355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Эрл Гейтс » Введение в электронику » Текст книги (страница 8)
Введение в электронику
  • Текст добавлен: 18 октября 2017, 01:00

Текст книги "Введение в электронику"


Автор книги: Эрл Гейтс


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 8 (всего у книги 26 страниц)

Глава 12. Переменный ток

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Описать получение напряжения переменного тока с помощью генератора переменного тока.

• Дать определения цикла, герца, синусоиды, периода и частоты.

• Описать части генератора переменного тока.

• Дать определения пикового значения, полного размаха колебания и эффективного или среднеквадратичного значения.

• Объяснить соотношение между временем и частотой.

• Описать три основных вида несинусоидальных сигналов.

• Знать, что несинусоидальный сигнал имеет основную частоты и гармоники.

Переменный ток широко используется в настоящее время. В отличие от постоянного тока, который течет только в одном направлении, переменный ток периодически изменяет свое направление. Переменный ток сначала течет в одном направлении, а потом меняет направление и течет в противоположном.

Переменный ток легче генерировать и передавать на большие расстояния. Генераторы переменного тока проще и более экономичны в работе. Напряжение переменного тока может быть увеличено или уменьшено с помощью трансформатора с очень малой потерей мощности. Кроме того, переменный ток легко преобразуется в постоянный.

Переменный ток можно использовать для передачи информации из одного пункта в другой по линиям передачи, а также преобразовать в электромагнитные волны и передавать и принимать с помощью антенных систем.

В этой главе описываются способы производства и важные электрические характеристики переменного тока.


12-1. ПОЛУЧЕНИЕ ПЕРЕМЕННОГО ТОКА

Генератор переменного тока преобразует механическую энергию в электрическую. Генератор переменного тока вырабатывает переменное напряжение, используя принципы электромагнитной индукции. Электромагнитная индукция – это процесс индуцирования напряжения в проводнике, движущемся в магнитном поле.

Как описано в главе 9, правило левой руки для генераторов может быть использовано для определения направления тока в проводнике, который перемещается в магнитном поле: когда большой палец указывает направление движения проводника, а указательный (расположенный под прямым углом к большому) указывает направление магнитных силовых линий от севера к югу, то средний палец (расположенный под прямым углом к двум другим) укажет направление тока в проводнике. Максимальное напряжение индуцируется, когда проводник движется перпендикулярно силовым линиям. Если же проводник перемещается параллельно силовым линиям, напряжение не индуцируется.

На рис. 12-1 показана рамка, вращающаяся в магнитном поле.


Рис. 12-1. Генератор переменного тока, индуцирующий выходное напряжение.

В положении А рамка (т. е. ее горизонтальные проводники) перемещается параллельно силовым линиям, и напряжение при этом не индуцируется. Повернувшись в положение Б, рамка при движении пересекает максимальное число магнитных силовых линий и, следовательно, индуцируется максимальное напряжение. При перемещении рамки в положение В количество пересекаемых силовых линий уменьшается, и индуцированное напряжение уменьшается также. Поворот рамки из положения А в положение В представляет собой поворот на 180 градусов. Перемещение рамки в положение Г приводит к возникновению тока противоположного направления. Как и в предыдущем случае, максимальное напряжение индуцируется, когда плоскость рамки находится под прямым углом к силовым линиям. При возвращении рамки в исходное положение Д индуцируемое напряжение падает до нуля.

Каждый раз, когда рамка генератора переменного тока делает полный оборот, говорят о завершении одного цикла. Величина выходного напряжения за время одного цикла возвращается к исходному значению. Время, в течение которого совершается полный цикл, называется периодом.

Аналогично, генератор вырабатывает в замкнутой цепи выходной ток, имеющий периодическую форму. Каждую половину периода происходит изменение полярности напряжения (рис. 12-2).


Рис. 12-2. Каждый цикл состоит из чередования положительных и отрицательных значений величин.

Напряжение имеет одну полярность в течение половины цикла (периода) и противоположную полярность в течение следующей половины цикла (периода). В первую половину периода вырабатывается напряжение положительной полярности, во вторую половину периода вырабатывается напряжение отрицательной полярности. Один цикл в секунду определяется как герц.

Вращающаяся рамка называется якорем. Напряжение переменного тока, индуцируемое во вращающемся якоре, снимается с концов рамки с помощью скользящих контактов, расположенных с двух сторон якоря (рис. 12-3).


