355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ник Лейн » Лестница жизни. Десять величайших изобретений эволюции » Текст книги (страница 15)
Лестница жизни. Десять величайших изобретений эволюции
  • Текст добавлен: 29 сентября 2016, 06:06

Текст книги "Лестница жизни. Десять величайших изобретений эволюции"


Автор книги: Ник Лейн


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 15 (всего у книги 27 страниц)

Все это обеспечивается нанотехнологиями столь сложными, что мы еще только начали в них разбираться, и все же, несмотря на всю странность этого города будущего, его инфраструктура на удивление похожа на инфраструктуру бесчисленного множества других подобных городов. Клетка, внутренности которой я описал, могла оказаться одной из клеток вашего собственного организма, но с тем же успехом могла быть и клеткой растения, или гриба, или одноклеточного простейшего, плавающего в пруду возле дома. Миру клеток свойственно изумительное единообразие, создающее глубокое ощущение взаимосвязанности и братства живой природы. С точки зрения клетки вы представляете собой лишь очередную вариацию на тему плана строения, еще один способ построить нечто замечательное из похожих кирпичиков. Но каких кирпичиков! У всех эукариот (организмов, состоящих из сложных клеток, наделенных ядром; см. главу 4) каждый из таких кирпичиков выглядит как процветающий мегаполис, в отличие от гораздо проще устроенных клеток бактерий. И в немалой степени эта разница определяется богатствами цитоскелета и постоянно осуществляемой им транспортировки, благодаря которой содержимое клетки непрерывно развозится по ее внутренностям. Без этого неиссякаемого транспортного потока клеточный город не смог бы существовать, как не смогли бы существовать и наши прекрасные города без их оживленных магистралей.

Весь внутриклеточный транспорт осуществляется с помощью белковых моторов. Первый из них – миозин, скользящий вдоль актиновых нитей точно так же, как он делает это в мышцах. А дальше начинаются вариации. В мышцах миозиновые головки почти постоянно отделены от актиновых нитей. Если бы они не были отделены, а оставались связанными, это физически мешало бы другим головкам совершать взмахи. Такая система была бы похожа на лодку, гребцы которой отказываются поднимать весла из воды. В мышцах механизм с отделенными большую часть времени миозиновыми головками прекрасно работает, потому что сплетенные друг с другом длинные хвосты, на которых закреплены эти головки, удерживают их рядом с актиновыми нитями. Но с актиновыми проводами, пересекающими клетку вдоль и поперек, осуществлять работу подобного механизма было бы гораздо сложнее. Как только двигательные головки отделялись бы от актиновой нити, их начинало бы дергать из стороны в сторону, и им трудно было бы вновь ухватиться за провод (хотя в ряде случаев миозиновые головки все же удерживаются возле актиновых проводов за счет электрических взаимодействий).

Лучшим решением этой проблемы будет «процессивный» двигатель, остающийся прикрепленным к актину и в то же время каким-то образом марширующий вдоль актиновой нити, как уличная процессия. Именно это мы и наблюдаем. Несколько небольших изменений в структуре миозина делают из него как раз такой процессивный двигатель, способный перемещаться вдоль актиновой нити, все время за нее держась. Какие это изменения? Одно из них – удлинение шейки. Вспомните, что в мышцах две миозиновые головки торчат рядом, прочно соединенные друг с другом хвостами и шейками, но в остальном, судя по всему, не особенно координируют свою работу. Стоит немного удлинить шейки, и взаимозависимость головок еще ослабнет. Это позволит одной головке оставаться прикрепленной, пока вторая совершает взмах, в результате чего миозиновый двигатель сможет перемещаться вдоль провода, перебирая «руками»[49]49
  На самом деле эти изменения, разумеется, происходили в обратную сторону: из процессивных двигателей в ходе эволюции развились миозиновые нити мышц, а не наоборот. Возможно, именно поэтому каждая молекула миозина в мышцах по-прежнему имеет две головки, хотя между их работой и не наблюдается полезной координации.


