355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ник Лейн » Лестница жизни. Десять величайших изобретений эволюции » Текст книги (страница 10)
Лестница жизни. Десять величайших изобретений эволюции
  • Текст добавлен: 29 сентября 2016, 06:06

Текст книги "Лестница жизни. Десять величайших изобретений эволюции"


Автор книги: Ник Лейн


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 10 (всего у книги 27 страниц)

Рис. 4.4. «Кольцо жизни». Последний общий предок всего живого располагается внизу, где его потомки разделяются на бактерий (слева) и архей (справа). Представители тех и других вновь сливаются вверху, давая начало химерным организмам – эукариотам.

Применительно к эукариотической клетке Кристиан де Дюв назвал представления первой группы гипотезой «примитивного фагоцита», а второй – гипотезой «судьбоносной встречи». Идея «примитивного фагоцита» соответствует дарвиновской концепции, и среди ее сторонников выделяются оксфордский эволюционист Том Кавалир-Смит и сам Кристиан де Дюв. В основе этой гипотезы лежит предположение, что предки эукариотических клеток постепенно накопили все признаки, свойственные клеткам современных эукариот: ядро, настоящий половой процесс, клеточный скелет и, что самое важное, способность к фагоцитозу, то есть поглощению других клеток путем изменения формы, окружения их, заглатывания и последующего внутреннего переваривания. Единственной чертой, которой, в отличие от клеток современных эукариот, их предполагаемый непосредственный предок, примитивный фагоцит, не обладал, было наличие митохондрий, которые вырабатывают энергию, используя для этого кислород. Вероятно, ему приходилось получать энергию посредством брожения – гораздо менее эффективного процесса.

Но для фагоцита проглотить предков нынешних митохондрий было тривиальной задачей. Что могло быть проще? Более того, если не путем фагоцитоза, то как могла одна клетка оказаться внутри другой? Обладание митохондриями, разумеется, предоставило примитивному фагоциту важное преимущество (они должны были произвести революцию в его способе получения энергии), но не привело ни к каким принципиальным изменениям его устройства. После того как фагоцит обзавелся митохондриями, он по-прежнему остался фагоцитом, хотя теперь у него появилась возможность получать больше энергии. Однако многие гены из порабощенных митохондрий могли постепенно перейти в ядро и встроиться в геном клетки-хозяина и именно этой передачей объясняется, согласно данной гипотезе, химерная природа современных эукариотических клеток. Их бактериальное наследие составляют гены, взятые у митохондрий. Таким образом, сторонники гипотезы примитивного фагоцита не оспаривают химерную природу современных эукариот, но предполагают, что предковой для нынешних эукариот клеткой-хозяином, то есть первой настоящей, хотя и примитивной эукариотической клеткой, был нехимерный фагоцит.

Том Кавалир-Смит еще в начале 80-х годов обратил внимание на группу из тысячи с лишним видов одноклеточных эукариот примитивного облика, у которых отсутствуют митохондрии. Он предположил, что какие-то из них могли дожить до наших дней с тех времен, когда возникли первые эукариотические клетки, и могут быть прямыми потомками того примитивного фагоцита, у которого еще не было митохондрий. Если так то они не должны обнаруживать никаких признаков генетической химерности, поскольку их происхождение было обусловлено чисто дарвиновскими процессами. Но в следующие два десятилетия выяснилось, что все эти организмы – химеры. Получалось, что у предков их всех когда-то были митохондрии, впоследствии утраченные или преобразившиеся во что-то другое. Все без исключения современные эукариотические клетки имеют митохондрии или происходят от предков, у которых имелись митохондрии. Если когда-то и существовал примитивный фагоцит, у которого митохондрий не было, он не оставил прямых потомков. Это не означает, что его никогда не существовало, а просто говорит о том, что его существование остается гипотезой.

