Текст книги "Введение в электронику"
Автор книги: Эрл Гейтс
Жанр:
Физика
сообщить о нарушении
Текущая страница: 2 (всего у книги 26 страниц)
Глава 2. Ток
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Сформулировать два закона электростатических зарядов.
• Дать определение кулона.
• Дать определение единицы, используемой для измерения тока.
• Записать формулу, связывающую амперы, кулоны и время.
• Описать, как протекает ток в цепи.
• Описать, как электроны перемещаются по проводнику.
• Определять и использовать научные обозначения.
• Знать обычно используемые префиксы для степеней десяти.
Атом был определен как наименьшая частица элемента. Он состоит из электронов, протонов и нейтронов.
Электроны отрываются от атомов и перемещаются по проводнику, образуя электрический ток.
В этой главе рассматривается, как электроны отрываются от атомов для образования электрического тока, и вводится краткая математическая запись, позволяющая работать с очень малыми и очень большими числами.
2-1. ЭЛЕКТРИЧЕСКИЙ ЗАРЯД
Два электрона вместе или два протона вместе представляют собой одноименные заряды. Подобные заряды сопротивляются сближению и стремятся удалиться друг от друга. Процесс называется отталкиванием. Первый закон взаимодействия электростатических зарядов гласит: одноименные заряды отталкиваются друг от друга (рис. 2–1).
Рис. 2–1. Основные законы взаимодействия электростатических зарядов.
Согласно второму закону взаимодействия электростатических зарядов, разноименные заряды притягиваются друг к другу.
Отрицательные электроны притягиваются к положительным протонам в ядре атома. Эта сила притяжения уравновешивается центростремительной силой, обусловленной вращением электронов вокруг ядра. В результате электрон остается на орбите и не падает на ядро.
Величина сил притяжения и отталкивания, действующих между двумя электрически заряженными телами, зависит от двух, факторов: их зарядов и расстояния между ними.
Отдельный электрон имеет заряд, который слишком мал для практического использования. Для измерения заряда принята единица, называемая кулоном (Кл), которая названа в честь Шарля Кулона. Электрический заряд (Q) 6 280 000 000 000 000 000 электронов (шесть квинтиллионов 280 квадриллионов или 6,28 х 1018) составляет один кулон.
1 Кл = 6,28 х 1018 электронов
Электрические заряды создаются смещением электронов. Когда имеет место избыток электронов в одной точке и дефицит электронов в другой точке, между этими точками существует разность потенциалов. Когда существует разность потенциалов между двумя заряженными телами, соединенными проводником, электроны будут течь по проводнику. Этот поток электронов называется током.
2–1. Вопросы
1. О чем говорят два закона взаимодействия электрических зарядов?
2. Как обозначается электрический заряд?
3. Дайте определение кулона.
2–2. ПРОТЕКАНИЕ ТОКА
Электрический ток представляет собой медленный дрейф электронов из области отрицательного заряда в область положительного заряда. Для измерения силы тока используется ампер (А). Эта единица названа в честь французского физика Андре Мари Ампера (1775–1836). Ампер представляет силу тока в проводнике, когда заряд в один кулон перемещается через заданную точку за одну секунду. Соотношение между ампером и кулоном за секунду выражается формулой:
I = Q/t
где I – сила тока в амперах, Q – величина электрического заряда в кулонах, t – время в секундах.
ПРИМЕР. Чему равна сила тока в амперах, если через точку в электрической цепи прошло 9 кулон заряда за 3 секунды?
Дано:
Q = 9 Кл; t = 3 с
I =?
Решение:
I = Q/t = 9/3 = 3; I = 3 А
ПРИМЕР. По цепи течет ток 5 ампер. Сколько времени займет прохождение 1 кулона заряда через данную точку цепи?
Дано:
I = 5 А; Q = 1 K;
t =?
Решение:
I = Q/t; 5 = 1/t; 1/5 = t; 0,2 секунды = t
Отрицательно заряженные электроны, как правило, являются носителями заряда в электрической цепи. Следовательно, электрический ток – это поток отрицательных зарядов. Принято считать, что направление тока противоположно направлению потока электронов. Позднее было установлено, что при перемещении электрона от одного атома к другому создаются положительные заряды, называемые дырками, которые перемещаются в противоположном направлении (рис. 2–2, 2–3). Электроны и ток при этом остаются такими же.