[Закрыть]
. Другие варианты предполагают соединение трех или даже четырех головок. Также, разумеется, нужно избавиться от хвостов, чтобы миозиновые головки не торчали из толстой нити, а могли свободно «расхаживать» по клетке. И, наконец, к двигательным головкам нужно прикреплять другие предметы. Это происходит за счет «соединительных» белков, каждый из которых соответствует какой-то одной разновидности груза. В итоге мы получаем целое племя процессивных двигателей, способных по актиновым путям развозить грузы в клетке во всех направлениях.

Как возник этот великий парад двигательных белков? В мире бактерий и близко нет ничего подобного. При этом актин и миозин – не единственный двигательный «дуэт» в эукариотических клетках. У двигательных белков другого семейства, так называемых кинезинов, принцип работы примерно такой же, как у миозинов: они тоже перемещаются по проводам цитоскелета, перебирая «руками». Но кинезины пользуются при этом не актиновыми нитями, а проводами большего калибра – так называемыми микротрубочками, собираемыми из субъединиц еще одного белка – тубулина. Одна из многих функций кинезинов состоит в том, что во время деления клеток они обеспечивают расхождение хромосом к полюсам по веретену из микротрубочек. Существуют и другие разновидности двигательных белков, но мы не будем их разбирать, чтобы не завязнуть в избыточных подробностях.

Для всех этих двигательных белков, как и для их путеводных проводов, известны бактериальные прототипы, хотя родственные связи между теми и другими далеко не всегда очевидны, а бактериальные белки обычно выполняют совсем другую работу[50]50
  Многие бактерии тоже могут двигаться, используя для этого жгутик, который сильно отличается от любых структур эукариотических клеток. По сути, он представляет собой жесткий штопор, вращающийся вокруг своей оси за счет белкового мотора. Бактериальный жгутик часто пытаются выдать за пример «неупрощаемой сложности», но этот пример был так подробно и убедительно опровергнут в других работах, что я не стану его здесь обсуждать. Если вам интересно больше узнать о бактериальном жгутике, обязательно прочитайте книгу «Расплетенный жгутик», которую написал Кен Миллер, выдающийся биохимик и «бич Божий» для сторонников концепции «разумного замысла», а кроме того, воцерковленный католик. Он не видит никаких противоречий между верой в Бога и убеждением, что все молекулярные особенности живого объясняются эволюцией. Адептов же «разумного замысла» он объявляет дважды неудачниками: «Наука их не признает, потому что они противоречат фактам, а религию они подводят своим невысоким мнением о Боге».


[Закрыть]
. Здесь тоже помогли методы рентгеноструктурного анализа, позволившие установить родство, которое, может, вообще не удалось бы выявить, пользуясь только генетическими последовательностями.

На уровне подробных генетических последовательностей между двигательными белками двух основных разновидностей, миозинами и кинезинами, нет почти ничего общего. Здесь и там попадаются похожие участки, но долгое время считалось, что такие участки возникли случайно или в результате конвергентной эволюции. Кинезины и миозины и вправду казались классическим примером конвергенции: двумя неродственными группами белков, которые специализировались на выполнении сходных функций и у которых поэтому выработались черты структурного сходства (точно так же, как между крыльями летучих мышей и птиц, возникших независимо и похожих друг на друга оттого, что в них были сходным образом решены одни и те же задачи, связанные с полетом).

Но затем с помощью рентгеноструктурного анализа удалось с атомарным уровнем разрешения установить их трехмерную структуру. Генетическая последовательность дает лишь двумерную последовательность букв – либретто без музыки, – в то время как рентгеноструктурный анализ кристаллов позволяет определить трехмерную форму белка – оперу целиком во всем ее великолепии. Вагнер однажды заметил, что оперная музыка должна вырастать из слов, что слова первичны. Но Вагнера помнят не за одни словесные выражения тевтонских страстей – именно музыка вдохнула жизнь в его произведения, которыми наслаждается уже не одно поколение ценителей. Точно так же и последовательность генов представляет собой Слово природы, но настоящая музыка белков заключена в их форме, и именно она позволяет белкам выживать под давлением естественного отбора. Отбору нет дела до последовательностей генов: его заботят только функции. Хотя гены и определяют функции кодируемых ими белков, они часто делают это именно за счет того, что диктуют форму, в которую белки сворачиваются по правилам, по-прежнему плохо нам понятным. В результате последовательности генов, происходящих от общего предка, могут постепенно расходиться так далеко, что между ними не останется никакого сходства, как и получилось с генами миозинов и кинезинов. Но вырастающая из них музыка белковых шариков никуда не делась, и ее по-прежнему можно выявить с помощью рентгеноструктурного анализа.