Вторая группа теорий происхождения эукариотической клетки равняется на знамя «судьбоносной встречи». Все эти теории предполагают, что в свое время между двумя или несколькими прокариотическими клетками возникла связь того или иного рода, которая привела к формированию сплоченного объединения клеток – химерного организма. Если клетка-хозяин была не фагоцитом, а археей, обладавшей клеточной стенкой, то главный вопрос в том, как другим клеткам вообще удалось проникнуть внутрь? Ведущие сторонники этой идеи, особенно Линн Маргулис и Билл Мартин (с которым мы познакомились в главе 1), указывают на целый ряд возможностей, которые могли к этому привести. Например, Линн Маргулис предположила, что бактерия-хищник могла силой прорываться во внутренности других бактерий (и тому известен ряд примеров). Билл Мартин, напротив, отстаивает идею, что в основе лежала подробно проанализированная им взаимовыгодная метаболическая связь между клетками, каждая из которых обменивалась с другой определенным сырьем[33]33
  Согласно «водородной гипотезе» Билла Мартина и Миклоша Мюллера, в эту связь вступили архея, растущая на водороде и углекислом газе, и бактерия, способная осуществлять, в зависимости от обстоятельств, кислородное дыхание или брожение, производя водород и углекислый газ. Эта разносторонняя бактерия предположительно могла использовать метан, выделяемый археей в качестве отходов. Но я не стану обсуждать здесь эту концепцию – я уже сделал это в своей предыдущей книге «Энергия, секс, самоубийство». Идеи, изложенные на следующих нескольких страницах данной главы, тоже разобраны в той книге более подробно.


[Закрыть]
. Если так, то сложно понять, как одна прокариотическая клетка проникла внутрь другой без помощи фагоцитоза, но Мартин приводит два примера, где у бактерий произошло именно это.

Теории «судьбоносной встречи» можно назвать недарвиновскими в том смысле, что они предполагают не эволюцию путем маленьких изменений, а внезапное возникновение совершенно нового организма. Принципиально здесь также представление о том, что все эукариотические признаки развились в ходе эволюции лишь после «судьбоносной встречи» и последовавшего объединения. Сами объединившиеся клетки были чисто прокариотическими: неспособными к фагоцитозу, лишенными настоящего полового процесса, подвижного клеточного скелета, ядра и прочих атрибутов эукариот. Все эти признаки развились лишь после закрепления возникшего союза. Эти версии подразумевают, что в самом таком союзе было нечто, что преобразовало архиконсервативных, вечно неизменных прокариот в свою прямую противоположность: одержимых быстрой ездой, постоянно меняющихся эукариот.


Рис. 4.5. Бактериальные клетки, живущие внутри других бактериальных клеток. Многочисленные гамма-протеобактерии (пестрые, светло-серые) живут внутри бета-протеобактерий (однотонного темно-серого цвета), которые, в свою очередь, живут внутри эукариотической клетки, пятнистое ядро которой располагается в центре нижней части фотографии.

Как сделать выбор между этими возможностями? Мы уже убедились, что характерные гены эукариот ничем нам не помогут. Мы не можем по ним узнать, эволюционировали ли они дольше четырех миллиардов лет или всего два миллиарда, и возникли ли они до объединения с митохондриями или после него. Даже медленно эволюционирующие гены, для которых имеются соответствующие гены прокариот, не позволяют сделать надежные выводы: все зависит оттого, какие именно гены мы выберем. Например, если взять схему Везе, построенную на основе гена рибосомальной РНК, можно убедиться, что она совместима с моделью примитивного фагоцита: согласно этой схеме эукариоты и архей представляют собой «сестринские» группы, имеющие общего предка: у них как бы была общая «мать». Это означает, что эукариоты не произошли непосредственно от архей, так же как одна сестра не происходит от другой. Общий предок в данном случае почти наверняка относился к прокариотам (если нет, то все архей должны были утратить уже приобретенное их предками ядро), но что-либо еще о нем трудно сказать с уверенностью. Возможно, линия эукариот развилась в примитивного фагоцита еще до того, как обзавелась митохондриями, но имеющимися генетическими данными эта догадка не подтверждается.

