение гена TOR вызывает подавление иммунных и воспалительных реакций, что может быть полезно, потому что у многих возрастных заболеваний есть устойчивая воспалительная составляющая. Ирония ситуации состоит также в том, что сокращение TOR расшифровывается как «мишень рапамицина» (target of rapamycin), и открыт этот ген был в ходе трансплантологических исследований. Рапамицин – один из наиболее действенных иммунодепрессантов, применяемых в настоящее время при пересадке органов, и используется он уже более десятка лет. В отличие от большинства иммунодепрессантов, рапамицин не увеличивает риск развития рака и остеопороза, однако Михаилу Благосклонному, активно доказывавшему, что этот препарат можно с успехом использовать как средство от старения, пока удалось убедить мало кого из исследователей. Интересно будет узнать, действительно ли пациенты, принимающие после пересадки органов рапамицин, меньше страдают от возрастных заболеваний.

С использованием как ресвератрола, так и рапамицина в качестве средств от старения связана и еще одна, более серьезная проблема – широта спектра их действия. Оба вещества управляют активацией и инактивацией десятков, если не сотен, белков и генов. Возможно, в какой-то степени это необходимо, но многие эффекты из этого обширного набора могут оказаться неполезными или необходимыми лишь в случаях непродолжительного голода или стресса, то есть именно там, где эволюция и предписала им действовать. Так, например, выяснилось, что потенциальные эффекты активации гена, кодирующего белок SIRT-1, или инактивации гена, кодирующего белок TOR, включают инсулинорезистентность, диабет, бесплодие и подавление иммунных реакций. Намного предпочтительнее был бы прицельный подход, не сопряженный с таким множеством вероятных побочных эффектов[93]93
  Выше мы отмечали возможность таких побочных эффектов, как рак или дегенеративные заболевания. Мыши, в геном которых внедрен лишний экземпляр гена, кодирующего белок SIRT-1, демонстрируют признаки улучшения здоровья, но не живут дольше прочих и обычно умирают от рака.


[Закрыть]
. Мы знаем, что принципиально это возможно, потому что животные, у которых продолжительность жизни увеличивается путем естественного отбора, не страдают ни от каких побочных эффектов подобного рода. Вопрос в том, какие именно из массы генов, вызываемых к работе действием белков SIRT-1 и TOR, отвечают за продление жизни и подавление возрастных болезней, а также в том, какие именно из происходящих в клетке изменений замедляют процессы старения и можем ли мы прицельно воздействовать на эти изменения.

Точного ответа пока нет, а кроме того, как это часто бывает, создается впечатление, что ответов столько же, сколько исследователей. Одни придают особое значение «стрессовой реакции», вторые – повышению активности ферментов детоксикации, третьи – усилению системы удаления отходов. Вполне возможно, что в каких-то случаях важен каждый из этих механизмов, но их значение у разных видов, судя по всему, различается. Единственное изменение, которое кажется общим для всех, от грибов до людей, касается «электростанций» клетки – митохондрий. Ограничение калорийности пищи почти всегда приводит к увеличению числа митохондрий, а также к повышению устойчивости их мембран к повреждениям и уменьшению утечки сквозь эти мембраны химически активных свободных радикалов – побочных продуктов клеточного дыхания. Эти изменения не только наблюдаются у множества разных организмов, но и прекрасно согласуются с данными, полученными за полстолетия в ходе исследований роли свободных радикалов в старении.

Идея, что свободные радикалы могут быть причиной старения, была высказана еще в 50-х годах, когда Денхам Харман, до этого работавший в области химии свободных радикалов в нефтепромышленной компании, предположил, что эти химически активные частицы кислорода и азота (потерявшие электрон или получившие лишний электрон) могут повреждать важнейшие биологические молекулы, такие как ДНК и белки. Харман доказывал, что такие повреждения могут в конечном счете разрушать клетки, вызывая процесс старения.

За полвека, прошедшие с тех пор, как Харман сформулировал первоначальный вариант своей концепции, многое изменилось, и теперь у нас есть все основания признать эту теорию в ее первоначальном виде ошибочной. Но в уточненном виде она, судя по всему, вполне может быть верна.