Рис. 2–2. Когда электроны перемещаются от одного атома к другому, они вызывают появление противоположно движущихся положительных зарядов, называемых дырками.
Рис. 2–3. Направление движения электронов противоположно направлению движения дырок.
Если электроны добавляются на одном конце проводника и берутся для этого с другого конца, то по проводнику течет ток. По мере своего медленного перемещения по проводнику свободные электроны сталкиваются с атомами, освобождая при этом другие электроны. Эти новые свободные электроны перемещаются по направлению к положительно заряженному концу проводника и сталкиваются с другими атомами. Дрейф электронов от отрицательно заряженного конца проводника к положительному происходит вследствие отталкивания зарядов. Кроме того, положительно заряженный конец проводника с дефицитом электронов притягивает электроны как противоположные по знаку заряды.
Дрейф электронов происходит медленно (примерно три миллиметра в секунду), но отдельные электроны, сталкиваясь с атомами, освобождают электроны, движущиеся почти со скоростью света (2,99х108 метров). Представим себе длинную трубу, заполненную шариками для пинг-понга (рис. 2–4).
Рис. 2–4. Электроны в проводнике взаимодействуют подобно шарикам от пинг-понга в трубе.
При добавлении шарика к одному концу трубы, из другого конца трубы шарик выталкивается. Хотя отдельные шарики тратят некоторое время на перемещение по трубе, частота их столкновений может быть очень высокой.
Устройство, которое удаляет электроны с одного конца проводника (положительного) и добавляет их к другому концу проводника (отрицательному), называется источником тока. Он может рассматриваться как своеобразный насос (рис. 2–5).
Рис. 2–5. Источник напряжения может рассматриваться как насос, снабжающий нагрузку электронами и поддерживающий избыток электронов.
2–2. Вопросы
1. Дайте определение электрического тока.
2. В каких единицах измеряется сила тока?
3. Каково соотношение между силой тока, зарядом и временем?
4. Какова сила тока, если через данную точку цепи за 5 секунд проходит 15 кулон заряда?
5. Сколько времени займет перемещение 3 кулонов заряда через данную точку цепи, если по цепи течет ток 3 ампера?
6. Что заставляет электроны двигаться по проводнику только в одном направлении?
2–3. СТЕПЕННОЕ ПРЕДСТАВЛЕНИЕ ЧИСЕЛ
В электронике обычно встречаются очень малые и очень большие числа. Степенное представление – это метод, использующий одноразрядные числа и степени десяти для отображения больших и малых чисел. Например, 300 в степенном представлении имеет вид 3x102. Показатель степени показывает количество нулей справа или слева от десятичной занятой в числе. Например:
Если степень отрицательная, десятичная запятая перемещается влево. Например:
На рисунке 2–6 перечислены некоторые часто используемые степени десяти как положительные, так и отрицательные, а также префиксы и символы, связанные с ними.
Рис. 2–6. Используемые в электронике префиксы.
Например, ампер (А) – это большая единица силы тока, не часто встречающаяся в маломощных электронных цепях. Наиболее часто используемыми единицами являются миллиампер (мА) и микроампер (мкА). Миллиампер равен одной тысячной (1/1000) ампера или 0,001 А. Другими словами, 1000 миллиампер равны одному амперу.
Микроампер равен одной миллионной (1/1 000 000) ампера или 0,000001 А; 1 000 000 микроампер равны одному амперу.
ПРИМЕР.Сколько миллиампер содержится в 2 амперах?
Решение:
1000 мA/1 A = Х мА/2 А (1000 мА = 1 А)
(1)(Х) = (1000)(2)
Х = 2000 мА
ПРИМЕР. Сколько ампер содержится в 50 микроамперах?
Решение:
1 000 000 мкА/1 А = 50 мкА/Х А
(1)(50) = (1000000)(Х)
50/1000000 = Х
0,00005 = Х
2–3. Вопросы
1. Дайте определение степенному представлению.
2. В степенном представлении:
а. Что означает положительный показатель степени?
б. Что означает отрицательный показатель степени?
3. Запишите следующие числа в степенном представлении:
а. 500
б. 3768
в. 0,0056
г. 0,105
д. 356,78
4. Дайте определения следующим префиксам:
а. Милли-
б. Микро-
5. Выполните следующие преобразования:
а. 1,5 А = ___ мА
б. 1,5 А = ___ мкА
в. 150 мА = ___ А
г. 750 мкА = ___ А
РЕЗЮМЕ
• Законы взаимодействия электростатических зарядов: одноименные заряды отталкиваются, а разноименные – притягиваются.