Но если мы построим более сложные генеалогические деревья, основанные на большем числе генов, то сестринские отношения между эукариотами и археями начнут разваливаться и получится, что эукариоты действительно произошли от архей. От каких именно архей, точно не известно, но результаты крупнейшего проведенного на настоящий момент исследования (того самого, которое я уже упоминал, где для построения «супердерева» были использованы данные по 5700 генам) указывают, что клетка-хозяин, от которой произошли эукариоты, была настоящей археей, ближайшими современными родственниками которой могут быть термоплазмы. Разница между этими двумя выводами принципиальна. Если клетка-хозяин была настоящей археей (то есть, по определению, прокариотической клеткой, не имевшей ядра, настоящего полового процесса, подвижного скелета и не способной к фагоцитозу), то она, очевидно, не могла быть примитивным фагоцитом. А если так, то должна быть верна гипотеза «судьбоносной встречи»: эукариотическая клетка родилась из союза прокариотических клеток. Никакого примитивного фагоцита никогда не было, и свидетельство его существования оборачивается свидетельством того, что он никогда не существовал.

Но и это еще едва ли окончательный ответ. Очень многое зависит от того, какие именно гены отбираются для анализа и каковы критерии их отбора. Всякий раз, когда такие критерии меняются, меняется и схема ветвления получаемого дерева, причем ситуацию еще больше запутывают статистические допущения, горизонтальный перенос генов между прокариотами и другие неизвестные переменные. Позволят ли новые данные решить эту проблему раз и навсегда, или решить ее генетическими методами просто невозможно – трудно сказать (это было бы биологическим эквивалентом физического принципа неопределенности: чем подробнее мы рассматриваем картину, тем менее четкой она становится). Но если генетические данные не позволяют найти однозначное решение, означает ли это, что мы обречены наблюдать бесконечные перепалки между непримиримыми фракциями ученых? Может, и нет. Вероятно, существует другой способ поставить точку в этом споре.

Все известные эукариотические клетки имеют митохондрии либо происходят от клеток, у которых когда-то имелись митохондрии. И, как ни странно, все митохондрии, по-прежнему функционирующие как митохондрии, то есть вырабатывающие энергию с помощью кислорода, сохранили небольшой набор генов, доставшихся от предков – свободноживущих бактерий. По-моему, именно в этом крошечном митохондриальном геноме кроется разгадка великой тайны происхождения эукариотической клетки.

Ветви эукариот расходятся уже почти два миллиарда лет, и все это время они независимо друг от друга теряли свои митохондриальные гены. Все они утратили от 96 до 99,9 % таких генов, возможно, перенеся большинство из них в клеточное ядро, но никто не лишился всех митохондриальных генов, не лишившись вместе с тем способности использовать кислород для получения энергии. Не похоже, чтобы это было случайностью. Передача митохондриальных генов в ядро – закономерный и упорядоченный процесс. Зачем хранить сотни генетических аванпостов в каждой клетке, когда 99,9 % генов хранятся в единственном экземпляре, плюс резервная копия, в ее ядре? А сохранение хоть каких-нибудь генов в митохондриях означает необходимость сохранить в каждой митохондрии и весь аппарат для записанной на этих генах информации и ее трансляции, то есть синтеза на ее основе активных белков. Такая расточительность вызвала бы неодобрение любого фининспектора, а естественный отбор – святой-покровитель фининспекторов (или, по крайней мере, по праву мог бы считаться таковым).