Харман еще не знал, да и не мог знать, две вещи. Первое – что свободные радикалы не просто химически активны, но и используются клетками для оптимизации дыхания и подачи сигналов тревоги. Их действие основано примерно на том же принципе, что и система пожарной сигнализации, реагирующая на дым. Свободные радикалы не повреждают белки и ДНК случайным образом, а активируют или инактивируют несколько ключевых сигнальных белков (TOR), которые, в свою очередь, регулируют активность сотен других белков и генов. Теперь, когда мы знаем, что свободнорадикальные сигналы играют важнейшую роль в физиологии клетки, становится понятно, почему антиоксиданты (которые осуществляют ликвидацию свободных радикалов) могут приносить столько же вреда, сколько пользы. Многие, в соответствии с первоначальным предположением Хармана, по-прежнему думают, что антиоксиданты должны замедлять старение и защищать от болезней. Но многочисленные клинические испытания доказали, что этого не происходит. Причина в том, что антиоксиданты мешают работе свободнорадикальных сигналов. Подавление таких сигналов равнозначно выключению пожарной сигнализации. Чтобы этого не происходило, уровень антиоксидантов в крови строго контролируется. Слишком большие дозы антиоксидантов просто выводятся или вообще не усваиваются, так что концентрации этих веществ в организме остаются на примерно постоянном уровне и поддерживают систему свободнорадикальной сигнализации в постоянной готовности.

Вторым фактором, о котором не знал Харман (потому что тот был открыт лишь двадцать пять лет спустя) была запрограммированная клеточная смерть. В большинстве клеток запрограммированная клеточная смерть по-прежнему координируется митохондриями, предки которых два миллиарда лет назад снабдили эукариотические клетки всей нужной аппаратурой. Одним из главных сигналов, приказывающим клетке покончить с собой, служит усиленная утечка свободных радикалов из митохондрий. В ответ клетка включает свой аппарат смерти и самоустраняется, не оставляя никаких следов. Это происходит не в результате предательского накопления молекулярного «мусора», о котором писал Харман, а под жестким контролем системы смерти, уничтожающей улики с безжалостной оперативностью КГБ. Итак, из ключевых положений теории Хармана два (о том, что с возрастом в клетках накапливаются молекулярные повреждения, рано или поздно вызывая разрушительные последствия, и о том, что антиоксиданты должны замедлять их накопление и тем самым продлевать жизнь) просто ошибочны.

И все же, хотя многие детали еще предстоит выяснить, у нас есть основания считать, что в уточненном виде теория Хармана верна. Прежде всего, продолжительность жизни почти у всех видов коррелирует с интенсивностью утечки свободных радикалов из митохондрий[94]94
  Другие предполагавшиеся «часы», как длина теломер (концевых участков хромосом, укорачивающихся при каждом делении клетки), вообще не коррелируют с продолжительностью жизни разных видов. Корреляция не доказывает наличия причинно-следственной связи, но может, по крайней мере, указывать на ее возможность. Отсутствие же корреляции более или менее доказывает и отсутствие причинно-следственной связи. Защищают ли теломеры от рака, не давая клеткам делиться неограниченно, – спорный вопрос, но продолжительность жизни они точно не определяют.


[Закрыть]
. Чем сильнее утечка, тем меньше продолжительность жизни. Интенсивность утечки свободных радикалов в целом зависит от интенсивности обмена веществ, то есть, по сути, от интенсивности поглощения кислорода клетками. Для маленьких животных характерна высокая интенсивность обмена веществ: их клетки поглощают кислород так быстро, как только могут, а сердца колотятся сотни раз в минуту даже в состоянии покоя. Когда интенсивность дыхания так высока, интенсивность утечки свободных радикалов тоже оказывается высокой, а жизнь – быстротечной. Для крупных животных, наоборот, характерна низкая интенсивность метаболизма, проявляющаяся в размеренном сердцебиении и замедленном просачивании свободных радикалов в клетку. И живут они дольше.

