355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Эрл Гейтс » Введение в электронику » Текст книги (страница 26)
Введение в электронику
  • Текст добавлен: 18 октября 2017, 01:00

Текст книги "Введение в электронику"


Автор книги: Эрл Гейтс


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 26 (всего у книги 26 страниц)

4. МОП транзистор обогащенного типа в нормальном состоянии закрыт, и открывается только при подаче на затвор соответствующего напряжения смещения.

5. При работе с МОП транзисторами должны соблюдаться следующие меры предосторожности:

а. До установки его выводы должны быть закорочены.

б. Используйте металлический браслет на запястье для заземления работающей руки.

в. Используйте паяльник с заземленным жалом.

г. Всегда выключайте питание перед установкой МОП транзистора.


Глава 24. ТИРИСТОРЫ

1. Диод на основе р-п-перехода имеет один переход и два вывода (анод и катод), а КУВ имеет три перехода и три вывода (анод, катод и управляющий переход).

2. Приложенное к аноду напряжение удерживает КУВ во включенном состоянии даже после удаления напряжения с управляющего перехода. Это позволяет току протекать от катода к аноду.

3. Нагрузочный резистор включается последовательно с КУВ для ограничения тока катод-анод.

4. КУВ можно проверить с помощью омметра или промышленного прибора для проверки транзисторов. Для проверки КУВ с помощью омметра подсоедините положительный вывод к катоду, а отрицательный к аноду. Прибор должен показать высокое сопротивление, превышающее 1 МОм. Поменяйте выводы местами: положительный вывод – к аноду, а отрицательный – к катоду. Прибор опять должен показать высокое сопротивление, превышающее 1 МОм. Соедините управляющий электрод с анодом – сопротивление должно упасть до величины меньшей 1000 Ом. Удалите соединение управляющего электрода с анодом – сопротивление должно остаться низким. Отсоедините выводы и повторите проверку.

5. Диак используется как устройство запуска триака. Он предотвращает включение триака до тех пор, пока на управляющем электроде не будет достигнуто некоторое напряжение.


Глава 25. ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ

1. Гибридные интегральные микросхемы содержат монолитные, тонкопленочные, толстопленочные и дискретные компоненты.

2. Чип – это полупроводниковый материал, содержащий интегральную микросхему и имеющий площадь около одного квадратного сантиметра.

3. Резисторы и конденсаторы в интегральной микросхеме не формируются монолитным методом, поскольку требуется достаточно высокая точность соблюдения величины их параметров. Монолитный метод не позволяет получить такую же точность, какую дает тонкопленочная и толстопленочная техника.


Глава 26. ОПТОЭЛЕКТРОННЫЕ УСТРОЙСТВА

1. Самое короткое время отклика на изменения интенсивности света из всех фоточувствительных устройств имеет фотодиод.

2. Фототранзистор имеет более широкую область применений, поскольку у него более высокое усиление. Однако, его время отклика на изменения интенсивности света больше, чем у фотодиода.

3. Чем больше ток, протекающий через светодиод, тем ярче испускаемый им свет. Однако последовательно со светодиодом должен быть включен резистор, ограничивающий ток, для избежания повреждения светодиода.


Глава 27. ИСТОЧНИКИ ПИТАНИЯ

1. Выбирая трансформатор для блока питания, следует учитывать мощность первичной обмотки, частоту, на которой он будет работать, напряжение и ток вторичной обмотки и общую расчетную мощность трансформатора.

2. Трансформаторы используются для изоляции блока питания от сети переменного тока.

3. Выпрямитель в блоке питания преобразует входное напряжение переменного тока в постоянное.

4. Недостатком двухполупериодного выпрямителя является то, что для него необходим трансформатор с отводом от центра вторичной обмотки. Преимущество в том, что для него требуются только два диода. Преимущество мостового выпрямителя в том, что для него не требуется трансформатор; однако для него требуются четыре диода. Оба выпрямителя являются более эффективными, чем однополупериодный, и их напряжение легче фильтруется.

5. Фильтрующий конденсатор заряжается, когда ток течет и разряжается, когда ток перестает течь, удерживая выходной ток постоянным.

6. Конденсаторы, выбранные для фильтрации, должны обеспечивать большую постоянную времени RC. Медленный разряд поддерживает высокое напряжение на выходе.

7. Стабилизатор последовательного типа компенсирует повышение входного напряжения путем увеличения последовательного сопротивления и, следовательно, падения напряжения на нем, так что выходное напряжение остается постоянным.

8. При выборе микросхемы стабилизатора напряжения необходимо знать выходное напряжение и ток нагрузки.

9. Умножители напряжения позволяют повышать напряжение без использования трансформатора.

10. Напряжение, полученное на входе двухполупериодного удвоителя, легче фильтруется, чем напряжение от однополупериодного удвоителя напряжения. Кроме того, на конденсаторы в двухполупериодном удвоителе подается только пиковое значение входного сигнала.

11. Для защиты цепи от превышения напряжения используется цепь с КУВ, включенным параллельно нагрузке.

