355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Эрл Гейтс » Введение в электронику » Текст книги (страница 16)
Введение в электронику
  • Текст добавлен: 18 октября 2017, 01:00

Текст книги "Введение в электронику"


Автор книги: Эрл Гейтс


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 16 (всего у книги 26 страниц)

Рис. 25-3. Семейства интегральных микросхем.

Корпуса изготовляются либо из керамики, либо из пластмассы. Пластмассовые корпуса дешевле и более пригодны для применения при рабочей температуре от 0 до 70 градусов Цельсия. Микросхемы в керамических корпусах дороже, но обеспечивают лучшую защиту от влаги и загрязнений. Они, кроме того, работают в более широком диапазоне температур (от -55 до +125 градусов Цельсия). Микросхемы в керамических корпусах рекомендуются для использования в военной и аэрокосмической технике, а также в некоторых отраслях промышленности.

Маленький 8-выводный корпус типа DIP используется для устройств с минимальным количеством входов и выходов. В нем располагаются, главным образом, монолитные интегральные микросхемы.

Плоские корпуса меньше и тоньше чем корпуса типа DIP и они используются в случаях, когда пространство ограничено. Они изготовляются из металла или керамики и работают в диапазоне температур от -55 до +125 градусов Цельсия.

После того как интегральная микросхема заключена в корпус, она тестируется для проверки ее соответствия всем требуемым параметрам. Тестирование проводится в широком диапазоне температур.

25-3. Вопросы

1. Каково назначение корпусов интегральных микросхем?

2. Какие корпуса чаще всего используются для интегральных микросхем?

3. Какие материалы используются для корпусов интегральных микросхем?

4. В чем преимущества керамических корпусов?

5. В чем преимущество плоских корпусов интегральных микросхем?

РЕЗЮМЕ

• Интегральные микросхемы популярны, потому что они:

– более надежны в качестве сложных цепей;

– потребляют маленькую мощность;

– являются миниатюрными и легкими;

– экономичны при изготовлении;

– обеспечивают новые и лучшие решения проблем.

• Интегральные микросхемы не могут работать при больших значениях токов и напряжений.

• Элементами интегральных микросхем могут быть только диоды, транзисторы, резисторы и конденсаторы.

• Интегральные микросхемы нельзя отремонтировать, их можно только заменить.

• Для изготовления интегральных микросхем используются монолитный, тонкопленочный, толстопленочный и гибридный способы изготовления.

• Наиболее популярным корпусом интегральных микросхем является корпус типа DIP (с двухрядным расположением выводов)

• Корпуса интегральных микросхем изготовляются из керамики или пластмассы, но пластмассовые корпуса используются чаще.

Глава 25. САМОПРОВЕРКА

1. Какие компоненты содержат гибридные интегральные микросхемы?

2. Что обозначается словом «чип»?

3. Какие существуют проблемы при изготовлении резисторов и конденсаторов при производстве интегральных микросхем монолитным методом?

Глава 26. Оптоэлектронные устройства

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Перечислить три категории полупроводниковых устройств, которые реагируют на свет.

• Классифицировать основные частотные диапазоны света.

• Перечислить основные светочувствительные устройства и описать их работу и применения.

• Перечислить основные светоизлучающие устройства и описать их работу и применения.

• Нарисовать схематические обозначения оптоэлектронных устройств.

• Перечислить корпуса, используемые для оптоэлектронных устройств.

Полупроводники вообще, и полупроводниковые диоды в частности, широко используются в оптоэлектронике. А именно, в качестве устройств, взаимодействующих с электромагнитным излучением (световой энергией) в видимом, инфракрасном и ультрафиолетовом диапазонах.

Три типа устройств, которые взаимодействуют со светом:

• Устройства для регистрации света;

• Устройства для преобразования света;

• Светоизлучающие устройства.

Полупроводниковый материал и использованная техника легирования определяют длину световой волны для каждого конкретного устройства.


26-1. СВЕТ

Свет – это электромагнитное излучение, видимое человеческим глазом. Свет распространяется подобно радиоволнам. Как и радиоволны, свет имеет свою длину волны.