Исключения здесь подтверждают правило. Так, многие птицы живут гораздо дольше, чем «должны» бы, исходя из интенсивности их обмена веществ. Например, голуби живут в среднем около тридцати пяти лет – в десять раз дольше крыс, хотя и размеры, и показатели интенсивности обмена веществ у них похожи. Но результаты революционных экспериментов, которые провел в 90-х годах XX века испанский физиолог Густаво Барха из мадридского университета Комплутенсе, показали, что эти различия во многом объясняются именно разницей в интенсивности утечки свободных радикалов. Отношение интенсивности утечки свободных радикалов к интенсивности поглощения кислорода у птиц оказывается почти в десять раз ниже, чем у большинства млекопитающих. Летучие мыши тоже живут непропорционально долго, и утечка свободных радикалов из митохондрий у них, как и у птиц, сравнительно мала. Почему так получается, точно не известно. В своих предыдущих книгах я попытался объяснить этот факт энергетическими потребностями полета. Но как бы там ни было, низкая интенсивность утечки свободных радикалов означает продолжительную жизнь, независимо от интенсивности обмена веществ.

Причем с интенсивностью утечки свободных радикалов коррелирует не только продолжительность жизни, но и сохранение здоровья. Мы уже отмечали, что начало развития возрастных болезней зависит не от хронологического, а от биологического возраста. Люди и крысы страдают одними и теми же возрастными болезнями, но у крыс они начинают развиваться через пару лет жизни, а у людей – через несколько десятилетий. Некоторые дегенеративные заболевания людей и крыс вызваны совершенно одинаковыми мутациями, но во времени начала развития этих заболеваний у крыс и людей всегда наблюдается точно такая же разница. Испорченные гены, которые Медавар связывал со старением и которые занимают столь важное место в современных медицинских исследованиях, проявляются у старых животных под действием чего-то, характеризующего состояние их старых клеток. Алан Райт и его коллеги из Эдинбургского университета показали, что это «что-то» связано с интенсивностью утечки свободных радикалов. Если интенсивность утечки велика, дегенеративные заболевания начинаются быстро, если мала – откладываются или не развиваются вовсе. Например, птицы страдают от немногих возрастных заболеваний, характерных для большинства млекопитающих (за исключением летучих мышей). Вполне правдоподобная гипотеза предполагает, что утечка свободных радикалов приводит к изменению клеток, «состаривая» их, и что именно это измененное состояние приводит к проявлению негативных эффектов генов позднего действия.

Как свободные радикалы меняют состояние клеток в процессе старения? Это почти наверняка происходит за счет их непреднамеренного воздействия на систему сигнализации. Использование свободных радикалов помогает нам поддерживать здоровье, пока мы молоды, но начинает оказывать разрушительное воздействие, когда мы стареем (нечто подобное происходит с некоторыми генами в соответствии с теорией антагонистической плейотропии Джорджа Уильямса). Когда митохондрии начинают изнашиваться, уровень свободных радикалов в клетке начинает медленно повышаться, пока не достигает порогового значения, включая «пожарную сигнализацию», и такое происходит постоянно. Множество генов включаются в бесплодных попытках вернуть состояние в норму, вызывая хроническую, хотя и слабую воспалительную реакцию, характерную для многих болезней, связанных со старостью[95]95
  Имеется в виду не то острое воспаление, которое наблюдается при воспалении ран. Атеросклероз вызывает хроническую воспалительную реакцию на вещества, накапливающиеся в артериальных бляшках, что способствует их дальнейшему образованию. Болезнь Альцгеймера развивается в связи с постоянной воспалительной реакцией на амилоидные бляшки в мозге. При возрастной макулодистрофии происходит, в частности, воспаление мембран сетчатки, приводящее к врастанию в нее новых кровеносных сосудов и развитию слепоты. Я мог бы продолжать и продолжать, описывая диабет, рак, артрит, рассеянный склероз и другие болезни. Общим знаменателем для всех них оказывается слабое хроническое воспаление. Курение способствует развитию таких заболеваний во многом именно потому, что усиливает воспаление. Выключение белка TOR, напротив, вызывает слабое подавление иммунных реакций, что может способствовать ослаблению воспаления.