12. Для защиты от превышения тока используются плавкие предохранители и размыкатели цепи.


Глава 28. УСИЛИТЕЛИ

1. Транзистор обеспечивает усиление посредством использования входного сигнала для управления током, текущим через транзистор и управляющий напряжением на нагрузке.

2. Схема с общим эмиттером обеспечивает усиление и по току, и по напряжению и дает высокий коэффициент усиления по мощности. Ни одна из других схем не обеспечивает этой комбинации.

3. Изменения температуры влияют на коэффициент усиления транзистора. Отрицательная обратная связь компенсирует это.

4. Усилители класса А смещены таким образом, что выходной ток течет через них в течение всего периода. Усилители класса В смещены таким образом, что выходной ток течет в течение только половины периода входного сигнала. Усилители класса АВ смещены таким образом, что выходной ток течет в течение промежутка большего, чем половина периода входного сигнала, но меньшего, чем период. Усилители класса С смещены таким образом, что выходной ток течет в течение промежутка меньшего половины периода входного сигнала.

5. При соединении двух транзисторных усилителей необходимо предотвратить влияние напряжения смещения одного усилителя на работу второго.

6. Если для связи используются конденсаторы или катушки индуктивности, реактивное сопротивление элемента связи будет влиять на диапазон передаваемых частот.

7. Усилители постоянного тока или с гальванической связью используются для усиления сигналов от 0 Гц (постоянный ток) до многих тысяч герц.

8. Температурная стабильность усилителей постоянного тока достигается путем использования дифференциального усилителя.

9. Усилители напряжения звуковой частоты обеспечивают высокое усиление по напряжению, тогда как усилители мощности звуковой частоты обеспечивают высокое усиление по мощности.

10. Для комплементарного двухтактного усилителя требуются подобранные р-n-р и n-р-n транзисторы. Квазикомплементарный усилитель не требует подбора транзисторов.

11. Видеоусилитель имеет более широкий диапазон частот, чем усилитель звуковой частоты.

12. Фактором, ограничивающим усиление видеоусилителя на высоких частотах, является шунтирующая емкость цепи.

13. Усилитель радиочастоты усиливает сигналы в диапазоне частот от 10 кГц до 30 МГц.

14. Усилитель промежуточной частоты – это одночастотный (узкополосный) усилитель, используемый для усиления сигнала до необходимого уровня.

15. Операционный усилитель состоит из входного каскада (дифференциальный усилитель), усилителя напряжения с высоким коэффициентом усиления и выходного усилителя. Это усилитель постоянного тока с высоким коэффициентом усиления, способный усиливать входной сигнал в 20 000 -1 000 000 раз.

16. Операционные усилители используются для сравнения, инвертирования и неинвертирования сигнала, а также для суммирования, кроме того они применяются в качестве активных фильтров и разностных усилителей.


Глава 29. ГЕНЕРАТОРЫ

1. Генератор состоит из частотозадающей цепи, называемой колебательным контуром, усилителя, усиливающего сигнал колебательного контура и цепи обратной связи, подающей часть выходного сигнала обратно в колебательный контур для поддержания колебаний.

2. Колебания в колебательном контуре можно поддерживать при помощи положительной обратной связи, т. е. подачи части выходного сигнала, совпадающего по фазе, обратно на вход для возмещения потерь энергии, обусловленных сопротивлением компонентов колебательного контура.

3. Главными типами генераторов синусоидальных колебаний являются: генератор Хартли, генератор Колпитца и генератор Клаппа.

4. Кварцы имеют собственную частоту колебаний и идеально подходят для цепей генераторов. Частота кварца используется для управления частотой колебательного контура.

5. Генераторы несинусоидальных колебаний генерируют сигналы несинусоидальной формы. Обычно все генераторы несинусоидальных колебаний являются разновидностями релаксационного генератора.

6. В генераторах несинусоидальных колебаний используются блокинг-генераторы, мультивибраторы, RC цепи и интегральные микросхемы.


Глава 30. ЦЕПИ ФОРМИРОВАНИЯ СИГНАЛА

1. Частотный анализ основывается на утверждении, что все периодические сигналы состоят из синусоид. Периодическое колебание может быть получено путем сложения многих синусоид, имеющих различные амплитуды, фазы и частоты.

2. Положительный выброс, отрицательный выброс и «звон» имеют место вследствие несовершенства цепей.

3. Дифференцирующая цепь используется для получения узких импульсов из прямоугольных в цепях синхронизации. Интегрирующая цепь используется в цепях формирования сигналов.

4. Уровень постоянной составляющей сигнала может быть изменен с помощью цепи фиксации посредством сложения сигнала с заданным уровнем постоянного напряжения.

5. Моностабильная цепь имеет только одно стабильное состояние и отвечает одним выходным импульсом на каждый входной. Бистабильная цепь имеет два стабильных состояния и требует двух входных импульсов для управления.

6. Триггер может генерировать прямоугольные колебания для использования в качестве стробирующих или синхронизирующих сигналов, или для операций переключения.


Глава 31. ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

1.