Итак, исходя из данных рентгеноструктурного анализа, мы знаем, что миозины и кинезины действительно происходят от одного и того же белка, несмотря на очень слабое сходство кодирующих эти белки генов. Их трехмерное строение обнаруживает множество соответствующих друг другу складок и других структур, вплоть до ключевых аминокислот, сохранившихся в одном и том же положении на одних и тех же местах. Это поразительное достижение отбора: он сохранил строение белковых структур и промежутков между ними неизменными в течение миллиардов лет, хотя сам материал этих структур и даже определяющие его последовательности со временем исказились до неузнаваемости. И все эти структуры показывают, что и миозины, и кинезины родственны более многочисленному семейству белков, которые явно происходят от бактериальных предшественников[51]51
  А именно – G-белкам, семейству молекулярных «переключателей», задействованных во внутриклеточной сигнализации. У бактерий есть родственное им семейство белков ГТФаз. Их названия нам здесь не важны, достаточно будет сказать, что бактериальные предшественники миозинов и кинезинов известны.


[Закрыть]
. Эти бактериальные белки выполняли (и по-прежнему выполняют) работу, включающую те или иные движения, требующие приложения физической силы, например переходы из одной конформации в другую, но ни один из них не обеспечивал настоящей подвижности. Таким образом, рентгеноструктурный анализ показывает нам строение «костей» белка, как рентгеновский снимок птичьего крыла демонстрирует строение его скелета. И так же, как строение костей и суставов выдает происхождение крыльев, развившихся из конечностей бескрылых рептилий, строение двигательных белков свидетельствует о том, что они явно произошли от бактериальных белков, способных менять конформацию, но не обладавших настоящей подвижностью.

Рентгеноструктурный анализ позволил сделать удивительные открытия и об эволюции цитоскелета – тех самых протянутых по всей клетке актиновых и тубулиновых проводов. Можно задаться вопросом, зачем клетке понадобилось вырабатывать целую сеть таких проводов – скоростных магистралей для двигательных белков, когда в ней еще не было самих этих двигательных белков. Не означало ли это, что эволюция поставила телегу впереди лошади? Нет, если цитоскелет был ценен сам по себе. Ценность цитоскелета определяется его структурными свойствами. Форма всех эукариотических клеток, от длинных и тонких нервных клеток до плоских клеток эндотелия, поддерживается именно нитями цитоскелета, и оказывается, что примерно то же самое относится и к бактериям. Многие поколения биологов приписывали многочисленные формы бактериальных клеток (палочковидную, спиралевидную, серповидную и так далее) окружающей эти клетки жесткой клеточной стенке. Поэтому, когда в середине 90-х годов XX века выяснилось, что у бактерий тоже есть цитоскелет, это стало большой неожиданностью. Бактериальный цитоскелет состоит из тонких нитей, очень похожих на актиновые и тубулиновые. Как мы теперь знаем, эти нити отвечают за поддержание сложной формы бактериальных клеток. (Мутации в генах цитоскелета приводят к тому, что обладающие сложной формой бактериальные клетки превращаются в простые шарики.)