Рис. 12-3. Напряжение снимается с якоря генератора переменного тока с помощью токосъемных колец.

Два металлических кольца, называемых токосъемными кольцами, подсоединены к двум концам рамки. Скользящие щетки, прилегающие к токосъемным кольцам, снимают переменное напряжение. На практике генератор переменного тока должен содержать много рамок для увеличения амплитуды индуцируемого напряжения.

Форма вырабатываемого генератором переменного тока напряжения называется синусоидой (рис. 12-4).


Рис. 12-4. Синусоида – основная форма переменного тока.

Синусоида является основной и наиболее широко используемой из всех форм переменного тока. Ее можно получить как механическим, так и электронным методом. И напряжение, и ток изменяются в виде синусоиды.

12-1. Вопросы

1. В чем функция генератора переменного тока?

2. Объясните, как работает генератор переменного тока.

3. Дайте определения следующих терминов:

а. Цикл

б. Период

в. Герц

г. Синусоида

4. Опишите главные части генератора переменного тока.

5. В чем разница между двумя половинами периода?


12-2. ВЕЛИЧИНА ПЕРЕМЕННОГО ТОКА

Каждая точка синусоиды характеризуется двумя параметрами. Один из них – угол, на который повернулся якорь. Второй указывает амплитуду индуцируемой величины. Амплитуда – это максимальное значение переменного тока или синусоиды. Существует несколько методов определения этих значений.

Пиковое значение синусоиды – это наибольшее значение функции в течение периода (рис. 12-5).


Рис. 12-5. Пиковое значение синусоиды – это точка ее наибольшего значения. Пиковое значение может быть как положительным, так и отрицательным.

Существуют два пиковых значения – одно положительное, а другое отрицательное, они равны по абсолютной величине.

Значение полного размаха синусоиды означает вертикальное расстояние между двумя пиковыми значениями (рис. 12-6).


Рис. 12-6. Размах можно определить как сумму абсолютных величин пиковых значений разного знака.

Значение полного размаха можно определить сложением абсолютных значений пиковых величин.

Эффективное значение переменного тока – это такое значение постоянного тока, при котором на данном сопротивлении выделяется столько же тепла, что и при переменном токе. Эффективное значение можно определить, вычислив среднеквадратичное значение, поэтому эффективное значение часто называют среднеквадратичным. Вычисление среднеквадратичного значения показывает, что эффективное значение синусоиды равно 0,707 от пикового значения. Когда указывается значение переменного тока или напряжения без каких-либо уточнений, предполагается, что это эффективное значение. Большинство измерительных приборов проградуировано в эффективных значениях тока или напряжения.

Еэфф = 0,707∙Емакс

где Еэфф – эффективное значение напряжения, Емакс – максимальное или амплитудное значение напряжения.

Iэфф = 0,707∙Iмакс

где Iэфф – эффективное значение тока, Iмакс – максимальное или амплитудное значение тока.

ПРИМЕР: Синусоида тока имеет максимальное (пиковое) значение 10 ампер. Чему равно эффективное значение?

Дано:

Iмакс = 10 А 

Iэфф =? 

Решение:

Iэфф =0,707∙Iмакс =(0,707)(10)

Iэфф =7,07 А

ПРИМЕР: Синусоида напряжения имеет эффективное значение 40 вольт. Чему равно максимальное (пиковое) значение синусоиды?

Дано:

Eэфф = 40 В 

Eмакс =? 

Решение:

Еэфф = 0,707∙Емакс

40 = 0,707∙Емакс

Eмакс = 56,58 В

Время, требуемое для завершения одного цикла синусоиды называется периодом. Период обычно измеряется в секундах. Для обозначения периода используется буква t.

Количество циклов, совершаемых за заданный промежуток времени называется частотой. Частота синусоиды переменного тока обычно выражается в количестве циклов за секунду. Единицей частоты является герц. Один герц равен одному циклу в секунду.

Период синусоиды обратно пропорционален ее частоте.

Чем выше частота, тем короче период. Соотношение между частотой и периодом синусоиды выражается следующими формулами:

f = 1/t;

t = 1/f

где f – частота, a t – период.

ПРИМЕР: Чему равна частота синусоиды с периодом 0,05 секунд?

Дано:

t = 0,05 сек

f =?