Дальше – больше. Митохондрии – ужасно неудобное место для хранения генов. Их часто образно называют электростанциями клетки, и эта метафора совершенно точна. На мембранах митохондрий возникает разность электрических зарядов, разделенных расстоянием в несколько миллионных долей миллиметра, и создающееся при этом напряжение сравнимо с тем, что вызывает молнии во время грозы, и раз в тысячу выше, чем напряжение в бытовых электросетях. Хранить там гены – это как хранить ценнейшие книги Британской библиотеки на атомной электростанции сомнительных достоинств. Причем угроза здесь отнюдь не чисто теоретическая. Митохондриальные гены мутируют гораздо быстрее, чем гены, хранящиеся в ядре. Например, у дрожжей (удобного модельного объекта, используемого во многих экспериментах) первые мутируют в десять тысяч раз быстрее вторых. Но, несмотря на все это, принципиально важно, чтобы оба генома (ядерный и митохондриальный) должным образом совместно функционировали. Высоковольтное напряжение, дающее энергию эукариотическим клеткам, генерируется белками, закодированными в обоих геномах. Любой сбой в их совместной работе чреват гибелью – как отдельной клетки, так и многоклеточного организма. Итак, оба генома обязательно должны сотрудничать, вырабатывая энергию. Стоит им не сработаться, и это приведет к смерти, однако митохондриальные гены мутируют в десять тысяч раз быстрее ядерных, что ставит их необходимое тесное сотрудничество на грань невозможного. Это едва ли не самая удивительная особенность эукариотических клеток. Отмахнуться от нее как от обычной странности, как это делают авторы многих учебников, значит упустить потрясающий ключ к разгадке большой тайны. Если бы от всех митохондриальных генов было полезно избавиться, то можно было бы не сомневаться, что естественный отбор давно бы это сделал (хотя бы у одного какого-нибудь вида). Раз этого не произошло, значит, для их сохранения есть причина.

Так зачем клетки сохраняют митохондриальный геном? По мнению такого известного вольнодумца, как Джон Аллен, чьи соображения о происхождении фотосинтеза мы обсуждали в главе 3, ответ прост: для управления дыханием. Никакой другой причины было бы недостаточно. Для разных людей слово «дыхание» означает разное. Для большинства оно подразумевает лишь вдыхание и выдыхание воздуха. Но для биохимиков этот термин относится к тонкостям, сопровождающим дыхание в клетках: к последовательности невидимых глазу реакций, за счет которых молекулы пищи взаимодействуют с кислородом, генерируя в митохондриях напряжение, сравнимое с тем, что вызывает молнии. Я затрудняюсь назвать другой процесс, на который естественный отбор может действовать так же мгновенно и неумолимо, как на дыхание, в том числе и на молекулярном, внутриклеточном уровне. Например, цианиды блокируют именно клеточное дыхание, убивая клетки еще быстрее, чем человека убивает полиэтиленовый мешок, надетый на голову. Даже во время нормальной работы дыхания оно требует постоянной тонкой настройки, «подкручивания» определенных регуляторов, чтобы количество вырабатываемой энергии соответствовало потребностям в ней. Принципиально, по мнению Аллена, здесь то, что подгонка объема вырабатываемой энергии под спрос требует постоянной обратной связи, которая возможна лишь за счет управления активностью генов тут же, на месте, то есть в митохондриях. Точно так же, как тактической дислокацией войск в зоне боевых действий не следует управлять из удаленного центрального штаба, клеточное ядро – неподходящее место для тонкой настройки работы многих сотен функционирующих в клетке митохондрий. Поэтому в митохондриях сохраняется небольшой геном, позволяющий регулировать дыхание, вырабатывая именно столько энергии, сколько требуется.

Справедливость вывода Аллена еще отнюдь не доказана, хотя данные, свидетельствующие в его пользу, продолжают поступать. Если Аллен прав, то некоторые следствия, вытекающие из его концепции, помогают объяснить и особенности эволюции эукариотических клеток. Если для управления дыханием эукариотических клеток просто необходимо поддерживать целый ряд генетических аванпостов, вполне логично предположить, что крупная, сложная клетка вообще не может без них управлять своим дыханием. Представьте себе давление отбора, с которым сталкиваются бактерии и архей. И те, и другие производят АТФ точно так же, как это делают митохондрии: генерируя электрическое напряжение на мембране. Однако прокариоты используют для этого свою наружную клеточную мембрану, что накладывает ограничения на их размеры. Они как бы дышат кожей. Чтобы понять, почему это накладывает ограничения на размеры, представьте себе чистку картофеля. Если нам нужно почистить тонну картофеля, лучше выбирать самые крупные клубни, и тогда количество чищеного картофеля по отношению к количеству кожуры будет больше. И наоборот, если чистить маленькие картофелины, мы получим больше кожуры. Бактерии похожи на картофель, который дышит через кожуру: чем больше бактериальная клетка, тем труднее ей дышать[34]34
  По чисто геометрическим причинам отношение площади поверхности к объему уменьшается с увеличением объема, потому что площадь поверхности возрастает пропорционально квадрату линейных размеров, а объем – кубу. Удвоение линейных размеров увеличивает площадь поверхности вчетверо (2 x 2 = 4), а объем в восемь раз (2 x 2 x 2 = 8). В результате при увеличении размеров клетки уменьшается отношение площади мембраны, используемой для производства энергии, к объему клетки, и энергетическая производительность бактерии падает.