Свет распространяется в вакууме со скоростью 300000000 метров в секунду. В различных средах скорость света меньше. Частота световых колебаний лежит в диапазоне от 300 до 300000000 гигагерц (1 гигагерц = 1000000000 герц). Из этого частотного диапазона только небольшая часть видима человеческим глазом. Видимый диапазон простирается примерно от 400000 до 750000 гигагерц. Частота инфракрасного излучения лежит ниже 400000 гигагерц, а частота ультрафиолетового излучения – выше 750000 гигагерц.

Световые волны в верхней части частотного диапазона обладают большей энергией, чем световые волны в нижней части диапазона.

26-1. Вопросы

1. Что такое свет?

2. В каком частотном диапазоне свет является видимым

для человеческого глаза?

3. Что такое инфракрасное излучение?

4. Что такое ультрафиолетовое излучение?

5. Какие световые волны обладают наибольшей энергией?


26-2. СВЕТОЧУВСТВИТЕЛЬНЫЕ УСТРОЙСТВА

Фоторезистор – это старейшее из оптоэлектронных устройств. Его внутреннее сопротивление изменяется при изменении интенсивности света. Изменение сопротивления не пропорционально интенсивности света. Фотосопротивления изготовляют из светочувствительных материалов, таких как сульфид кадмия (CdS) или селенид кадмия (CdSe).

На рис. 26-1 показано типичное фотосопротивление.


Рис. 26-1. Фотосопротивление.

Светочувствительный материал нанесен на изолирующую подложку из стекла или керамики в виде S-образной фигуры для увеличения длины фотосопротивления. Фотосопротивление более чувствительно к свету, чем другие устройства. Его сопротивление может изменяться от нескольких сотен мегом до нескольких сотен ом. Оно применяется при низких интенсивностях света. Фотосопротивление может выдерживать высокие рабочие напряжения 200–300 вольт при малом потреблении мощности – до 300 милливатт. Недостатком фотосопротивлений является медленный отклик на изменения света.

На рис. 26-2 показаны схематические обозначения фотосопротивления. Стрелки показывают, что это – светочувствительное устройство. Иногда для обозначения светочувствительного устройства используется греческая буква лямбда (λ).


Рис. 26-2. Схематические обозначения фотосопротивления.

Фотосопротивления используются для измерения интенсивности света в фотографическом оборудовании, в охранных датчиках, в устройствах автоматического открывания дверей, в различном тестирующем оборудовании для измерения интенсивности света.

Фотогальванический элемент (солнечный элемент) преобразует световую энергию непосредственно в электрическую. Батареи солнечных элементов применяются главным образом для преобразования солнечной энергии в электрическую энергию.

Солнечный элемент – это устройство на основе р-n-перехода, выполненное из полупроводниковых материалов.

В большинстве случаев их делают из кремния. На рис. 26-3 показано устройство солнечного элемента.


Рис. 26-3. Устройство солнечного элемента.

Слои p-типа и n-типа образуют р-n-переход. Металлическая подложка и металлический контакт являются электрическими контактами. Они проектируются с большой площадью поверхности. Свет, попадая на поверхность солнечного элемента, передает большую часть своей энергии атомам полупроводникового материала. Световая энергия выбивает валентные электроны с их орбит, создавая свободные электроны.

Вблизи обедненного слоя электроны притягиваются материалом n-типа, создавая небольшое напряжение вдоль р-n-перехода. При увеличении интенсивности света это напряжение увеличивается. Однако не вся световая энергия, попадающая в солнечный элемент, создает свободные электроны. В действительности, при сравнении получаемой от него электрической мощности с мощностью падающей световой энергии легко увидеть, что солнечный элемент – это довольно неэффективное устройство с максимальным коэффициентом полезного действия порядка 15 %.

Солнечные элементы дают низкое выходное напряжение 0,45 вольта при токе 50 миллиампер. Их необходимо соединять в последовательно– параллельные цепи для того, чтобы получить желаемое выходное напряжение и ток.

Солнечные элементы применяются для измерения интенсивности света в фотографическом оборудовании, для декодирования звуковой дорожки в кинопроекторах и для зарядки батарей на космических спутниках.

Схематические обозначения солнечных элементов показаны на рис. 26-4. Положительный вывод обозначается знаком плюс (+).


Рис. 26-4. Схематические обозначения солнечного элемента.

Фотодиод также использует р-n-переход и его устройство подобно устройству солнечного элемента. Он используется так же, как и фотосопротивление в качестве резистора, сопротивление которого меняется при освещении. Фотодиоды – это полупроводниковые устройства, которые изготовляются главным образом из кремния. Это делается двумя способами. Первый способ – создание простого р-n-перехода (рис. 26-5).