• Электрический заряд (Q) измеряется в кулонах (Кл).
• Один кулон равен заряду 6,24х1018 электронов.
• Электрический ток – это медленный дрейф электронов из области отрицательного заряда в область положительного заряда.
• Сила тока измеряется в амперах.
• Один ампер (А) – это ток, протекающий в проводнике, когда через заданную точку проходит заряд в один кулон за одну секунду.
• Соотношение между силой тока, зарядом и временем описывается формулой:
I = Q/t
• Носителями заряда при наличии электрического тока в металлах являются электроны (отрицательные заряды).
• Перемещение дырок (положительных зарядов) направлено противоположно движению электронов.
• Ток электронов течет в цепи от отрицательного полюса к положительному.
• Электроны перемещаются по проводнику очень медленно, но отдельные электроны могут двигаться со скоростью, близкой к скорости света.
• С помощью степенного представления выражаются
очень большие и очень маленькие числа.
• Если показатель степени десяти положительный, десятичная запятая перемещается вправо.
• Если показатель степени десяти отрицательный, десятичная запятая перемещается влево.
• Префикс милли- обозначает одну тысячную.
• Префикс микро- обозначает одну миллионную.
Глава 2. САМОПРОВЕРКА
1. Какова сила тока в цепи, если за 5 секунд через заданную точку протекает 7 кулон?
2. Опишите, как направлен поток электронов в цепи по отношению к распределению потенциала в цепи.
3. Запишите следующие числа с помощью степенного представления:
а. 235;
б. 0,002376;
в. 56323,786.
4. Что обозначают следующие префиксы?
а. Милли-
б. Микро-
Глава 3. Напряжение
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Перечислить шесть основных источников напряжения.
• Описать шесть различных методов получения электричества.
• Дать определение элемента и батареи.
• Описать различие между первичными и вторичными элементами.
• Описать, на какие типы подразделяются элементы и батареи.
• Перечислить способы соединения элементов или батарей для увеличения выходного тока или напряжения, или и того, и другого.
• Дать определения приложенного напряжения и падения напряжения.
• Описать два типа заземления электрических цепей.
В кусочке медной проволоки имеет место хаотичное движение электронов. Для появления электрического тока электроны должны двигаться в определенном направлении. Для того, чтобы заставить электроны в медной проволоке двигаться в заданном направлении, им должна быть сообщена энергия. Энергию сообщает источник, соединенный с проволокой.
Сила, которая заставляет электроны двигаться в заданном направлении, определяется разностью потенциалов или напряжением.
3–1. ИСТОЧНИКИ НАПРЯЖЕНИЯ
Напряжение возникает при удалении электронов со своих орбит в атомах. Таким образом, любой вид энергии, отрывающий электроны от атомов, может быть использован для получения напряжения. Но надо помнить, что энергия никогда сама по себе не возникает. Имеет место просто переход энергии из одной формы в другую. Источник напряжения – это не просто источник электрической энергии. Скорее это способ преобразования других видов энергии в электрическую. Существует шесть основных источников напряжения – трение, магнетизм, химические реакции, свет, тепло и давление.
Трение является самым старым способом получения электричества. Стеклянная палочка зарядится, если ее потереть куском меха или шелка. Генератор Ван де Граафа – устройство, работающее на том же принципе, что и стеклянная палочка, и способное создавать напряжение в миллионы вольт (рис. 3–1). Однако кроме научных исследований, он нигде практически не используется.
Рис. 3–1. Генератор Ван-де-Граафа способен создавать разность потенциалов в миллионы вольт.
В настоящее время основным методом получения электрической энергии является магнетизм. Если проводник перемещается в магнитном поле, на его концах возникает разность потенциалов, существующая в течение всего времени перемещения относительно магнитного поля. Устройство, основанное на этом принципе, называется генератором (рис. 3–2).
Рис. 3–2. Генератор использует магнетизм для получения электричества.
Генератор может вырабатывать как постоянный, так и переменный ток. Когда электроны текут только в одном направлении, ток называется постоянным.
Когда направление движения электронов периодически изменяется на противоположное, ток называется переменным. Генератор может приводиться в движение нагретым паром, водой, ветром или бензиновыми и дизельными двигателями. Схематическое обозначение генератора переменного тока показано на рис. 3–3.