[Закрыть]
.

В принципе, бактерии могли бы обойти эти трудности с дыханием, переведя свои мембраны для генерации энергии внутрь клеток. На практике так иногда и происходит, как мы отмечали выше: у некоторых бактерий действительно имеются внутренние мембраны, отчасти придающие им «эукариотический» вид. Однако они недалеко зашли по этому пути: в «усредненной» эукариотической клетке в сотни раз больше внутренних мембран, с помощью которых вырабатывается энергия, чем в клетках самых энергичных бактерий. Как и в отношении многих других признаков, бактерии недалеко зашли в эукариотическую часть спектра. Почему? Подозреваю, потому, что они не в состоянии успешно управлять дыханием на внутренних мембранах, если их площадь слишком велика. Для этого им пришлось бы «делегировать» на места многочисленные наборы генов, как это делается в эукариотической клетке с ее митохондриями, а устроить это не так-то просто. Все давление отбора на бактерии, заставляющее их быстро делиться и отбрасывать избыточные гены, поддерживая геном минимального размера, препятствует развитию среди них крупных, сложных форм.

Но именно это и требуется для фагоцитоза. Фагоциты должны быть достаточно крупными, чтобы пожирать другие клетки. Кроме того, им нужно немало энергии для передвижения, активного изменения формы и заглатывания жертв. Беда в том, что по мере увеличения размеров бактерии становятся менее энергичными и постепенно теряют возможность тратить энергию на движение и изменение формы. Мне кажется, что крошечная бактерия, прекрасно приспособленная к быстрому размножению, всегда одержит верх над более крупной, энергетически неполноценной, задолго до того, как та сможет обрести в ходе эволюции все атрибуты фагоцита.

В ситуации же, описываемой гипотезой «судьбоносной встречи», все могло быть по-другому. Здесь клетки двух разных прокариот могли сосуществовать друг с другом в метаболической гармонии, оказывая друг другу взаимовыгодные услуги. Среди прокариот симбиотические отношения такого рода настолько обычны, что их можно считать скорее правилом, чем исключением. Гораздо реже ученые регистрируют физическое поглощение одного партнера другим. Когда это происходит, вся сложная клетка, включающая теперь и оказавшиеся внутри нее бактерии, может эволюционировать как единое целое. Участники симбиоза продолжают обслуживать друг друга, но все их избыточные качества постепенно теряются, пока у оказавшихся внутри бактерий не остается почти никаких функций, кроме работы на клетку-хозяина, то есть выработки энергии – в случае бактерий, ставших митохондриями.