Рис. 26-5. Фотодиод с р-n-переходом.

При другом способе между слоями p-типа и n-типа вставляется слой нелегированного полупроводника, образуя p-i-n фотодиод (рис. 26-6).


Принципы работы фотодиода с р-n-переходом такие же как у солнечного элемента, за исключением того, что он используется для управления током, а не для создания его.

К фотодиоду прикладывается обратное напряжение смещения, формирующее широкий обедненный электронами слой. Когда свет попадает в фотодиод, он попадает в обедненный слой и создает там свободные электроны. Электроны притягиваются к положительному выводу источника смещения. Через фотодиод в обратном направлении течет малый ток. При увеличении светового потока увеличивается число свободных электронов, что приводит к росту тока.

P-i-n фотодиод имеет слой нелегированного материала между областями р и n. Это эффективно расширяет обедненный слой. Более широкий обедненный слой позволяет p-i-n фотодиоду реагировать на свет с более низкими частотами. Свет с более низкими частотами имеет меньшую энергию и, следовательно, должен глубже проникать в обедненный слой перед созданием свободных электронов. Более широкий обедненный слой дает больше возможностей для создания свободных электронов, p-i-n фотодиоды являются более эффективными во всех отношениях.

Благодаря слою нелегированного материала, p-i-n фотодиоды имеют более низкую собственную емкость. Это обеспечивает быстрый отклик на изменения интенсивности света. Кроме того, изменение их обратного тока в зависимости от интенсивности является более линейным.

Преимущество фотодиода – его быстрый отклик на изменения интенсивности света, самый быстрый из всех фоточувствительных устройств. Недостаток – низкая выходная мощность по сравнению с другими фоточувствительными устройствами.

На рис. 26-7 изображен типичный корпус фотодиода. Стеклянное окошко позволяет свету попадать в фотодиод. Схематическое обозначение фотодиода показано на рис. 26-8. Типичная цепь изображена на рис. 26-9.


Рис. 26-7. Корпус фотодиода.


Рис. 26-8. Схематическое обозначение фотодиода.


Рис. 26-9. Делитель напряжения, использующий фотодиод.

Фототранзистор устроен подобно другим транзисторам с двумя р-n-переходами. Он похож на стандартный n-р-n транзистор. Используется так же, как и фотодиод, и имеет корпус как у фотодиода, за исключением того, что у него три вывода (эмиттер, база и коллектор). На рис. 26–10 показана его эквивалентная цепь.


Рис. 26–10. Эквивалентная схема фототранзистора.

Проводимость транзистора зависит от проводимости фотодиода. Вывод базы применяется редко. Когда он все же используется, на него подается напряжение, открывающее транзистор.

Фототранзисторы могут давать больший выходной ток, чем фотодиоды. Их отклик на изменения интенсивности света не так быстр, как у фотодиодов. В данном случае за увеличение выходного тока приходится жертвовать скоростью отклика.

Фототранзисторы применяются в фототахометрах, для управления фотографической экспозицией, в противопожарных датчиках, в счетчиках предметов и в механических позиционерах.

На рис. 26–11 изображено схематическое обозначение фототранзистора. На рис. 26–12 изображена типичная схема его применения.


Рис. 26–11. Схематическое обозначение фототранзистора.


Рис. 26–12. Переключатель нагрузки, питаемой постоянным током, зависящий от освещения (при отсутствии света нагрузка включена).

26-2. Вопросы

1. Объясните, как работает фоторезистор.

2. Объясните, как работает солнечный элемент.

3. В чем разница между двумя типами фотодиодов?

4. Чем фототранзистор лучше фотодиода?

5. Нарисуйте схематические обозначения фоторезистора, солнечного элемента, фотодиода и фототранзистора.


26-3. СВЕТОИЗЛУЧАЮЩИЕ УСТРОЙСТВА

Светоизлучающие устройства излучают свет при прохождении через них тока, преобразуя электрическую энергию в световую. Светоизлучающий диод (светодиод) – это наиболее распространенное полупроводниковое светоизлучающее устройство. Будучи полупроводниковым устройством, он имеет неограниченный срок службы ввиду отсутствия высокотемпературного нагрева, основной причины выхода из строя обычных ламп.