Решение:

f = 1/t = 1/0,05

f = 20 Гц

ПРИМЕР: Если синусоида имеет частоту 60 герц, то чему равен ее период?

Дано:

f = 60 Гц

t =?

Решение:

t = 1/f = 1/60

t = 0,0167 с или 16,7 мс.

12-2. Вопросы

1. Дайте определения следующих величин:

а. Пиковое (максимальное) значение;

б. Размах синусоиды;

в. Эффективное значение;

г. Среднеквадратичное значение.

2. Синусоида напряжения имеет пиковое значение 125 вольт. Чему равно эффективное значение?

3. Каково соотношение между временем и частотой?

4. Синусоида тока имеет эффективное значение 10 ампер. Чему равно ее пиковое значение?

5. Чему равен период синусоиды с частотой 400 герц?


12-3. НЕСИНУСОИДАЛЬНЫЕ КОЛЕБАНИЯ

В большинстве случаев форма переменного тока бывает синусоидальной. Однако в электронике используются не только синусоидальные колебания. Колебания, форма которых отличается от синусоиды, называются несинусоидальными периодическими колебаниями. Несинусоидальные колебания генерируются специальными электронными цепями.

На рисунках 12-7, 12-8 и 12-9 изображены три основных вида несинусоидальных колебаний. Они могут представлять и ток, и напряжение. На рис. 12-7 изображены прямоугольные колебания, названные так потому, что положительные и отрицательные прямоугольные импульсы чередуются. Это указывает на то, что ток или напряжение мгновенно достигают максимального значения и остаются такими в течение половины периода. Когда полярность изменяется, ток или напряжение мгновенно достигают противоположного пикового значения и остаются неизменными до конца следующей половины периода. Ширина импульса равна половине периода. Ширина импульса – это отрезок времени, в течение которого напряжение имеет свое пиковое или максимальное значение. Прямоугольное колебание очень полезно как электронный сигнал, так как его характеристики могут быть легко изменены.


Рис. 12-7. Колебание прямоугольной формы.

На рис. 12-8 показан один период колебания треугольной формы. В течение первой половины периода сигнал возрастает по линейному закону от нуля до пикового значения, а затем опять уменьшается до нуля. В течение второй половины периода сигнал продолжает уменьшаться по линейному закону в отрицательном направлении до пикового значения, а после этого опять возрастает до нуля.

Треугольные колебания используются главным образом как электронные сигналы.


Рис. 12-8. Колебание треугольной формы

На рис. 12-9 показаны пилообразные колебания. Пилообразное колебание – это частный случай треугольного колебания. Сначала величина напряжения или тока возрастает по линейному закону, а после этого быстро падает до своего отрицательного пикового значения. Участок с положительным наклоном имеет относительно большую длительность и меньший по абсолютной величине угол наклона к оси времени, чем короткий участок. Пилообразные сигналы используются для переключения операций в электронных цепях. В телевизорах и осциллографах они используются для развертки электронного луча по экрану для создания изображения.

Импульсные колебания и другие несинусоидальные сигналы могут описываться двумя способами. Один метод рассматривает несинусоидальные сигналы как сумму скачкообразных изменений напряжения, следующих через некоторый интервал времени друг за другом. Второй метод рассматривает сигнал как алгебраическую сумму бесконечного числа синусоид, имеющих различные частоты и амплитуды. Этот метод полезен при расчете усилителей. Если усилитель не может пропустить все синусоидальные частоты, то он искажает сигнал.

Несинусоидальные сигналы состоят из колебаний основной частоты и гармоник. Основная частота соответствует скорости повторения сигнала. Гармоники являются синусоидами с более высокими частотами, которые кратны основной частоте. Четные гармоники имеют частоты, которые являются произведениями четных чисел и основной частоты. Нечетные гармоники имеют частоты, которые являются произведениями нечетных чисел и основной частоты.

Прямоугольные колебания состоят из колебаний основной частоты и всех нечетных гармоник.

Треугольные колебания также состоят из колебаний основной частоты и всех нечетных гармоник, но, в отличие от прямоугольных колебаний, нечетные гармоники сдвинуты по фазе на 180 градусов относительно колебания основной частоты.

Пилообразные колебания содержат как четные, так и нечетные гармоники. Четные гармоники сдвинуты на 180 градусов по фазе относительно нечетных гармоник.