Огромное преимущество, которое дают митохондрии, и причина, по которой митохондрии вообще позволили эукариотической клетке эволюционировать, заключается в том, что они дали ей готовую систему внутренних энергетических мембран наряду с «аванпостами» генов, необходимых для локального управления дыханием. Лишь когда клетка-хозяин обзавелась митохондриями, она смогла увеличиться в размерах в достаточной степени, чтобы стать крупным, активным фагоцитом, способным тратить на фагоцитоз достаточно энергии, не делаясь при этом неполноценным. Если так, то примитивный фагоцит, не имевший митохондрий, никогда и не существовал: без митохондрий фагоцитоз просто невозможен[35]35
  Я отстаивал эту точку зрения в лекциях, с которыми выступал по всему миру, и пока не встретил «убийственных» возражений. Самое серьезное возражение выдвинул Кавалир-Смит. Он указал на существование фагоцитоза у некоторых современных эукариотических клеток, не имеющих митохондрий. Но я не думаю, что их существование опровергает тезис о невозможности фагоцитоза без митохондрий, потому что отбор оказывает особенно сильное давление на тех прокариот, которые используют для дыхания наружную мембрану. Когда фагоцит уже сформировался, какие-то из его частей в зависимости от обстоятельств могли уничтожаться (эволюционная редукция – обычное явление, особенно у паразитов). Уже развившемуся фагоциту было намного легче утратить митохондрии в определенных условиях (например, связанных с паразитизмом), чем прокариотической клетке развиться в фагоцита без помощи митохондрий.


[Закрыть]
. Эукариотическая клетка была выкована в союзе двух прокариотических клеток. Этот союз позволил снять ограничения, из-за которых бактерии были вынуждены оставаться бактериями. Когда эти ограничения были сняты, впервые стал возможен новый образ жизни – фагоцитоз. Эукариотическая клетка возникла лишь однажды потому, что союз двух видов прокариот, при котором одна клетка пробирается внутрь другой, возможен крайне редко. Это была поистине судьбоносная встреча. Всем, что нам дорого в жизни, всеми чудесами нашего мира мы обязаны одному-единственному событию, воплотившему собой счастливое сочетание случая и необходимости.

В начале главы я отметил, что мы сможем разобраться в происхождении эукариотической клетки, только когда поймем значение ее главного атрибута – ядра.

Вопросы о происхождении клеточного ядра, да и о происхождении самой эукариотической клетки, вызвали к жизни множество теорий, предполагавших его возникновение как из простых пузырьков клеточной мембраны, так и из целых клеток, поглощенных другими. Но большинство этих идей совершенно не выдерживает критики. Так, многие из них не согласуются с имеющимися данными о строении ядерной мембраны, представляющей собой не сплошную пленку, как наружная мембрана любой клетки, а совокупность пронизанных крупными порами уплощенных пузырьков, неразрывно связанную с другими внутренними мембранами клетки. Иные версии никак не объясняют преимущества, которые клетка с ядром должна была получить по сравнению с клеткой без ядра. Обычный ответ в таком случае гласит, что ядерная мембрана «защищает» гены, но здесь сразу же напрашивается вопрос: от чего защищает? От кражи? От вандализма? Если наличие ядра дает клетке какие-то универсальные преимущества, которым благоприятствует естественный отбор, то почему ни у одной бактерии так и не развилось ядро? У некоторых из них, как мы убедились, имеются внутренние мембраны, на основе которых оно могло бы возникнуть.


Рис. 4.6. Строение ядерной оболочки, неразрывно связанной с внутренними мембранами клетки (а именно – с эндоплазматической сетью). Ядерная мембрана образована путем слияния показанных здесь уплощенных пузырьков. Она совсем не похожа по строению на наружную мембрану ни одной клетки, а значит, ядро едва ли произошло от поселившейся внутри клетки-хозяина другой клетки.

Надежных данных на этот счет у нас мало, но мне хотелось бы изложить еще одну блистательную гипотезу, предложенную двумя проницательными учеными, с которыми мы познакомились в главе 2: Биллом Мартином и Евгением Куниным. У этой идеи два огромных достоинства. Во-первых, она объясняет, почему ядро должно было развиться как раз в химерной клетке, а именно – в клетке полуархеи-полубактерии (от нее, согласно наиболее правдоподобной теории, произошли эукариотические клетки). Во-вторых, она объясняет, почему ядро почти любой эукариотической клетки должно быть наполнено ничего не кодирующей ДНК – совсем не такой, как в клетках бактерий. Даже если эта идея ошибочна, она, по-моему, по крайней мере соответствует правильному направлению поисков. К тому же она поднимает вопрос о серьезной проблеме, с которой должны были столкнуться первые эукариоты. Это одна из тех догадок, которые придают науке оттенок волшебства, и я надеюсь, что она верна.