Как и в случае с двигательными белками, генетическое сходство между белками бактериального и эукариотического цитоскелетов невелико. Но сходство их трехмерного строения, установленное лет десять назад с помощью рентгеноструктурного анализа, оказалось еще сильнее, чем у двигательных белков. По сути, бактериальные и эукариотические цитоскелетные белки почти точно накладываются друг на друга, так что одни и те же структуры и промежутки, а также несколько одинаковых ключевых аминокислот полностью совпадают. Ясно, что цитоскелет эукариотических клеток развился из бактериального. При этом эукариотические белки сохранили не только форму, но и функции далеких предшественников. И те, и другие играют общую структурную роль, но в обоих случаях цитоскелет способен на нечто большее, чем обеспечение неподвижной опоры. В отличие от нашего жесткого костного скелета клеточный скелет всегда динамичен, непрерывно меняется и перестраивается, непостоянен и всеобъемлющ, как грозовые облака. Он позволяет прикладывать силу, передвигая хромосомы, разделяя клетки пополам в ходе их удвоения, а также (по крайней мере, у эукариот) формировать наружные выросты и без помощи двигательных белков. Короче говоря, цитоскелет уже сам по себе обладает подвижностью. Как такое могло получиться?

Как актиновые, так и тубулиновые нити состоят из белковых субъединиц, собирающихся в длинные цепочки – полимеры. Эта способность к полимеризации не так уж удивительна: в конце концов, пластмассы тоже представляют собой полимеры, состоящие из субъединиц, образующих длинные молекулярные цепочки. Необычно в цитоскелете то, что его структура находится в состоянии динамического равновесия – переменчивого баланса присоединяющихся и отпадающих субъединиц, полимеризации и деполимеризации. В результате цитоскелет вечно перестраивается, надстраиваясь и снова разбираясь. Однако «строительные блоки» цитоскелета могут присоединяться к другим только с одного конца цепочки (как детали конструктора «Лего», или – это, может быть, точнее, – как воланы, вложенные один в другой), а отделяться – только с другого. Это и дает цитоскелету возможность создавать механическую силу. И вот почему.

Если скорость добавления субъединиц на одном конце цепочки равна скорости их отделения на другом конце, то полимерная цепочка в целом сохраняет постоянную длину. В этом случае кажется, что она движется в направлении того конца, к которому добавляются субъединицы. Если на пути такой цепочки оказывается тот или иной предмет, она может физически двигать его вперед. В действительности его при этом двигает не сама цепочка. Этот предмет толкают беспорядочные молекулярные силы, но каждый раз, когда между ним и растущим концом цепочки образуется небольшой промежуток, туда может протиснуться и пристроиться к цепочке еще одна субъединица. Тем самым рост цепочки не дает предмету двигаться назад, а беспорядочные толчки двигают его вперед.

Самый наглядный пример работы этого механизма, вероятно, наблюдается при некоторых бактериальных инфекциях, возбудители которых нарушают сборку цитоскелета. Например, листерии, которые могут вызывать менингит у новорожденных, выделяют два или три белка, вместе подчиняющие себе работу цитоскелета зараженной клетки. Это позволяет бактериям активно двигаться внутри клетки за счет актиновых «комет», собирающихся и разбирающихся за ними. Полагают, что сходный процесс происходит и в клетках самих бактерий, помогая им отделять друг от друга хромосомы и плазмиды (маленькие кольцевые молекулы ДНК) в ходе клеточного деления. Причем нечто похожее происходит и у амеб (а также в некоторых клетках нашей собственной иммунной системы, таких как макрофаги). Клеточные выросты (ложноножки) образуются за счет динамичной сборки и разборки актиновых нитей. Ни в каких сложных двигательных белках просто нет нужды.