12-3. Вопросы

1. Что такое несинусоидальные колебания?

2. Нарисуйте два цикла (периода):

а. Прямоугольного колебания;

б. Треугольного колебания;

в. Пилообразного колебания.

3. Где применяются эти несинусоидальные колебания?

4. Опишите основную частоту и гармоники трех различных несинусоидальных колебаний.

РЕЗЮМЕ

• Переменный ток – это наиболее широко используемый в технике тип тока.

• Переменный ток представляет собой ток, текущий сначала в одном направлении, а затем в противоположном.

• Один оборот якоря генератора переменного тока называется циклом.

• Герц – это один цикл в секунду.

• Форма переменного тока, вырабатываемого генератором, называется синусоидой.

• Пиковое значение синусоиды – это наибольшее значение функции за время периода.

• Размах синусоиды – это вертикальное расстояние между пиками противоположного знака.

• Эффективное значение переменного тока – это такое значение постоянного тока, при котором на данном сопротивлении выделяется столько же тепла, что и при переменном токе.

• Эффективное значение можно определить, вычислив среднеквадратичное значение величины.

• Среднеквадратичное значение синусоиды равно 0,707 от пикового:

Еэфф = 0,707∙Емакс

Iэфф = 0,707∙Iмакс

• Время, необходимое для завершения одного цикла синусоиды, называется периодом (t).

• Количество циклов, совершаемых за заданный промежуток времени, называется частотой (f).

• Соотношение между частотой и периодом синусоиды выражается следующей формулой:

f = 1/t

• Прямоугольные колебания состоят из колебаний основной частоты и всех нечетных гармоник.

• Треугольные колебания состоят из колебаний основной частоты и всех нечетных гармоник, сдвинутых по фазе на 180 градусов относительно основной частоты.

• Пилообразные колебания содержат как четные, так и нечетные гармоники. Четные гармоники сдвинуты на 180 градусов по фазе относительно нечетных гармоник.

Глава 12. САМОПРОВЕРКА

1. Что надо сделать для наблюдения электромагнитной индукции?

2. Объясните, как правило левой руки применяется к генераторам переменного тока?

3. Дайте определение полного размаха колебаний.

4. Как определяется эффективное значение переменного тока?

5. Нарисуйте примеры трех несинусоидальных колебаний, которые могут представлять и ток и напряжение.

6. Почему при изучении несинусоидальных колебаний важны гармоники?

Глава 13. Измерения переменного тока

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Перечислить типы измерительных приборов, пригодных для измерений переменного тока.

• Перечислить системы измерительных приборов, используемых для измерений переменного тока.

• Объяснить функции осциллографа.

• Перечислить основные части осциллографа и объяснить их назначение.

• Продемонстрировать правильную установку осциллографа.

• Рассказать, как использовать осциллограф для проведения измерений.

• Объяснить, как работает частотомер.

• Перечислить основные части частотомера.

Измерения силы тока, напряжения, сопротивления, мощности и частоты переменного тока необходимы при работе и ремонте цепей переменного тока и различных устройств.

В этой главе описано наиболее важное тестирующее оборудование, используемое для проведения различных измерений переменного тока.


13-1. ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ ПЕРЕМЕННОГО ТОКА

Приборы с перемещающейся катушкой – это приборы магнитоэлектрической системы. Аналоговый измерительный прибор, изображенный на рис. 13-1 – это прибор с перемещающейся катушкой.


Рис. 13-1. Аналоговый измерительный прибор, используемый для измерений величины переменного тока

Цифровые приборы, показания которых легко читаются (рис. 13-2), в последнее время заменяют аналоговые приборы. Однако большинство школ и предприятий все еще используют аналоговые приборы.


Рис. 13-2. Цифровой измерительный прибор, используемый для измерений величины переменного тока.

Приборы магнитоэлектрической системы рассчитаны на измерение постоянного тока. Для того чтобы с помощью этого прибора измерить переменный ток, его сначала надо преобразовать в постоянный. Это осуществляется с помощью устройства на диодах, которое называется выпрямителем. Процесс преобразования переменного тока в постоянный называется выпрямлением. Выпрямители размещаются между входом прибора и измерительной системой и позволяют протекать току только в одном направлении (рис. 13-3). Выпрямители преобразуют синусоидальный ток в пульсирующий постоянный ток, который поступает на измерительный прибор.