Любой р-n-переход может испускать свет при прохождении через него тока. Свет возникает, когда свободные электроны рекомбинируют с дырками, и лишняя энергия освобождается в виде света. Частота испускаемого света определяется типом полупроводникового материала, использованного при изготовлении диода. Обычные диоды не излучают свет потому, что они упакованы в непрозрачные корпуса.

Светодиоды – это просто диоды с р-n-переходом, которые излучают свет при прохождении через них тока. Этот свет виден потому, что светодиоды упакованы в полупрозрачный материал. Частота излучаемого света зависит от материала, использованного при изготовлении светодиода.

Арсенид галлия (GaAs) излучает свет в инфракрасном диапазоне, который не воспринимается человеческим глазом. Арсенид-фосфид галлия излучает видимый красный свет. Изменяя содержание фосфора, можно получить светодиоды, излучающие свет различной частоты.

На рис. 26–13 показано устройство светодиода. Слой типа р сделан тонким для того, чтобы не препятствовать прохождению света, излучаемого р-n-переходом.


Рис. 26–13. Устройство светодиода.

После изготовления светодиод помещается в корпус, который рассчитан на максимальное пропускание света. На рис. 26–14 показаны наиболее распространенные корпуса светодиодов. Многие светодиоды содержат линзы, собирающие свет и увеличивающие его интенсивность. Корпус светодиода может также служить светофильтром для того, чтобы обеспечить излучение света определенной частоты.


Рис. 26–14. Распространенные типы корпусов светодиодов.

Для того, чтобы светодиод излучал свет, на него должно быть подано прямое смещающее напряжение (рис. 26–15).


Рис. 26–15. Светодиод, смещенный в прямом направлении.

Для того, чтобы через светодиод шел ток, величина прямого смещения должна превышать 1,2 вольта. Так как светодиод легко может быть поврежден большим током или напряжением, последовательно с ним включается резистор для ограничения тока.

Схематическое обозначение светодиода показано на рис. 26–16. На рис. 26–17 изображена цепь с правильно поданным смещением. Включенный последовательно резистор (RS) используется для ограничения прямого тока (IY).


Рис. 26–16. Схематическое обозначение светодиода.


Рис. 26–17. Цепь с правильно смещенным светодиодом.

На рис. 26–18 показаны сборки светодиодов в виде семисегментных индикаторов, используемых для отображения цифр. На рис. 26–19 показан светодиод, образующий вместе с фотодиодом оптопару. Оба устройства размещены в одном корпусе.


Рис. 26–18. Семисегментные индикаторы на основе светодиодов для отображения цифр.


Рис. 26–19. Коммерческая оптопара.

Оптопара состоит из светодиода и фототранзистора. Они связаны световым лучом, излучаемым светодиодом. Сигнал, поступающий на светодиод, может меняться, что, в свою очередь, изменяет интенсивность излучаемого света. Фототранзистор преобразует изменения света опять в электрическую энергию. Оптопара позволяет передавать сигнал от одной цепи к другой, обеспечивая высокую степень электрической изоляции их друг от друга.

26-3. Вопросы

1. Объясните, чем светодиод отличается от обычного диода.

2. Как изменяют цвет излучаемого светодиодом света?

3. Как корпус светодиода может усилить излучаемый свет?

4. Нарисуйте схематическое обозначение светодиода.

5. Каково назначение оптопары?


РЕЗЮМЕ

• Полупроводниковые устройства, которые взаимодействуют со светом, делятся на светорегистрирующие устройства, устройства, преобразующие свет и светоизлучающие.

• Свет – это электромагнитное излучение, которое воспринимается человеческим глазом.

• Частотные диапазоны света следующие:

– инфракрасное излучение – менее 400000 гигагерц;

– видимое излучение – 400000-750000 гигагерц;

– ультрафиолетовое излучение – более 750000 гигагерц;

• Светочувствительные устройства включают фотосопротивления, солнечные элементы, фотодиоды и фототранзисторы.

• Светоизлучающие устройства включают светодиоды (светоизлучающие диоды).

• Оптопара содержит светочувствительное устройство и светоизлучающее устройство.

• Схематические обозначения светочувствительных устройств следующие:

• Схематическое обозначение светодиода следующее:


Глава 26. САМОПРОВЕРКА

1. Какое светочувствительное устройство имеет самое быстрое время отклика на изменения интенсивности света?