Работа динамичного цитоскелета может показаться очень сложной, но биохимик Тим Митчисон из Гарварда утверждает, что это отнюдь не так. В основе этого явления лежат самопроизвольные физические процессы, которые происходят и без особой эволюции. Белки, не играющие вообще никакой структурной роли, могут сами по себе внезапно полимеризоваться, образовывая скелетные структуры, способные к приложению силы, после чего так же быстро разбираться, возвращаясь в исходное состояние. Такое поведение может показаться пугающим. Оно и правда обычно не приводит ни к чему хорошему. Например, при серповидноклеточной анемии, если уровень кислорода падает, то особая форма гемоглобина внезапно поляризуется, образуя своего рода каркас. Этот каркас и придает красным кровяным тельцам серповидную форму, давшую болезни ее название, то есть прикладывает силу и совершает движения. Когда уровень кислорода вновь повышается, этот аномальный цитоскелет разбирается (также самопроизвольно) и красные кровяные тельца опять обретают нормальную дискоидальную форму. Хотя возникающий при этом цитоскелет и не делает ничего хорошего, это настоящий динамичный цитоскелет, способный к приложению физической силы[52]52
  Еще более неприятный пример касается губкообразной энцефалопатии крупного рогатого скота (коровье бешенство). Эту инфекционную болезнь вызывают прионы – особые белки, которые могут действовать как инфекционные частицы. Попав в организм, они меняют структуру его собственных соответствующих белков, полимеризующихся, образуя длинные фибриллы – иными словами, своего рода цитоскелет. Раньше прионы считались просто патогенами, но недавние исследования указывают на то, что прионоподобные белки могут играть определенную роль в формировании в мозге синапсов, обеспечивающих сохранение долговременной памяти.


[Закрыть]
.

Что-то подобное, должно быть, произошло в очень давние времена и с нормальным цитоскелетом. Субъединицы актина и тубулина происходят от обычных белков, выполняющих в клетке другие функции. Несколько несложных изменений в их структуре, подобных тем, что приводят к образованию аномальной формы гемоглобина, позволили им спонтанно собираться в нити. Однако, в отличие от изменений в гемоглобине при серповидноклеточной анемии, эти изменения должны были сразу оказаться полезными для клетки, поскольку их поддержал естественный отбор. Их польза могла быть и непрямой и даже не связанной с движением. В конце концов, ведь и мутацию, вызывающую серповидноклеточную анемию, естественный отбор поддерживает в тех регионах, где распространена малярия, поскольку обладание единственной копией мутантного гена защищает от этого недуга. Несмотря на то, что аномальный гемоглобин вызывает длительные болезненные приступы (серповидные клетки негибки и закупоривают капилляры), естественный отбор сохранил самопроизвольную сборку вредного цитоскелета, потому что у нее есть ценный, хотя и непрямой побочный эффект – устойчивость к малярии.

Итак, величием подвижности, от его простейших начал до прославленной силы скелетных мышц, мы обязаны горстке белков и бесконечным вариациям на тему механизма их работы. Задача, которую нам еще предстоит решить, состоит в том, чтобы разобраться во всех этих изумительных вариациях и найти исходную тему, тот простой хорал, с которого все началось. Поиски этого «хорала» составляют одно из самых увлекательных и дискуссионных направлений современных исследований, ведь его напевала еще праматерь всех эукариотических клеток, по-видимому, около двух миллиардов лет назад, и отголоски столь давних аккордов теперь не так-то просто расслышать. Как именно древнейшая эукариотическая клетка обрела подвижность, точно неизвестно. Мы не знаем, сыграло ли здесь ключевую роль сотрудничество (симбиоз) между клетками, что долгое время доказывала Линн Маргулис, или же клеточный скелет развился из генов, уже имевшихся у клетки-хозяина. Вероятно, мы сможем пролить больше света на эту проблему, когда отгадаем несколько интересных загадок. Например, у бактерий хромосомы расходятся при делении клетки с помощью актиновых нитей, в то время как перешнуровка, разделяющая материнскую клетку на две дочерние, осуществляется с помощью тубулиновых микротрубочек. При делении эукариотических клеток все происходит наоборот. Здесь «строительные леса» веретена деления, по которым хромосомы расходятся в разные стороны, построены из микротрубочек, а шнуровка, разделяющая клетку, состоит из актина. Когда мы узнаем, как и почему эти белки поменялись ролями, мы получим лучшее представление об истории жизни на Земле.