Рис. 13-3. Выпрямители, используемые для преобразования переменного тока в постоянный перед подачей его на измерительный прибор магнитоэлектрической системы.

Измерительный прибор переменного тока второго типа использует перемещение железных лопастей (рис. 13-4).


Рис. 13-4. Измерительный прибор электромагнитной системы, использующий железные лопасти, не требует преобразования переменного тока в постоянный.

Этот прибор называется прибором электромагнитной системы. Он не требует преобразования переменного тока в постоянный и состоит из двух железных лопастей, размещенных внутри катушки. Одна лопасть неподвижна, а другая может вращаться. Стрелка прибора прикреплена к подвижной лопасти и перемещается пропорционально среднеквадратичному значению тока, текущего по катушке.

Магнитное поле катушки индуцирует северный и южный полюсы на железных лопатках. Вследствие того, что одноименные полюсы отталкиваются, а обе лопасти имеют одинаковую полярность, они отталкиваются друг от друга.

Перемещение железной лопасти, соответствующее отклонению стрелки на всю шкалу, требует большего тока, чем для соответствующего перемещения катушки в приборах магнитоэлектрической системы. По этой причине приборы электромагнитной системы редко применяются в цепях со слабыми токами. Приборы электромагнитной системы допускают большую погрешность при измерении переменных токов с частотами свыше 100 герц. Они используются преимущественно на частоте 60 (50) герц.

Работа измерительных клещей (рис. 13-5) основана на том, что переменный ток, протекающий по проводнику, создает магнитное поле, изменяющееся при изменении тока.


Рис. 13-5. Работа измерительных клещей основана на том, что ток, текущий по проводнику, создает вокруг него магнитное поле.

Каждый раз, когда переменный ток изменяет полярность, магнитное поле меняет направление. Измерительные клещи используют трансформатор с размыкающимся сердечником. Это позволяет разомкнуть сердечник и обхватить им проводник. На конце сердечника находится катушка, которую пересекают магнитные силовые линии. Благодаря этому в катушке индуцируется переменное напряжение. Это переменное напряжение должно быть выпрямлено перед подачей на измерительный прибор, обычно магнитоэлектрической системы. Измерительные клещи используются для измерения больших переменных токов. Ток, текущий по проводнику, должен быть достаточно большим для того, чтобы создать достаточно сильное магнитное поле, которое сможет индуцировать ток в катушке измерительных клещей.

Основным назначением приборов для измерения переменного тока является измерение токов. Однако эти приборы могут также использоваться для измерения переменного напряжения и мощности. Поскольку переменный ток периодически меняет свое направление, полярность включения прибора в цепь переменного тока не имеет значения. Однако для измерения тока измерительный прибор должен включаться в цепь последовательно. При измерении напряжения измерительный прибор должен подключаться к цепи параллельно.

Вы всегда должны быть уверены, что измеряемые ток. или напряжение лежат в пределах измерения прибора. Для перестраховки неизменно начинайте измерения с наивысшего предела, а потом переходите на более подходящую шкалу.

13-1. Вопросы

1. Как приборы магнитоэлектрической системы используются для измерения переменного напряжения?

2. Почему приборы электромагнитной системы предпочтительнее для измерения переменных токов и напряжений?

3. Объясните принцип, лежащий в основе работы измерительных клещей.

4. Нарисуйте цепь, показывающую, как надо подсоединять амперметр переменного тока.

5. Опишите правильный способ подключения вольтметра переменного тока к цепи (включая при возможности установки переключателей).


13-2. ОСЦИЛЛОГРАФЫ

Осциллограф является наиболее универсальной частью оборудования, применяемого для работы с электронными цепями (рис. 13-6). Он обеспечивает визуальное отображение того, что происходит в цепи.


Рис. 13-6. Осциллограф является наиболее универсальной частью оборудования, доступного специалисту.

Осциллограф показывает изменение напряжения в электронной цепи как функцию времени и позволяет измерить следующие параметры:

1. Частоту сигнала.

2. Продолжительность сигнала.

3. Фазовые соотношения между сигналами.

4. Форму сигнала.

5. Амплитуду сигнала.

Основными частями осциллографа являются: электронно-лучевая трубка (ЭЛТ), генератор развертки, усилители горизонтального и вертикального отклонения, блок питания (рис. 13-7).


Рис. 13-7. Блок-схема основных частей осциллографа.