[Закрыть]
. Это постоянное слабое воспаление приводит к изменению свойств многих других белков и генов, подвергая клетку еще большему стрессу. Я подозреваю, что именно это хроническое воспалительное состояние и вызывает проявление пагубного эффекта генов позднего действия, таких как ApoE4 .

В этой ситуации есть всего два выхода: клетки либо справляются с этим состоянием хронического стресса, либо не справляются. У клеток разных типов это получается с разным успехом, во многом определяемым их «профессией». Лучшим из известных мне примеров мы обязаны новаторским экспериментам фармаколога Сальвадора Монкады из Университетского колледжа Лондона. Монкада показал, что судьба нейронов и их опорных клеток астроцитов диаметрально противоположна. Нейроны полностью зависят от своих митохондрий. Если митохондрии нейрона не справляются с выработкой энергии для удовлетворения его потребностей, запускается аппарат клеточной смерти и нейрон самоликвидируется. В итоге, например, к тому моменту, когда проявляются первые симптомы болезни Альцгеймера, объем мозга уменьшается на четверть. Астроциты умеют обходиться и без митохондрий. Они переключаются на альтернативные источники энергии (так называемое гликолитическое переключение) и становятся почти неуязвимы для механизма запрограммированной клеточной смерти. Этими двумя противоположными исходами и объясняется, почему в старости дегенерация и рак могут идти рука об руку. Если клетки не в состоянии переключиться на альтернативные источники энергии, они умирают, вызывая развитие дегенеративных заболеваний, приводящих к уменьшению тканей и органов и перекладыванию все большей и большей ответственности на оставшиеся клетки. С другой стороны, клетки, которые умеют переключаться на другой режим, так и делают и становятся почти неуязвимыми для механизма клеточной смерти. Подстегиваемые непрекращающимися воспалительными реакциями, они активно делятся, быстро накапливая мутации, освобождающие их от ограничений нормального клеточного цикла, и превращаются в раковые клетки. Нейроны редко образуют опухоли, если вообще их образуют, а вот астроциты грешат этим сравнительно часто[96]96
  Идея гликолитического переключения была впервые высказана Отто Варбургом еще в 40-х годах XX века, но подтвердилась недавно. Как правило, раковыми становятся только те клетки, которые могут обходиться без митохондрий. Главные виновники рака – стволовые клетки, которые слабо зависят от митохондрий и часто бывают задействованы в развитии опухолей. К числу других виновников относятся клетки кожи и легких и белые кровяные тельца, которые тоже относительно независимы от митохондрий и нередко образуют опухоли.


[Закрыть]
.

В свете этих фактов становится понятно, почему ограничение калорийности питания может защищать от возрастных заболеваний, равно как и от самого старения, по крайней мере если начинать себя ограничивать сравнительно рано (до износа митохондрий – то есть в среднем возрасте еще не поздно). Сокращая утечку свободных радикалов, делая митохондриальные мембраны устойчивее к повреждениям и увеличивая число митохондрий, ограничение калорийности, по сути, «переводит стрелки» биологических часов. Тем самым оно «выключает» сотни генов, работа которых связана с воспалением, возвращая эти гены в «моложавую» химическую среду, и одновременно укрепляет клетки, защищая их от запрограммированной смерти. Эта комбинация препятствует развитию и дегенеративных заболеваний, и рака, и замедляет старение. Вполне вероятно, что на самом деле здесь действуют и другие факторы (такие как прямое подавление иммунных реакций, происходящее за счет того, что подавляется TOR), но в принципе большинство выгод ограничения калорийности можно объяснить простым сокращением утечки свободных радикалов. Ограничение калорийности делает нас немного похожими на птиц.