2. Какое устройство может иметь более широкую область применения – фотодиод или фототранзистор? Почему?

3. Как величина тока, протекающего через светодиод, влияет на интенсивность излучаемого света?

Раздел 4
ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ



Специальность – техник по автоматике

Механик по автоматике поддерживает в рабочем состоянии контроллеры, сборочное оборудование, копировальные машины, промышленных роботов и другие автоматизированные или использующие компьютерное управление устройства.

Человек на этой работе устанавливает, ремонтирует и осуществляет сервисное обслуживание механизмов с электрическими, механическими, гидравлическими или пневматическими компонентами. При этом используются точные измерительные инструменты, тестирующее оборудование и ручные инструменты. Для подобной работы требуется знание электроники и умение читать монтажные и принципиальные схемы.

Для того, чтобы стать техником по электронике, необходима официальная подготовка. Такую подготовку дают профессионально-технические школы, военные училища или заочные учебные программы. Хотя в большинстве случаев обучение проводится в виде классных занятий, иногда можно приобрести навыки и практической работы.

Потребность промышленности в техниках по автоматике растет очень быстро. Ожидается, что этот рост будет продолжаться и после 2000 года.

Глава 27. Источники питания

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Объяснить назначение источника питания.

• Начертить блок-схему цепей и частей источника питания.

• Описать три различных схемы выпрямителей.

• Объяснить назначение фильтра.

• Описать два основных типа регуляторов напряжения и объяснить их работу.

• Объяснить назначение умножителя напряжения.

• Перечислить устройства защиты от превышения напряжения и тока.

Блоки питания используются для подачи напряжения на различные цепи. Принципы работы всех блоков питания одинаковы.

Главной функцией блока питания является преобразование переменного тока в постоянный. Блок питания может увеличивать или уменьшать величину входного переменного напряжения с помощью трансформатора.

Переменное напряжение требуемой величины преобразуется в постоянное напряжение с помощью процесса, который называется выпрямлением. Выпрямленное напряжение еще содержит переменную составляющую, которая называется пульсацией. От пульсаций избавляются с помощью фильтра.

Для обеспечения неизменной величины выходного напряжения используется стабилизатор напряжения. Он удерживает выходное напряжение на постоянном уровне.


27-1. ТРАНСФОРМАТОРЫ

Трансформаторы используются в блоках питания для изоляции блока питания от источника переменного напряжения. Они также применяются для повышения напряжения, если требуется более высокое напряжение, и для понижения напряжения, если требуется более низкое.

Если трансформаторы используются в блоках питания, то источник переменного напряжения подсоединяется только к первичной обмотке трансформатора. Таким образом электрические цепи изолируются от сети переменного тока.

При выборе трансформатора сначала надо определить напряжение первичной обмотки. Первичные обмотки у большинства трансформаторов рассчитаны на напряжения от 110 до 120 вольт или от 220 до 240 вольт. Потом надо уточнить частоту, на которой будет работать трансформатор. Рабочими частотами трансформатора могут быть 50 или 60 герц, 400 герц и 10 000 герц. Затем следует определить напряжение вторичной обмотки и ток, на который она рассчитана. И наконец, надо определить общую расчетную мощность трансформатора в вольт-амперах, что позволит оценить мощность, которая может быть передана во вторичную обмотку трансформатора. Она измеряется в вольт-амперах, так как ко вторичной обмотке может быть подсоединена нагрузка любого типа.

27-1. Вопросы

1. Почему в блоках питания используются трансформаторы?

2. Как подсоединяется трансформатор в блоке питания?

3. Какие важные соображения необходимо принять во внимание при выборе трансформатора для блока питания?

4. Как оценивается мощность трансформатора?


27-2. ВЫПРЯМИТЕЛИ

Выпрямитель – это сердце блока питания. Его функция – преобразование входного переменного напряжения в постоянное напряжение. В блоках питания применяются три основные схемы выпрямителей: однополупериодная, двухполупериодная и мостовая.

На рис. 27-1 изображена схема однополупериодного выпрямителя. Диод размещен последовательно с нагрузкой. Из-за наличия диода ток в цепи течет только в одном направлении.


Рис. 27-1. Основная схема однополупериодного выпрямителя.