Генератор развертки вырабатывает пилообразное напряжение, подаваемое на вход усилителя горизонтального отклонения. Усилители горизонтального и вертикального отклонения увеличивают амплитуду входного напряжения до уровня, способного отклонять электронный пучок в электронно-лучевой трубке. Блок питания обеспечивает постоянное напряжение для работы усилителей и электронно-лучевой трубки.

Электронно-лучевая трубка состоит из трех частей: экрана, покрытого люминофором, отклоняющих пластин и электронной пушки, (рис. 13-8).


Рис. 13-8. Основные части электронно-лучевой трубки (ЭЛТ).

Люминофор, находящийся на экране, испускает свет, когда в него ударяются электроны. Электронная пушка создает пучок электронов, который ударяется об экран. Отклоняющие пластины изменяют направление электронного пучка на пути к экрану.

Горизонтальные отклоняющие пластины соединены с генератором развертки и перемещают электронный пучок вправо и влево, по экрану. Усилитель вертикального отклонения связан с входным сигналом и управляет его амплитудой.

С помощью градуировки в сантиметрах по вертикальной и горизонтальной осям (рис. 13-9), осциллограф можно откалибровать с помощью известного напряжения, перед тем как измерять неизвестный сигнал. После этого при подаче на вход осциллографа неизвестного сигнала его амплитуда может быть измерена. Вместо того, чтобы градуировать лицевую поверхность ЭЛТ, осциллографы снабжают накладными координатными сетками, которые размещаются перед экраном ЭЛТ.


Рис. 13-9. Координатная сетка на экране осциллографа.

Выключатель питания осциллографа обычно расположен на передней панели (рис. 13–10). Это может быть тумблер, кнопка или вращающийся выключатель. Он может быть отдельным или совмещенным с другим переключателем. Его назначение – включать сетевое напряжение для работы осциллографа.



Рис. 13–10. На передней панели осциллографа находятся органы управления.

Регулятор интенсивности (яркости) используется для управления электронным пучком в ЭЛТ. Вращение этого регулятора позволяет отрегулировать электронный пучок для получения желаемой яркости. Предупреждение: устанавливайте яркость как можно более низкой. Слишком большая яркость в течение достаточно долгого времени может нанести повреждения люминофорному покрытию экрана и сделать ЭЛТ непригодной для эксплуатации.

Регуляторы фокусировки и астигматизма связаны с электронной пушкой и используются для настройки размеров и формы электронного пучка до того, как он достигнет отклоняющих пластин. Оба эти регулятора – вращательные. При их вращении электронный пучок постепенно размывается на экране ЭЛТ, и оба регулятора поочередно используются до тех пор, пока на экране не получится идеально круглая четкая точка. На некоторых новых моделях осциллографов ручка управления астигматизмом может быть расположена в углублении ниже передней панели.

Регуляторы управления горизонтальным и вертикальным положением луча также являются вращательными. Они позволяют расположить электронный пучок в любом месте экрана ЭЛТ. Первоначально они устанавливаются так, чтобы электронный пучок развертывался вдоль центра ЭЛТ. После этого с помощью регуляторов можно поместить электронный пучок в удобное для измерения амплитуды и времени положение в соответствии с координатной сеткой.

Блок вертикального отклонения состоит из входного разъема, переключателя постоянного/переменного напряжения и вращательного переключателя пределов вольт/см. Пробник осциллографа соединяется с входным разъемом. Переключатель постоянного/переменного напряжения позволяет посылать сигнал либо прямо на усилитель вертикального отклонения в положении «постоянное» либо на конденсатор в положении «переменное». Конденсатор в положении «переменное» используется для удаления постоянной составляющей из измеряемого сигнала. Переключатель вольт/см используется для установки амплитуды входного сигнала. Если сигнал слишком велик, то вертикальный усилитель искажает его. Если сигнал слишком мал, то он усиливается. Этот регулятор откалиброван в соответствии с координатной сеткой на ЭЛТ. От установки этого регулятора зависит амплитуда сигнала, подаваемого на ЭЛТ.