Мартин и Кунин обратились к странному устройству эукариотических генов, «разбитых на кусочки». Открытие такого их строения было одним из самых больших сюрпризов, преподнесенных биологами в XX веке. В отличие от бактериальных генов, выстроенных как по линейке, эукариотические гены состоят из отдельных фрагментов, разделенных длинными некодирующими последовательностями. Эти некодирующие последовательности называют интронами (introns, от англ. ingragenic regions – внутригенные участки), и их эволюционная история лишь недавно стала проясняться.

Хотя между интронами немало различий, теперь известно, что у них имеются некоторые общие черты, выдающие их общее происхождение от одной из разновидностей «прыгающих» генов (транспозонов), способных заражать геном, реплицируясь с бешеной скоростью, то есть ведя себя как настоящие эгоистичные гены. Фокус довольно прост: когда «прыгающий» ген считывается на РНК (обычно в составе более длин ной последовательности), он самопроизвольно сворачивается, образуя структуру, работающую как РНК-«ножницы», и вырезает себя из цепочки, в состав которой он входил. После этого на его матрице синтезируются многочисленные ДНК-копии Эти новые отрезки ДНК, точные копии эгоистичного оригинала встраиваются обратно в геном более или менее случайным об разом. Существует много типов «прыгающих» генов, но все они представляют собой своеобразные вариации на одну и ту же тему. Их поразительный эволюционный успех красноречиво подтверждают результаты проекта «Геном человека» и других масштабных проектов по прочтению геномов. Почти половина человеческого генома состоит из «прыгающих» генов или их испорченных (мутировавших) остатков. В среднем в любой человеческий ген встроено три «прыгающих» гена, «живых» или «мертвых».

Мертвый «прыгающий» ген (испортившийся настолько, что он больше не может прыгать) еще хуже «живого»: этот, по крайней мере, вырезает сам себя из РНК, не принося существенного вреда, а «мертвый» просто загораживает дорогу. Раз он не может сам себя вырезать, зараженной клетке нужно что-то с ним делать, иначе кодируемая им последовательность аминокислот будет встроена в белок и вызовет страшную неразбериху. Эукариотические клетки еще на раннем этапе своей эволюции изобрели способ вырезать из своих матричных РНК нежелательные участки. Интересно, что для этого они просто позаимствовали РНК-«ножницы» у одного из «прыгающих» генов и заключили их в белковую упаковку. Все современные эукариоты, от растений и грибов до животных, пользуются этими древними ножницами для вырезания некодирующих участков ДНК. Мы наблюдаем замечательную картину. Эукариотические геномы пересыпаны интронами, происходящими из эгоистичных «прыгающих» генов, и всякий раз, когда с ДНК считывается ген, эти интроны вырезаются из матричной РНК с помощью РНК-«ножниц», которые, в свою очередь, украдены у самих же «прыгающих» генов. И проблема, и причина, по которой все это имеет непосредственное отношение к происхождению ядра, в том, что эти древние «ножницы» режут довольно медленно.

Прокариоты в целом не склонны терпеть у себя в геноме «прыгающие» гены и интроны. Гены прокариот не отделены от аппарата синтеза белков. В силу отсутствия ядра прокариотические устройства для синтеза белков (рибосомы) плавают там же, где и ДНК. Гены считываются на матричные РНК, которые немедленно транслируются в белки. Беда в том, что синтез белков на рибосомах идет исключительно быстро, в то время как РНК-«ножницы», вырезающие интроны, работают медленно. К тому времени, как ножницы вырежут интрон, на матрице содержащей его РНК уже будет синтезировано несколько испорченных молекул белка, включающих закодированную в интроне последовательность аминокислот. Как именно бактерии избавляются от «прыгающих» генов и интронов, пока неизвестно (возможно, за это отвечает очищающий отбор в больших бактериальных популяциях), но факт остается фактом: им это удается. Большинству бактерий удалось избавиться почти от всех «прыгающих» генов и интронов, хотя у некоторых бактерий, в том числе у предков митохондрий, имелось небольшое их число. Но и у тех бактерий, у которых они есть, их всего тридцать или сорок на геном, в то время как в любом эукариотическом геноме их тысячи или даже миллионы.