Рис. 3–3. Схематическое обозначение генератора переменного тока.
Вторым основным методом получения электричества в настоящее время является использование химических батарей.
Электроды батареи состоят из двух разнородных металлов, например меди и цинка, погруженных в раствор соли, кислоты или щелочи. Электроды обеспечивают контакт между электролитом (раствором соли, кислоты или щелочи) и цепью. Электролит извлекает свободные электроны из медного электрода, оставляя его положительно заряженным.
Цинковый электрод притягивает свободные электроны в электролите и таким образом приобретает отрицательный заряд. Несколько таких элементов могут быть соединены вместе и образовать батарею. На рис. 3–4 показаны схематические обозначения элемента и батареи.
Рис. 3–4. Схематические обозначения элемента и батареи. Комбинация двух или более элементов образует батарею.
В настоящее время используется много различных типов элементов и батарей (рис. 3–5).
Рис. 3–5. Некоторые из широко используемых в настоящее время химических элементов и батарей.
Световая энергия может быть преобразована в электрическую энергию при попадании света на фоточувствительную пленку в фотовольтаической ячейке (солнечном элементе) (рис. 3–6).
Рис. 3–6. Фотовольтаическая ячейка может преобразовывать солнечный свет прямо в электричество.
Солнечные элементы состоят из фоточувствительных материалов, расположенных между металлическими электродами. Когда поверхность фоточувствительного материала освещается светом, происходит выбивание электронов с орбит атомов, расположенных на поверхности материала. Это происходит за счет энергии света. Каждая отдельная ячейка вырабатывает небольшое напряжение. На рис. 3–7 показано схематическое обозначение солнечного элемента.
Рис. 3–7. Схематическое обозначение фотовольтаической ячейки (солнечного элемента).
Для получения пригодных к использованию напряжений и токов необходимо объединить вместе много солнечных элементов. Солнечные элементы используются главным образом на спутниках и в фотоаппаратах. Высокая стоимость ограничивает их широкое применение.
Тепло может быть преобразовано прямо в электричество с помощью устройства, называемого термопарой (рис. 3–8).
Рис. 3–8. Термопары преобразуют тепловую энергию непосредственно в электрическую.
Схематичное обозначение термопары показано на рис. 3–9.
Рис. 3–9. Схематическое обозначение термопары.
Термопара состоит из двух разнородных металлических проволок, скрученных вместе. Одна проволока медная, а другая из цинка или железа. При нагревании медная проволока легко отдает свободные электроны, которые передаются другому проводнику. Таким образом, медная проволока приобретает положительный заряд, а другая проволока – отрицательный, и появляется небольшая разность потенциалов или напряжение. Это напряжение прямо пропорционально количеству подведенного тепла. Одним из применений термопары является термометр, а также пирометр – устройство, которое часто используется для измерения высоких температур в печах и литейном производстве.
При приложении к некоторым кристаллическим материалам, таким как кварц, турмалин, сегнетова соль или титанат бария давления, возникает небольшое напряжение. Это явление называется пьезоэлектрический эффект. Сначала отрицательные и положительные заряды хаотично распределены в образце кристаллического материала и суммарный заряд не может быть обнаружен. При приложении давления, электроны покидают одну сторону материала и скапливаются на другой. Заряд возникает только при приложенном давлении.
Когда давление убирают, заряд опять распределяется равномерно по объему материала. Возникающее напряжение мало и его необходимо усилить для того, чтобы использовать. Пьезоэлектрический эффект используется в кристаллических микрофонах, в головках звукоснимателей проигрывателей пластинок и в кварцевых генераторах (рис. 3-10, 3-11).
Рис. 3-10. Кристаллический микрофон.
Рис. 3-11. Схематическое обозначение пьезоэлектрического кристалла.
Заметим, что при получении напряжения такими способами справедливо также и обратное: напряжение может использоваться для получения магнитного поля, стимулирования химических реакций, выработки света, тепла и создания давления. Получение магнитного поля происходит в электромоторах, громкоговорителях, соленоидах и реле. Химические реакции происходят при электролизе и гальваническом нанесении покрытий. Свет испускается электролампочками и другими оптоэлектронными устройствами. Тепло производится нагревательными элементами в печах, утюгах и паяльниках. Приложенное напряжение может заставить кристалл деформироваться или совершать колебания.