2. Для представления десятичного числа 100 требуется семь двоичных разрядов (1100100).

3. Для преобразования десятичного числа в двоичное необходимо последовательно делить десятичное число на 2, записывая остаток после каждого деления. Остатки, взятые в обратном порядке, образуют двоичное число.

4. а. 100101,001011 = 37,171875.

б. 111101110,11101110 = 494,9296875.

в. 10000001,00000101 = 129,0195312.

5. Преобразовать каждую десятичную цифру в двоичную, используя двоично-десятичный код.

6. а. 0100 0001 0000 0110 = 4106.

б. 1001 0010 0100 0011 = 9243.

в. 0101 0110 0111 1000 = 5678.


Глава 32. ОСНОВНЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

1.


2.


3.


4.


5. Цепь НЕ используется для выполнения инверсии или дополнения.

6. Кружочек изображается на входе для инверсии входного сигнала и размещается на выходе для инверсии выходного сигнала.

7.


8.


9.


10.


11. Элемент «исключающее ИЛИ» дает высокий уровень на выходе только тогда, когда уровни входов различны. Если на входах два нуля или две единицы, то на выходе нуль.

12. Элемент «исключающее HE-ИЛИ» имеет максимум два входа.


Глава 33. ПРОСТЫЕ ЛОГИЧЕСКИЕ ЦЕПИ

1. Процедура использования диаграмм Вейча следующая:

а. Нарисуйте диаграмму, соответствующую числу переменных.

б. Нанесите на нее логические функции, отмечая их знаком X в соответствующем квадрате.

в. Для получения упрощенной логической функции объедините соседние квадраты, помеченные знаком X, в группы по восемь, четыре или два. Продолжайте объединять до тех пор, пока не будут объединены все квадраты, помеченные знаком X.

г. Логически сложите слагаемые (объедините с помощью операции ИЛИ) от каждой петли, одно слагаемое на каждую петлю.

д. Запишите упрощенное выражение.

2.



Глава 34. ПОСЛЕДОВАТЕЛЬНЫЕ ЛОГИЧЕСКИЕ ЦЕПИ

1. Для изменения состояния выхода RS-триггера необходимо подать высокий уровень сигнала или 1 на вход R. Это изменит состояние триггера на 0 на выходе Q и на 1 на выходе Q-.

2. Главное отличие D-триггера от тактируемого RS-триггера состоит в том, что D-триггер имеет один вход для данных и вход для тактовых импульсов.

3. Счетчик состоит из триггеров, соединенных либо для асинхронного, либо для синхронного режима счета. В режиме асинхронного счета выход Q- первого каскада соединен с тактовым входом следующего каскада. В режиме синхронного счета входы тактовых импульсов всех каскадов соединены параллельно.

4.


5. Сдвиговый регистр рассчитан для временного хранения данных. Данные могут быть загружены в сдвиговый регистр или последовательно, или параллельно.

6. Сдвиговые регистры могут использоваться для хранения данных, для преобразования данных из последовательной формы в параллельную и наоборот, и для выполнения таких арифметических действий, как деление и умножение.


Глава 35. КОМБИНАЦИОННЫЕ ЛОГИЧЕСКИЕ СХЕМЫ

1. Шифраторы позволяют декодировать сигналы от клавиатуры в двоичные числа.

2. Для ввода данных с клавиатуры требуется десятично-двоичный шифратор с приоритетом.

3. Дешифраторы позволяют преобразовывать сложные двоичные коды в распознаваемые цифры или символы.

4. Дешифраторы бывают следующих типов: дешифраторы 1 на 10, дешифраторы 1 на 8, дешифраторы 1 на 16 и дешифраторы двоично-десятичного кода в код семисегментного индикатора.

5. Мультиплексоры позволяют выбирать и направлять сигналы от отдельных источников на один выход.

6. Мультиплексоры могут использоваться для выбора линии передачи данных и для преобразования данных из параллельной формы в последовательную.

7.


8. Полный сумматор получает два двоичных числа для сложения и выдает сумму и перенос. Перенос подается на следующий каскад и складывается с двумя двоичными числами, выдавая сумму и перенос. Ответ является результатом переноса и двух сумм.


Глава 36. ОСНОВЫ МИКРОКОМПЬЮТЕРОВ

1. Компьютер состоит из блока управления, арифметико-логического устройства (АЛУ), памяти и блока ввода/вывода. Блок управления дешифрует команды, поступающие в компьютер и выдает импульсы, необходимые для выполнения указанных функций. АЛУ выполняет операции, связанные с математической логикой и принятием решений. Память – это место, где хранятся программы и данные. Блок ввода и вывода позволяет вводить в компьютер и удалять их из него.

2. Прерывание – это сигнал от внешнего устройства, сообщающий компьютеру о необходимости принять или послать данные.

3. Микропроцессор – это часть микрокомпьютера. Он состоит из блока управления и арифметико-логического устройства.

4. Микропроцессор выполняет функции управления и операции, связанные с математической логикой и принятием решений.

* * *



    Ваша оценка произведения:

Популярные книги за неделю