Но все эти серьезные проблемы, стоящие перед исследователями, на самом деле относятся лишь к деталям общей схемы, которая в целом теперь ясна. Мы знаем, из каких белков возникли белки цитоскелета и двигательные белки, и для обобщенной схемы не так уж важно, достались они эукариотам от симбиотической бактерии или от клетки-хозяина. Обе возможности вполне правдоподобны, и когда мы узнаем ответ на этот вопрос, он в любом случае не пошатнет оснований современной биологии. Один факт не вызывает сомнений. Если когда-то и существовали эукариоты, не способные передвигаться, не имевшие динамичного цитоскелета и двигательных белков, этих источников механической силы, теперь их уже не найти: все они давным-давно вымерли. Предок всех современных эукариот обладал подвижностью, которая предположительно давала ему большие преимущества. Поэтому вполне возможно, что расцвет подвижных организмов не только навсегда изменил степень сложности экосистем, но и способствовал в свое время изменению облика нашей планеты и превращению ее из простого мира, где правили бактерии, в тот богатый и изумительный мир, который мы знаем сейчас.

Глава 7. Зрение

Зрение – явление редкое. Глаза, по крайней мере, в общепринятом смысле, отсутствуют у растений, а также у грибов, водорослей и бактерий. Даже среди животных глазами обладают далеко не все. Царство животных делят на тридцать восемь типов, каждому из которых свойственна собственная модель плана строения, принципиально отличная от других, но лишь шесть из этих типов обзавелись настоящими глазами. Остальные продержались не одну сотню миллионов лет, вообще не пользуясь выгодами зрения. И естественный отбор не покарал их за слепоту.

Но на этом спартанском фоне эволюционные выгоды глаз все же смотрятся внушительно. Типы животных далеко не равны, и некоторые из них гораздо «равнее» других. Например, тип хордовые, к которому относимся и мы сами, а также все остальные позвоночные, включает более сорока тысяч видов. Тип моллюски, включающий слизняков, улиток и осьминогов, включает сто тысяч видов. А тип членистоногие, в который входят ракообразные, пауки и насекомые, включает более миллиона видов (80 % описанных к настоящему времени животных). При этом многие не столь известные типы, в том числе такие живые диковинки, как стеклянные губки, коловратки, черви-приапулиды и гребневики (в основном знакомые только профессиональным зоологам), включают сравнительно мало видов – десятки или сотни, – а тип пластинчатые – всего один. Если рассмотреть все глазастые и все безглазые виды вместе взятые, мы увидим, что у 95 % видов животных имеются глаза: те немногие типы, которые все-таки приобрели глаза, с большим отрывом доминируют в современном мире.

Разумеется, их преобладание могло бы быть простой случайностью. Можно предположить, что планы строения этих видов обладают и другими, не столь явными преимуществами, неучтенными нами и не имеющими никакого отношения к глазам. Но это представляется маловероятным. Судя по всему, появление и развитие настоящих глаз, не только способных отличать свет от тьмы, но и давших их обладателям пространственное зрение, действительно преобразило всю эволюцию жизни на Земле. Древнейшие настоящие глаза появляются в палеонтологической летописи довольно резко, около 540 миллионов лет назад, вскоре после начала «кембрийского взрыва», этого Большого взрыва эволюции, когда численность и разнообразие ископаемых поразительно резко увеличиваются. В то время в породах, где прежде сотни миллионов лет не сохранялось почти никаких следов животных, чуть ли не в одночасье появляются представители почти всех современных типов.

Изобретение глаз почти наверняка не случайно совпало с взрывом разнообразия животных в палеонтологической летописи, потому что пространственное зрение должно было поставить отношения между хищниками и жертвами на совершенно другую основу. Оно одно вполне могло стать (и, возможно, стало) причиной пристрастия кембрийских животных к тяжелым «доспехам», сильно увеличившим вероятность успешного захоронения. Биолог Эндрю Паркер из лондонского Музея естественной истории в своей занимательной, хотя местами досадно пристрастной книге правдоподобно обосновал версию, согласно которой именно появление настоящих глаз и вызвало «кембрийский взрыв». Действительно ли глаза могли возникнуть в ходе эволюции так резко (или же здесь палеонтологическая летопись вводит нас в заблуждение), мы обсудим позже. А сейчас давайте просто отметим, что зрение дает намного больше информации об окружающем мире, чем в принципе могут дать обоняние, слух или осязание, потому что Земля залита светом и остаться незамеченным почти невозможно. Многие из самых замечательных адаптаций в живой природе представляют собой реакцию на возможность быть увиденным. Одни из таких адаптаций способствуют половому размножению, как перья павлина или лепестки цветка, другие выставляют напоказ внушительные латы, как выросты на спине стегозавра, третьи помогают прятаться, как форма тела и окраска палочников. Наше общество придает зрению настолько большое значение, что едва ли есть смысл доказывать здесь его важность.