3–1. Вопросы
1. Перечислите шесть основных источников напряжения.
2. Какой способ получения напряжения является основным?
3. Какой способ получения напряжения является вторым основным?
4. Почему солнечные элементы не используются широко для получения напряжения?
3–2. ЭЛЕМЕНТЫ И БАТАРЕИ
Как говорилось в предыдущем параграфе, элемент содержит положительный и отрицательный электроды, разделенные раствором электролита. Батарея – это комбинация двух или более элементов. Существует два основных типа элементов. Элементы, которые не могут быть перезаряжены, называются первичными элементами. Элементы, которые могут перезаряжаться, называются вторичными элементами.
Примером первичного элемента является сухой элемент (рис. 3-12).
Рис 3.12. Внутреннее устройство сухого элемента
Элемент этого типа не является в действительности сухим. В качестве электролита он содержит влажную пасту. Уплотнитель предотвращает вытекание пасты при наклоне и переворачивании элемента. Электролитом сухого элемента является раствор хлорида аммония и двуокиси марганца. Электролит растворяет цинковый электрод (корпус элемента), оставляя в цинке избыток электронов. По мере протекания тока через элемент, цинк, хлористый аммоний и двуокись марганца разлагаются на воду, двуокись марганца, аммоний и хлористый цинк.
Угольный стержень (центральный электрод) отдает электроны, которые собираются на цинковом электроде. Элементы этого типа, названные элементами Лекланше, имеют напряжение не более 1,75-1,8 вольт, когда они свежие.
Элемент Лекланше общего назначения имеет плотность энергии примерно 66 ватт-часов на килограмм. По мере использования элемента химическая активность уменьшается, и в конце концов ток прекращается. Если элемент долго не использовался, электролитическая паста высыхает, срок его хранения около двух лет. Выходное напряжение элементов этого типа полностью определяется материалами, используемыми для электролита и электродов. Элементы типа АА, типа С, типа D и сухой элемент № 6 (рис. 3-13) сконструированы из одинаковых материалов и, следовательно, имеют одинаковое напряжение.
Рис 3-13. Примеры широко используемых сухих элементов
Необходимо заметить, что хотя элемент Лекланше часто относят к угольно-цинковым элементам, уголь не принимает участие в химической реакции, производящей электричество.
Щелочные элементы получили свое название потому, что в них в качестве электролита используется гидроокись калия (КОН). Внешне щелочные элементы очень похожи на угольно-цинковые. Однако внутреннее устройство щелочного элемента значительно отличается (рис. 3-14).
Рис. 3-14. Внутреннее устройство щелочных элементов. Катод окружает анод.
Щелочные элементы имеют напряжение при разомкнутой цепи примерно 1,52 вольта и плотность энергии около 40 ватт-часов на килограмм. Щелочные элементы могут использоваться в более широком диапазоне температур, чем угольно-цинковые. Щелочные элементы лучше работают при умеренных и высоких токах и сохраняют работоспособность более длительное время.
Литиевые элементы (рис. 3-15) имеют более высокие эксплуатационные свойства благодаря литию.
Рис. 3-15. Литиевые элементы обладают исключительно высокой плотностью энергии.
Литий сильно взаимодействует с водой. Конструкция литиевого элемента использует литий, двуокись марганца (МnO2) и перхлорат лития (LiClO4) в органическом растворителе (вода не может быть использована). Выходное напряжение литиевого элемента примерно 3 вольта. Литиевые элементы являются очень эффективными с плотностью энергии около 200 ватт-часов на килограмм. Наибольшее преимущество литиевых элементов в их исключительно долгом сроке хранения – от 5 до 10 лет.
Вторичные элементы – это элементы, которые можно подзаряжать приложением обратного напряжения. Примером является кислотно-свинцовая батарея, используемая в автомобилях (рис. 3-16).
Рис. 3-16. Пример вторичного элемента (в разрезе).
Она изготовлена из шести 12-вольтовых вторичных элементов, соединенных последовательно. Каждый элемент имеет положительный электрод из двуокиси свинца (РЬО2) и отрицательный электрод из пористого свинца (РЬ). Электроды разделены пластиком или резиной и погружены в раствор электролита, состоящего из серной кислоты (H2SO4) и дистиллированной воды (Н20). Когда элемент разряжен, серная кислота взаимодействует с окисью свинца и пористым свинцом, превращая их в сульфат свинца, а электролит в воду. При перезарядке элемента применяется источник постоянного тока с напряжением большим, чем вырабатывает элемент. При протекании тока через элемент электроды превращаются опять в двуокись свинца и пористый свинец, а электролит опять превращается в серную кислоту и воду. Элементы этого типа также называются жидкостными элементами.