На рис. 27-2 показан результат работы однополупериодного выпрямителя в течение положительного полупериода синусоиды. Диод смещен в прямом направлении, что позволяет току течь через нагрузку. При этом в течение положительного полупериода на нагрузке выделяется мощность.


Рис. 27-2. Однополупериодный выпрямитель в течение положительного полупериода.

На рис. 27-3 представлен результат работы однополупериодного выпрямителя в течение отрицательного полупериода синусоиды. Диод теперь смещен в обратном направлении и не проводит ток. Так как через нагрузку не течет ток, то на ней нет и падения напряжения.


Рис. 27-3. Однополупериодный выпрямитель в течение отрицательного полупериода.

Однополупериодный выпрямитель работает только в течение одной половины периода. Выходное напряжение представляет собой последовательность положительных или отрицательных импульсов, в зависимости от того, как диод включен в цепь. Частота импульсов такая же, как и частота входного напряжения. Частота импульсов называется частотой пульсаций.

Полярность выходного напряжения зависит от того, каким способом диод включен в цепь (рис. 27-4).


Рис. 27-4. Диод определяет направление тока.

Ток электронов течет через диод от катода к аноду. Когда ток течет через диод, на выводе катода возникает дефицит электронов, делая этот вывод диода положительным. Полярность выходного напряжения блока питания может быть изменена путем изменения способа включения диода.

Однополупериодный выпрямитель имеет серьезный недостаток, так как ток через него течет только в течение половины каждого периода. Чтобы избавиться от этого недостатка, используется двухполупериодный выпрямитель.

На рис. 27-5 изображена схема двухполупериодного выпрямителя. Для этой схемы требуются два диода и трансформатор с выводом от середины вторичной обмотки. Этот вывод от середины обмотки заземлен. Напряжение на каждом выводе вторичной обмотки трансформатора сдвинуто по фазе на 180 градусов относительно друг друга.


Рис. 27-5. Основная схема двухполупериодного выпрямителя.

На рис. 27-6 изображено, как двухполупериодный выпрямитель работает в течение положительного полупериода входного напряжения. На аноде диода D1 положительный потенциал, а на аноде диода D2 – отрицательный.


Рис. 27-6. Двухполупериодный выпрямитель в течение положительного полупериода.

Диод D1 смещен в прямом направлении и проводит ток. Диод D2 смещен в обратном направлении и не проводит ток.

Ток течет от центрального вывода трансформатора через нагрузку и диод D1 к верхнему выводу вторичной обмотки трансформатора. Это позволяет ему во время положительного полупериода проходить на нагрузку.

На рис. 27-7 тот же двухполупериодный выпрямитель работает в течение отрицательного полупериода синусоиды.


Рис. 27-7. Двухполупериодный выпрямитель в течение отрицательного полупериода.

На аноде диода D2 появился положительный потенциал, а на аноде диода D1 – отрицательный. Теперь диод D2 смещен в прямом направлении и проводит ток. Диод D1 смещен в обратном направлении и не проводит ток. Ток течет от центрального вывода трансформатора через нагрузку и диод D2 к нижнему выводу вторичной обмотки трансформатора.

Таким образом, в двухполупериодном выпрямителе ток течет в течение обоих полупериодов. Это означает, что частота пульсаций в два раза больше частоты входного переменного тока.

Недостатком двух полу периодного выпрямителя является то, что его выходное напряжение в два раза меньше выходного напряжения однополупериодного выпрямителя, использующего такой же трансформатор. Этот недостаток преодолевается при использовании мостовой схемы выпрямителя.

На рис. 27-8 изображена мостовая схема выпрямителя. Четыре диода включены таким образом, что ток через нагрузку течет только в одном направлении.


Рис. 27-8. Схема мостового выпрямителя

На рис. 27-9 показано прохождение тока в течение положительного полупериода входного сигнала. Ток течет от нижнего вывода вторичной обмотки трансформатора через диод D4, через нагрузку, через диод D2 к верхнему выводу вторичной обмотки трансформатора. Все напряжение падает на нагрузке.


Рис. 27-9. Мостовой выпрямитель в течение положительного полупериода.

На рис. 27–10 показано прохождение тока в течение отрицательного полупериода входного сигнала. На верхнем выводе вторичной обмотки отрицательный потенциал, а на нижнем – положительный. Ток течет от верхнего вывода вторичной обмотки через диод через нагрузку, через диод D3 к нижнему выводу вторичной обмотки. Заметим, что ток течет через нагрузку в том же направлении, что и в течение положительного полупериода. И опять все напряжение падает на нагрузке.