Проблема эволюции зрения не только важна в связи с его практической пользой, но и имеет культовый статус, связанный с предполагаемым совершенством глаз. Уже во времена Дарвина глаза называли одной из вершин творения, ставящих под сомнение саму концепцию естественного отбора. Могли такой сложный, такой совершенный орган действительно развиться в ходе эволюции без чьей-либо помощи? Критики спрашивали, какая может быть польза от половины глаза. Естественный отбор предполагает, что развитие любой структуры включает тысячи и тысячи постепенных переходов, каждый из которых должен делать организм хоть немного лучше. В противном случае недостроенная структура будет безжалостно уничтожена. Но глаз, по словам таких критиков, совершенен как часы и точно так же неупрощаем. Стоит вынуть несколько деталей, и весь механизм перестанет работать. Часы без стрелок бесполезны, как бесполезен и глаз без хрусталика или сетчатки, – такое утверждение нам часто приходится слышать. А если половина глаза бесполезна, значит, глаз не мог развиться путем естественного отбора или каким-либо другим известным современной биологии способом и должен быть признан доказательством высшего замысла.

Те, кто приводит подобные аргументы, обычно защищают с их помощью давно укрепленные позиции. Сторонники Дарвина возражают на это, что глаз на самом деле далеко не совершенен, и это прекрасно известно всем, кто носит очки или контактные линзы либо вообще теряет зрение. Это действительно так, но это наблюдение уязвимо как теоретический аргумент, потому что здесь не учитываются многие тонкости. Возьмем, например, человеческий глаз. Распространенный аргумент гласит, что в его строении есть принципиальные недостатки, которые на самом деле нужно признать как раз доказательством того, что он кустарно сработан эволюцией из неподходящих, непродуманных структур и испорчен отсутствием у нее дара предвидения. Сторонники этого взгляда утверждают, что профессиональный инженер спроектировал бы глаз гораздо лучше и, более того, что глаз осьминога спроектирован гораздо лучше глаза человека. Но эти поверхностные рассуждения не учитывают одного неудобного правила, которое называют вторым законом Лесли Оргела: эволюция умнее нас.

Давайте коротко обсудим этот случай. Глаз осьминога очень похож на наш и тоже устроен по принципу фотоаппарата: одна линза объектива (хрусталик) впереди и одна светочувствительная поверхность (сетчатка), соответствующая фотопленке, сзади. Поскольку наш последний общий предок с осьминогами был, по-видимому, той или иной формой червя и не имел настоящих глаз, глаза осьминогов и наши собственные глаза должны были развиться независимо, и их сходство обусловлено тем, что эволюция нашла с их помощью похожие решения одной и той же задачи. Этот вывод подтверждают и результаты детального сравнения двух обсуждаемых типов глаз. Глаза человека и осьминога развиваются у зародышей из разных тканей и отличаются по микроскопическому строению. На первый взгляд глаз осьминога устроен гораздо разумнее. Светочувствительные клетки сетчатки смотрят в сторону света, а отходящие от них нервные провода ведут прямо в мозг. Наша же сетчатка, как нередко говорят, включена в сеть не с той стороны, и ее устройство кажется совершенно бредовым. Светочувствительные клетки в ней смотрят как раз в противоположную сторону и покрыты нервными проводами, вначале почему-то идущими в сторону света и только после, кружным путем, приводящими в мозг. Чтобы достичь светочувствительных клеток, свет должен вначале пробираться через лес этих проводов. Более того, все эти провода собраны в пучок, пронзающий сетчатку и образующий зрительный нерв, в результате чего на сетчатке имеется слепое пятно[53]53
  Одним из немногих хоть сколько-нибудь прославившихся выпускников моей школы был один молодой человек, впоследствии ставший рулевым в команде Кембриджа на состязаниях по гребле с Оксфордом. Лодка под его управлением врезалась прямо в баржу и затонула, к глубокому неудовольствию всей команды. Впоследствии он объяснял, что не заметил баржу, потому что она «попала в слепое пятно».