Химерный предок эукариот, судя по всему, подвергся вторжению «прыгающих» генов, которыми он заразился от собственных митохондрий. Мы знаем об этом, поскольку «прыгающие» гены эукариот похожи по строению на немногие «прыгающие» гены, известные у бактерий. Мало того: большинство интронов расположено в одних и тех же участках генов у разных современных эукариот, от амебы до чертополоха, от мухи или гриба до человека. «Прыгающие» гены, из которых возникли эти интроны, предположительно заразили еще общего предка всех эукариот, расплодились в его геноме и, наконец, «умерли», застолбив себе место. Но почему эти гены так разошлись в древнейших эукариотических клетках? Одно из возможных объяснений таково. Бактериальные «прыгающие» гены уже скакали по хромосомам клетки-хозяина, археи, которая, видимо, ничего не смогла с ними поделать. Другое объяснение гласит, что первоначальная популяция химерных клеток оказалась слишком мала, чтобы ей помог очищающий отбор, успешно устраняющий дефекты в крупных бактериальных популяциях.

Как бы то ни было, перед древнейшими эукариотами стояла особая проблема. Они были заражены интронами, которые должны были часто портить белки, потому что РНК-«ножницы» не могли вырезать их достаточно быстро. Хотя такое положение дел не обязательно приводило к гибели клетки (испорченные молекулы белков постепенно расщеплялись, а «ножницы», как ни медленно они работали, рано или поздно все-таки делали свое дело, перекраивая матричную РНК так, что на ее основе начинали синтезироваться функциональные белки), в таких клетках, должно быть, царила ужасная неразбериха. Но за решением этой проблемы несчастным клеткам не пришлось далеко ходить. По мнению Мартина и Кунина, самый простой способ восстановить порядок и вернуться к постоянному синтезу функциональных белков состоял в том, чтобы дать «ножницам» достаточно времени на устранение лишнего и после этого позволять рибосомам начинать синтез белков. Иными словами, требовалось сделать так, чтобы матричные РНК, содержащие интроны, вначале шли под «ножницы» и лишь затем передавались рибосомам. Такого разделения двух процессов во времени можно добиться просто за счет разделения их в пространстве, удалив рибосомы из окрестностей ДНК. Но как? С помощью мембраны с большими дырками! Для этого достаточно было взять имевшуюся мембрану, поместить в нее гены и проследить, чтобы в ней было достаточно пор для пропускания матричных РНК к рибосомам. Таким образом, определяющая особенность всех эукариот – наличие ядра – появилась, по Мартину и Кунину, вовсе не для защиты генов, а для изоляции их от расположенных в цитоплазме фабрик белкового синтеза.

Это решение может показаться слишком уж незамысловатым (хотя для успешной эволюции это только к лучшему), однако оно сразу дало изобретательным клеткам целый ряд преимуществ. Когда «прыгающие» гены перестали представлять опасность, получившиеся из них интроны оказались даже благом. Один из их плюсов состоял в том, что они позволили по-новому перекраивать гены, обеспечивая клетки целым калейдоскопом белков, чем эукариоты не преминули воспользоваться, и теперь одну из важнейших особенностей работы их генов составляют альтернативные способы вырезания интронов. Если ген содержит несколько кодирующих участков, из него можно по-разному вырезать интроны, получая из одного гена целый набор родственных белков. В человеческом геноме лишь около двадцати пяти тысяч генов, но их кусочки перетасовываются так, что позволяют синтезировать не менее шестидесяти тысяч разных белков, а это уже немало. Если бактерии – неисправимые консерваторы, то эукариоты, благодаря интронам, стали неутомимыми экспериментаторами.


    Ваша оценка произведения:

Популярные книги за неделю