Рис. 27–10. Мостовой выпрямитель в течение отрицательного полупериода.

Мостовой выпрямитель является двухполупериодным выпрямителем, так как он работает в течение обоих полупериодов входного синусоидального напряжения. Преимуществом мостового выпрямителя является то, что он не требует трансформатора с выводом от середины вторичной обмотки. Эта цепь также не требует для своей работы трансформатора. Трансформатор используется только для повышения или понижения напряжения или для обеспечения изоляции от источника переменного напряжения.

Перечислим различия выпрямителей. Преимуществом однополупериодного выпрямителя является его простота и низкая стоимость. Для него требуется один диод и трансформатор. Он не очень эффективен, так как использует только половину входного сигнала. Кроме того, его применение ограничено цепями с малыми токами.

Двухполупериодный выпрямитель более эффективен, чем однополупериодный. Он работает в течение обоих полупериодов синусоиды. Более высокая частота пульсаций двухполупериодного выпрямителя облегчает фильтрацию.

Недостатком его является то, что для него требуется трансформатор с отводом от середины вторичной обмотки. Его выходное напряжение ниже, чем у однополупериодного выпрямителя при использовании такого же трансформатора, так как в течение каждого полупериода работает только половина обмотки.

Мостовой выпрямитель может работать без трансформатора. Однако трансформатор бывает необходим для повышения или понижения напряжения. Выходное напряжение у него выше, чем у однополупериодного или двухполупериодного выпрямителей. Недостатком является то, что для него требуются четыре диода. Однако диоды дешевле трансформатора с выводом от середины вторичной обмотки.

27-2. Вопросы

1. Каково назначение выпрямителя в блоке питания?

2. Каковы три схемы выпрямителей, используемых в блоках питания?

3. В чем отличия в работе этих трех схем?

4. Каковы преимущества одного выпрямителя перед другим?

5. Какая схема выпрямителя является лучшей? Почему?


27-3. ЦЕПИ ФИЛЬТРАЦИИ

Выпрямитель выдает пульсирующее напряжение постоянного тока, которое не годится для питания большинства электронных цепей, поэтому в блоках питания, как правило, после выпрямителя стоит фильтр. Фильтр преобразует пульсирующее напряжение в гладкое напряжение постоянного тока.

Простейшим фильтром является конденсатор, включенный параллельно выходу выпрямителя (рис. 27–11). На рис. 27–12 сравнивается выходное напряжение выпрямителя без фильтра и с фильтрующим конденсатором.


Рис. 27–11. Однополупериодный выпрямитель с емкостным фильтром.


Рис. 27–12. Выходное напряжение однополупериодного выпрямителя без фильтра и с фильтрующим конденсатором.

Конденсатор работает в такой цепи следующим образом.

Когда на аноде диода положительный потенциал, по цепи течет ток. В это время фильтрующий конденсатор заряжается в полярности, показанной на рис. 27–11. За четверть периода входного сигнала конденсатор заряжается до максимального потенциала цепи.

Когда напряжение входного сигнала начинает падать, конденсатор разряжается через нагрузку. Скорость разряда конденсатора зависит от постоянной времени RC, а, следовательно, от сопротивления нагрузки. Постоянная времени разряда велика по сравнению с периодом переменного тока. Следовательно, период заканчивается раньше, чем конденсатор может разрядиться. Поэтому после первой четверти периода ток через нагрузку поддерживается разряжающимся конденсатором. Как только конденсатор начинает разряжаться, напряжение на нем уменьшается. Однако до того, как конденсатор полностью разрядится, начнется следующий период синусоиды. На аноде диода опять появится положительный потенциал, что позволит ему проводить ток. Конденсатор зарядится снова, и цикл повторится. В результате, пульсации напряжения сгладятся, и выходное напряжение фактически повысится (рис. 27–13).


Рис. 27–13. Влияние фильтрующих конденсаторов различной емкости на выходное напряжение однополупериодного выпрямителя.

Чем больше емкость конденсатора, тем больше постоянная времени RC. Это приводит к более медленному разряду конденсатора, что повышает выходное напряжение.


    Ваша оценка произведения:

Популярные книги за неделю