Другой тип вторичных элементов – никель-кадмиевые (NiCd) элементы (рис. 3-17).
Рис. 3-17. Никель-кадмиевая батарея (NiCd) в качестве другого примера вторичного элемента.
Это сухой элемент, который сохраняет свой заряд длительное время и может многократно перезаряжаться. Элемент состоит из положительного и отрицательного электродов, разделителя, электролита и корпуса. Электроды состоят из порошкообразного никеля, нанесенного на экран из никелевой проволоки, пропитанной раствором соли никеля для положительного электрода и раствором соли кадмия для отрицательного электрода. Разделитель сделан из поглощающего изолирующего материала.
Электролитом является гидроокись калия. Корпус изготавливается из стали и плотно закрывается. Типичное напряжение элементов этого типа 1,2 вольта.
Способность батареи непрерывно вырабатывать электроэнергию выражается в ампер-часах. Батарея в 100 ампер-часов может выдавать ток в 1 ампер в течение 1 часа (100 x 1 = 100 ампер·часов), либо 10 ампер в течение 10 часов (10 x 10 = 100 ампер-часов), либо 1 ампер в течение 100 часов (1 x 100 = 100 ампер·часов).
3–2. Вопросы
1. Из каких компонентов состоит элемент?
2. Каковы два основных типа элементов?
3. В чем главное отличие двух основных типов элементов?
4. Приведите примеры первичных элементов.
5. Приведите примеры вторичных элементов.
3-3. СОЕДИНЕНИЕ ЭЛЕМЕНТОВ И БАТАРЕЙ
Элементы и батареи могут быть соединены вместе для увеличения напряжения и/или тока. Они могут быть соединены последовательно, параллельно или последовательно-параллельно.
При последовательном соединении элементы или батареи могут быть соединены либо в последовательно-дополняющей либо в последовательно-препятствующей конфигурации. В последовательно-дополняющей конфигурации положительный электрод первого элемента соединяется с отрицательным электродом второго элемента; положительный электрод второго элемента соединяется с отрицательным электродом третьего элемента и так далее (рис. 3-18).
Рис. 3-18. Элементы или батареи могут быть соединены последовательно для увеличения напряжения.
При последовательно-дополняющей конфигурации через все элементы или батареи протекает одинаковый ток. Это может быть выражено следующим образом:
IT = I1 = I2 = I3.
Индексы обозначают номера отдельных элементов или батарей. Полное напряжение равно сумме напряжений отдельных элементов и может быть выражено следующим образом:
ET = E1 + Е2 + Е3.
При последовательно-препятствующей конфигурации элементы или батареи соединяются друг с другом одноименными выводами, отрицательный вывод с отрицательным или положительный с положительным. Однако эта конфигурация очень мало применяется на практике.
При параллельном соединении все положительные выводы соединяются вместе и все отрицательные выводы также соединяются вместе (рис. 3-19).
Рис. 3-19. Элементы или батареи могут быть соединены параллельно для увеличения тока.
Общий возможный ток является суммой токов каждого элемента или батареи:
IT = I1 + I2 + I3.
Общее напряжение равно напряжению каждого отдельного элемента или батареи:
ET = E1 = Е2 = Е3.
Если желательно получить и наибольшее напряжение и наибольший ток, элементы или батареи могут быть соединены в последовательно-параллельной конфигурации. Помните, что последовательное соединение элементов или батарей увеличивает напряжение, а параллельное соединение увеличивает ток. На рис. 3-20 показаны четыре 3-вольтовых батареи, соединенные в последовательно-параллельной конфигурации. Эта конфигурация дает напряжение 6 вольт и обеспечивает ток в два раза больший, чем отдельная батарея.
Рис. 3-20. Элементы или батареи могут быть соединены последовательно-параллельно для увеличения выходного тока и напряжения.
Для получения 6 вольт необходимо соединить две 3-вольтовые батареи последовательно (рис. 3-21).
Рис. 3-21. Когда элементы соединяются последовательно, напряжение увеличивается.
Для увеличения тока, вторая пара 3-вольтовых батарей подсоединяется параллельно (рис. 3-22).