Блок горизонтального отклонения, управляющий изменением масштаба по оси времени, состоит из вращательного переключателя пределов время/см, переключателя управления запуском и управления уровнем запуска. Переключатель пределов, время/см устанавливает частоту горизонтальной развертки, соответствующей горизонтальной градуировке. На нижнем пределе частота развертки на экране составляет несколько циклов в секунду. С помощью переключателя управления запуском выбирается источник и полярность синхронизирующего сигнала. Источником синхронизации может быть сеть, внутренний или внешний источник. Полярность может быть положительной или отрицательной. Когда в качестве источника синхронизации выбрана сеть, то именно частота тока сети 60 (50) герц оказывается синхронизирующей частотой. Когда источник синхронизации внутренний, то в качестве синхронизирующей частоты используется частота внутреннего генератора. Положение переключателя «внешний» позволяет использовать синхронизирующую частоту внешнего генератора.

Регулятор уровня устанавливает амплитуду синхронизирующего сигнала, которая необходима для запуска генератора развертки. Если регулятор уровня находится в положении «авто» осциллограф работает в свободном режиме. Поворот регулятора уровня приводит к пустому экрану, на котором нет сигнала. Регулятор уровня надо повернуть до положения, когда сигнал на экране осциллографа исчезает, и немного повернуть обратно, чтобы сигнал появился вновь. В этом положении регулятор сигнала устойчивый. Использование управления уровнем синхронизирующего сигнала позволяет синхронизировать генератор развертки с входным сигналом и получить устойчивое изображение на экране ЭЛТ.

Перед использованием осциллограф необходимо проверить, чтобы убедиться в его исправности. Непроверенный прибор может давать неправильные показания. Большинство осциллографов имеют встроенный генератор тестирующего сигнала. Сначала органы управления должны быть установлены в следующие положения:

Яркость, Фокусировка, Астигматизм и Управление положением луча (должны быть установлены в среднее положение).

Синхронизация: внутренняя +.

Уровень: «авто».

Время/см: 1 мсек.

Вольт/см: 0,02.

Питание: вкл.

Пробник осциллографа должен быть подсоединен к разъему источника калиброванного напряжения. На экране осциллографа должны появиться прямоугольные импульсы. Изображение должно быть устойчивым и содержать несколько периодов с амплитудой равной напряжению калибратора. Теперь осциллограф готов к работе.

Для того чтобы использовать осциллограф, установите переключатель вольт/см на высший предел. Подключите на вход осциллографа исследуемый сигнал и поворачивайте переключатель вольт/см до тех пор, пока изображение не займет примерно две трети экрана по высоте. Настройте развертку так, чтобы получилось устойчивое изображение и желаемое количество периодов.

13-2. Вопросы

1. Что можно узнать о колебаниях с помощью осциллографа?

2. Каковы основные части осциллографа?

3. Опишите процедуру настройки осциллографа перед его первым использованием.

4. Как используется осциллограф при работе с электрическими цепями?

5. Для чего нужна координатная сетка на экране осциллографа?


13-3. ЧАСТОТОМЕРЫ

Частотомер (рис. 13–11) измеряет частоту сигнала путем сравнения ее с известной заданной частотой. Все частотомеры состоят из одних и тех же составных частей: генератора меток времени, формирователя входного сигнала, цепи генерации стробирующих импульсов, электронного коммутатора, десятичного счетчика и дисплея (рис. 13–12).


Рис. 13–11. Частотомеры широко используются в ремонтных мастерских и в промышленности.


Рис. 13–12. Блок-схема электронного частотомера.

Формирователь сигнала преобразует входной сигнал в сигнал с такой формой и амплитудой, который совместим с входными цепями счетчика. Электронный коммутатор пропускает сформированный входной сигнал на счетчик, где в то же самое время присутствует сигнал от генератора меток времени. Генератор меток времени возбуждает цепь генерации стробирующих импульсов с помощью сигнала, сравнимого с измеряемым сигналом. Цепь генерации стробирующих импульсов работает как центр синхронизации счетчика. Он управляет открытием и закрытием электронного коммутатора, а также вырабатывает сигнал установки времени индикации и сигнал сброса для начала нового счета. Десятичный счетчик подсчитывает все импульсы, проходящие через электронный коммутатор. Для каждого отображаемого разряда требуется один десятичный счетчик. Дисплей, который обеспечивает визуальное отображение измеряемой частоты, может быть одного из нескольких типов. Наиболее часто используются дисплеи на газоразрядных индикаторах, светодиодные дисплеи и жидкокристаллические дисплеи.


    Ваша оценка произведения:

Популярные книги за неделю