Не так давно были получены интереснейшие данные, указывающие на то, что старение работает именно так. В 1998 году Масаси Танака и его коллеги, работавшие тогда в Международном институте биотехнологии в Гифу, проанализировали судьбы людей, обладавших распространенным вариантом одного участка митохондриальной ДНК (по крайней мере, распространенным в Японии). Этот вариант связан с заменой одной-единственной ДНК-буквы. Результатом такой замены оказывается ничтожное сокращение утечки свободных радикалов, едва регистрируемое в любой конкретный момент, но сохраняющееся на всю жизнь. Однако последствия этого изменения огромны. Танака и его коллеги считывали последовательности букв в митохондриальной ДНК у всех подряд из нескольких сотен пациентов одной больницы. У людей в возрасте примерно до пятидесяти в соотношении обладателей двух типов митохондриальной ДНК – «нормального» и интересующего исследователей – не наблюдалось никаких различий. Но после пятидесяти между теми и другими разверзалась пропасть. К восьмидесяти годам у людей, обладающих исследуемым вариантом митохондриальной ДНК, вдвое меньше шансов по какой-либо причине попасть в больницу. Причем они не попадали в больницу вовсе не потому, что умирали, не достигнув соответствующего возраста. Напротив, Танака обнаружил, что японцы, обладающие исследуемым вариантом ДНК, имели вдвое больше шансов дожить до ста лет, чем обладатели «нормального» варианта. Судя по всему, у обладателей исследуемого варианта вдвое меньше шансов заболеть какими-либо возрастными заболеваниями. Я хочу повторить это еще раз, потому что не знаю ни одного другого столь поразительного медицинского факта: одно крошечное изменение в митохондриях вдвое уменьшает вероятность оказаться в больнице с каким-либо возрастным заболеванием и вдвое увеличивает вероятность дожить до ста лет. Если мы действительно хотим решить прискорбные и удручающе дорогостоящие возрастные проблемы со здоровьем у населения нашей стареющей планеты, ясно, что начинать нужно именно отсюда. Вот уж поистине благая весть!

Я вовсе не хочу преуменьшать серьезность проблем, которые науке еще предстоит решить, или принижать достижения исследователей, сделавших делом всей жизни исследование частностей, связанных с отдельными возрастными болезнями. Без их героических усилий, проливших свет на генетические и биохимические аспекты таких болезней, общая теория была бы невозможна. Тем не менее у нас есть все основания опасаться, что те, кто занимается медицинскими исследованиями, часто оказываются не в курсе эволюционного подхода или просто им не интересуются. Если ничто в биологии не имеет смысла, кроме как в свете эволюции, как утверждал проницательный эволюционист Феодосий Добржанский, то с медициной дела обстоят совсем плохо и современные представления о болезнях – полная бессмыслица. «В наше время люди всему знают цену, но понятия не имеют о подлинной ценности»[97]97
  О. Уайльд, «Портрет Дориана Грея», гл. IV (пер. М. Абкиной). – Прим. пер.


[Закрыть]
. Поколение моих дедушек и бабушек еще могло стоически утешаться тем, что все это – ниспосланные нам испытания, но теперь подобный фатализм в отношении болезней ушел в прошлое и считается, что они просто случаются, и все. Теперь говорят, что человек «борется» с раком или болезнью Альцгеймера, даже если мы знаем, что он неизбежно проиграет в этой борьбе.

Но смерть и болезни не случайны. Они отнюдь не бессмысленны, и, разобравшись в их смысле, мы можем научиться с ними бороться. Смерть – порождение эволюции. Старение – тоже порождение эволюции. Причины их возникновения чисто прагматические. В самом общем смысле старение отличается гибкостью, представляет собой эволюционную переменную, противопоставленную в великой бухгалтерии жизни целому ряду других факторов, таких как половое созревание. За вмешательство в любой из подобных параметров приходится расплачиваться, но плата бывает разной и, по крайней мере в некоторых случаях, она может быть совсем невелика. Существует принципиальная возможность того, что небольшие изменения настроек определенных биохимических путей позволят нам жить дольше и быть здоровее. Скажу даже больше: эволюционная теория свидетельствует о том, что мы можем искоренить болезни, связанные со старостью, если найдем панацею. Лекарство от старости – не миф.