Рис. 3-22. Параллельное соединение последовательно соединенных элементов увеличивает выходной ток. Полученная цепь является последовательно-паралелльной конфигурацией.
В результате получается последовательно-параллельная конфигурация.
3–3. Вопросы
1. Нарисуйте три элемента, соединенных в последовательно-дополняющей конфигурации.
2. Как влияет последовательно-дополняющая конфигурация на ток и напряжение?
3. Нарисуйте три элемента, соединенные параллельно.
4. Как влияет параллельное соединение элементов на ток и напряжение?
5. Как надо соединить элементы или батареи, чтобы увеличить и ток и напряжение?
3-4. ПРИЛОЖЕННОЕ НАПРЯЖЕНИЕ И ПАДЕНИЕ НАПРЯЖЕНИЯ
В электрических и электронных цепях существует два типа напряжений – приложенное напряжение и падение напряжения.
Потенциал или напряжение, подведенное к цепи, называется приложенным напряжением (рис. 3-23).
Рис. 3-23. Потенциал, приложенный к цепи, называется приложенным напряжением.
Напряжение подсоединено к цепи, ток течет от отрицательного вывода источника напряжения и возвращается к положительному выводу источника напряжения. 12-вольтовая батарея, подсоединенная к цепи дает приложенное к цепи напряжение 12 вольт.
При перемещении электронов по цепи они встречают сопротивление. Проходя через нагрузку, электроны теряют энергию. Отданная энергия называется падением напряжения (рис. 3-24).
Рис. 3-24. Энергия, поглощенная цепью при прохождении тока через нагрузку (сопротивление), называется падением напряжения. Падение напряжения имеет место при протекании тока в цепи.
В большинстве случаев энергия отдается в виде тепла. Энергия, которую теряют электроны в цепи, равна энергии, сообщаемой им источником.
Еще раз повторим, что энергия, введенная в цепь, называется приложенным напряжением. Энергия, выделяемая в цепи на нагрузке, называется падением напряжения.
Падение напряжения имеет место, когда в цепи течет ток. Ток течет по цепи от отрицательного полюса к положительному. Внутри источника напряжения ток течет от положительного электрода к отрицательному.
Падение напряжения в цепи равно приложенному к цепи напряжению, так как энергия не может создаваться или уничтожаться, а только переходит из одной формы в другую. Если 12-вольтовый источник подсоединен к 12-вольтовой лампе, то источник напряжения обеспечивает приложенное напряжение 12 вольт, а на лампе происходит падение напряжения 12 вольт. Вся энергия потребляется в цепи. Если две одинаковые 6-вольтовые лампы подсоединены последовательно к тому же 12-вольтовому источнику (рис. 3-25), то на каждой лампе происходит падение напряжения 6 вольт, а общее падение напряжения равно 12 вольт.
Рис. 3-25. На каждой из двух одинаковых 6-вольтовых ламп, подключенных к источнику 12 вольт, происходит одинаковое падение напряжения по 6 вольт.
Если две разные лампы соединены последовательно, например как 9-вольтовая и 3-вольтовая лампы (рис. 3-26), то на 9-вольтовой лампе происходит падение напряжения 9 вольт, а на 3-вольтовой лампе – 3 вольта. Сумма падений напряжения равна приложенному напряжению 12 вольт.
Рис. 3-26. Когда две лампы, рассчитанные на различное напряжение последовательно подсоединены к 12-вольтовому источнику, падение напряжения на каждой лампе будет разным, в зависимости от напряжения, на которое рассчитана лампа, и ее сопротивления.
3–4. Вопросы
1. Что такое приложенное напряжение?
2. Что такое падение напряжения?
3. Если два равных сопротивления подсоединены последовательно к источнику напряжения, то каковы падения напряжений на каждом из сопротивлений?
3-5. ЗАЗЕМЛЕНИЕ КАК УРОВЕНЬ ОТСЧЕТА НАПРЯЖЕНИЯ
Земля – это термин, используемый для обозначения нулевого потенциала. Все другие потенциалы являются либо положительными, либо отрицательными по отношению к земле.
Все электрические цепи и приборы заземлены с помощью защитного заземления. Следовательно, между любыми двумя приборами или цепями не существует разности потенциалов, и, следовательно, не будет течь ток. Все цепи связаны с общей точкой на распределительном щитке (который содержит размыкатели или предохранители) (рис. 3-27).