[Закрыть]
.

Но не стоит спешить признавать превосходство глаз осьминогов над нашими. Как часто и бывает в биологии, на самом деле ситуация гораздо сложнее. Провода у нас в глазах бесцветны, поэтому не особенно препятствуют прохождению света, да и даже препятствуя ему, могут служить «волноводами», направляя свет вертикально на светочувствительные клетки и тем самым оптимизируя использование попадающих в глаза фотонов. Кроме того (что, может, еще важнее), у нас есть то преимущество, что наши светочувствительные клетки непосредственно окружены «клетками поддержки» (пигментным эпителием сетчатки), к которым напрямую подходят кровеносные сосуды, обеспечивающие обильное кровоснабжение. Такое устройство позволяет поддерживать постоянный оборот светочувствительных пигментов. Человеческая сетчатка на единицу массы потребляет даже больше кислорода, чем головной мозг. Это самая энергоемкая структура во всем организме, так что подобная организация ее кровоснабжения необычайно ценна. Вероятнее всего, глаз осьминога не смог бы поддерживать столь же интенсивный обмен веществ в сетчатке. Но ему, наверное, это и не нужно. Живя под водой, куда попадает не так уж много света, осьминоги вполне обходятся без такого быстрого, как у нас, оборота светочувствительных пигментов.

Я хочу сказать, что любое биологическое устройство имеет свои достоинства и недостатки и возникает под действием уравновешивающих друг друга сил отбора, которые не всегда просто установить. В том-то и заключается проблема «очевидных» эволюционных объяснений: нам почти неизменно видна лишь половина картины. Аргументы, слишком концептуальные по своей природе, всегда уязвимы для контраргументов. Как и всякий ученый, я предпочитаю следовать фактам. Следует сказать, что бурное развитие молекулярной генетики за последние десятилетия привело к тому, что в нашем распоряжении оказалась масса фактов, дающих вполне конкретные ответы на конкретные вопросы. Из них складывается весьма убедительная картина эволюции глаза и его происхождения, как ни странно, от структур нашего очень далекого зеленого предка. В настоящей главе мы рассмотрим эту картину и увидим, чем полезна половина глаза, как возникли хрусталики и откуда взялись светочувствительные клетки сетчатки. А разобравшись во всем этом, мы убедимся, что изобретение глаза действительно изменило ход и скорость эволюции жизни.

К вопросу, какая может быть польза от половины глаза, легко отнестись насмешливо, уточнив, от какой половины: левой или правой. Я могу понять язвительный ответ Ричарда Докинза: от половины глаза может быть на 1 % больше пользы, чем от 49 % глаза. Но если мы хотим ясно представить себе, что такое половина глаза, 49 % глаза нас только запутают. И все же половина глаза, понятая в буквальном смысле, дает нам очень хороший подход к интересующей нас проблеме. Глаз действительно отчетливо делится на две половины: переднюю и заднюю. Любому, кому доводилось бывать на конференциях офтальмологов, известно, что есть два больших клана: работающие с передними структурами глаза (делающие операции на хрусталике и роговице и лечащие бельмо и катаракту) и занимающиеся задними структурами глаза (сетчаткой), лечащие такие часто приводящие к слепоте расстройства, как макулодистрофия. Представители этих кланов взаимодействуют друг с другом неохотно и порой говорят чуть ли не на разных языках. Но это разделение вполне оправданно. Если убрать из глаза все оптические аксессуары, от него останется только голая сетчатка – ничем не покрытый светочувствительный слой. И именно эта голая сетчатка и послужила фундаментом для эволюции глаз.


    Ваша оценка произведения:

Популярные книги за неделю