Однако, подозреваю, лекарство, позволяющее «излечить» болезнь Альцгеймера, – все-таки миф. Надо сказать, что ученые, занимающиеся медицинскими исследованиями, не любят слово «излечить», предпочитая выражаться осторожнее, и говорят скорее о лекарствах, помогающих при той или иной болезни, или ослабляющих ее проявления, или задерживающих ее развитие. Я сомневаюсь, что мы сможем когда-либо излечить от болезни Альцгеймера людей, уже достигших «состояния» старости, потому что, пытаясь это сделать, мы пренебрегаем условиями эволюционного договора. Наши усилия напоминают попытки починить протекающую плотину, заделывая образовавшиеся трещины шпатлевкой в надежде, что это остановит разрушение. Примерно то же относится к инсультам, болезням сердца, многим формам рака, и так далее. Нам удалось узнать массу впечатляющих подробностей. Мы знаем, что происходит при многих возрастных заболеваниях вплоть до работы отдельных белков и генов, но за деревьями мы не видим леса. Такие болезни случаются именно в старости. Они представляют собой порождения «старой» внутренней среды организма, и если вмешаться на достаточно раннем этапе жизни, мы можем перенастроить эту среду, сделав ее «молодой» или, по крайней мере, «моложе». Это будет непросто, потому что в договоре прописано множество подробностей, множество пунктов взаимоисключающего выбора. Но я был бы крайне удивлен, если бы, потратив на изучение механизмов, лежащих в основе старения хоть малую долю времени и усилий, выделяемых на медицинские исследования, мы в ближайшие десятилетия не нашли ответ. Ответ, который позволит нам разом излечить все возрастные болезни.

У некоторых людей может вызвать озабоченность этическая сторона увеличения продолжительности жизни, но я подозреваю, что на самом деле здесь может и не возникнуть никаких проблем. Например, дивиденды долгожительства, приносимые ограничением калорийности питания, судя по всему, обратно зависимы от средней продолжительности жизни. У крыс ограничение калорийности увеличивает продолжительность жизни почти вдвое, а у макак-резусов столь существенного увеличения не наблюдается. Исследование макак еще не завершено, но судя по всему, для них выгода от подобной диеты в отношении жизни оказывается скромнее. Однако вполне может быть, что к выгоде в отношении здоровья это не относится. Биохимические изменения, наблюдаемые у сидящих на такой диете макак-резусов, свидетельствуют о том, что в старости они должны меньше страдать от возрастных болезней, даже если продолжительность их жизни увеличится ненамного. Я склонен думать, что надолго сохранить здоровье окажется проще, чем увеличить продолжительность жизни. Если мы сумеем изобрести лекарство от старости, воспроизводящее выгоды ограничения калорийности, но лишенное недостатков подобной диеты, мы, скорее всего, добьемся общего улучшения здоровья и увидим гораздо больше здоровых людей старше ста лет, вроде тех везучих японцев, обладающих особым вариантом митохондриальной ДНК. Но сомневаюсь, что мы увидим людей, доживающих до тысячи или даже до двухсот лет. Добиться этого будет гораздо труднее, даже если мы поставим перед собой такую задачу[98]98
  Как отмечает Густаво Барха, тот факт, что эволюция вполне может на порядок увеличивать продолжительность жизни, означает, что существенное продление жизни человека вполне достижимо, хотя и весьма затруднительно.


[Закрыть]
.

Скорее всего мы никогда не будем жить вечно, да и мало кому из нас это действительно нужно. Проблема здесь была заложена еще в устройстве первых колониальных организмов, у которых возникло разделение клеток на половые и соматические. Когда клетки стали дифференцироваться, интересам зародышевой линии были подчинены интересы всего тела. Чем более узкой становилась специализация клеток, тем выгоднее это было всему организму в целом и зародышевой линии в частности. Самые узко специализированные клетки из всех – это нейроны нашего головного мозга. В отличие от многих более «приземленных» клеток, они фактически незаменимы, и каждая из них может иметь десять тысяч синаптических связей, любая из которых основана на неких конкретных аспектах нашего уникального опыта. Наш мозг нельзя заменить новым. Когда нейроны умирают, для их восполнения обычно не находится фонда соответствующих стволовых клеток, а если когда-нибудь мы и научимся создавать такой фонд, ясно, что за его работу нам придется платить собственным жизненным опытом. Так что ценой бессмертия окажутся наши же человеческие качества.


    Ваша оценка произведения:

Популярные книги за неделю