355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Эрл Гейтс » Введение в электронику » Текст книги (страница 1)
Введение в электронику
  • Текст добавлен: 18 октября 2017, 01:00

Текст книги "Введение в электронику"


Автор книги: Эрл Гейтс


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 1 (всего у книги 26 страниц)

Эрл Д. Гейтс
«ВВЕДЕНИЕ В ЭЛЕКТРОНИКУ»
практический подход
Серия: «Учебники и учебные пособия»

Предисловие

Создание этой книги началось с написания обзора, который я завершил несколько лет назад. Тогда я рассмотрел около двадцати специальностей в электронной промышленности и попытался ответить на следующие вопросы:

1. Какой должна быть подготовка студентов, начинающих работать в области электроники после окончания учебного заведения?

2. Соответствуют ли цели и приоритеты используемых в настоящее время программ высшей школы по электронике изменениям в промышленности?

Исследование показало, что промышленности нужен выпускник по специальности «электроника», который сможет обнаружить неисправности, провести измерения с помощью различного тестирующего оборудования, особенно с помощью осциллографа, он должен уметь паять, знать, где найти информацию и ориентироваться в справочной литературе по электронике.

Я обнаружил также, что промышленность больше ценит в студентах способность делать, чем способность знать.

Короче говоря, я пришел к выводу, что обучению теории надо посвящать времени меньше, а практике – больше.

Второе издание Введения в электронику продолжает давать студентам основные знания по электронике, в которых нуждается промышленность. Текст книги тщательно проработан с целью сделать процесс обучения более легким и эффективным. Курс рассчитан на один год и сосредоточен на привитии исследовательских навыков, а не на обучении мастерству. Предполагается в первом семестре изучать цепи постоянного и переменного тока, во втором – полупроводники и линейные цепи, в третьем – цифровые устройства.

Ниже приведены некоторые основные особенности изложения материала:

• Главы книги очень короткие и посвящены узким вопросам.

• В начале каждой главы указаны цели обучения.

• Для улучшения восприятия материала в книге широко используются иллюстрации.

• В каждой главе имеются обзорные вопросы для того, чтобы студент мог проверить себя.

• Математика в книге используется только для записи основных формул.

• Частые примеры показывают, как использовать математические формулы.

• В резюме после каждой главы перечислены наиболее важные вопросы.

• Каждую главу завершают вопросы для самопроверки.

При разработке книги было сделано все, чтобы она отвечала потребностям как студентов, так и преподавателей.

Структура книги такова, что материал в ней изложен в логической последовательности. Однако, поскольку каждая глава является самостоятельной единицей, последовательность изложения материала студентам может изменяться в зависимости от стиля преподавания.

Я пригласил преподавателя математики для проверки точности всех примеров и ответов на вопросы самопроверки. Все примеры в книге подготовлены с помощью этого преподавателя. Благодаря такому подходу созданы примеры, которые помогут студенту связать математику, изучаемую на уроках математики, с математикой, используемой в электронике.

Поскольку в лаборатории студенты применяют изученную в классе теорию на практике, я разработал руководство по лабораторным работам, которое удовлетворяет требованиям промышленности. Честолюбивые проекты подкрепляют процесс обучения студентов и помогают им увидеть, как теория становится практикой.

Настоящий учебник и руководство по лабораторным работам помогут студентам расширить их знания в области электроники. Я включил путеводитель по учебному плану в Путеводитель Инструктора, который служит основой для программ но электронике. Этот учебный план используется в нашем школьном округе несколько лет и успешно себя зарекомендовал. Кроме того, путеводитель по учебному плану был представлен в Департамент Образования штата Нью-Йорк и одобрен там как один из вариантов технологических программ.

Мне хотелось бы поблагодарить двух людей, чья помощь и поддержка сделала переработку этой книги возможной: учителя математики Черил Сколэнд и преподавателя электроники Ролфа Тидеманна из Греческой Центральной Школы. Мне хотелось бы также выразить свою признательность представителям промышленности, которые продолжали оказывать мне поддержку, когда я нуждался в ней: Джералду Бассу, президенту EIC Electronics и Томасу Фегаделу, владельцу Glenwood Sales. Благодарю также многочисленных преподавателей, которые использовали текст книги на своих уроках и обратили мое внимание на неточности, указав, какие вопросы надо исключить или расширить.

Мне хотелось бы также поблагодарить рецензентов за их значительную поддержку: Джеймса Роунера из Ланкастерской профессиональной школы; Гэри А. Смита из Гротонской центральной школы, Рональда Дж. Фронковяка из Центра Образования Орлеан/Ниагара, Хоя Дж. Дэвиса из Высшей школы графства Вебстер и Джоэла Шнейда из Высшей Школы Восточного Виндзора.

И, наконец, я хотел бы поблагодарить мою жену Ширли, моих дочерей Кимберли и Сьюзен и моего сына Тимоти, которые поддерживали меня при создании этого текста.

Эрл. Д. Гейтс

Техника безопасности

Перечисленные ниже меры предосторожности не заменяют инструктаж, проводимый в классе или приведенный в руководстве по лабораторным работам. Если в какой-то момент у вас возникнет вопрос, что делать дальше, проконсультируйтесь с преподавателем.

ОБЩИЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ

Ввиду возможности получения травмы, опасности пожара и повреждения оборудования и материалов, при любых работах, связанных с электрическими и электронными цепями, должны соблюдаться следующие меры безопасности:

1. Выключите питание перед началом работы с цепью или оборудованием. Никогда не пренебрегайте безопасными соединительными устройствами. Никогда не предполагайте, что цепь выключена, проверьте это с помощью вольтметра.

2. Удаляйте и заменяйте предохранители только после отключения питания от цепи.

3. Убедитесь в том, что все оборудование правильно заземлено.

4. Проявляйте предельную осторожность при удалении или установке аккумуляторов, содержащих кислоту.

5. Используйте летучие очищающие жидкости только в хорошо проветриваемых помещениях.

6. Храните ветошь и другие легковоспламеняющиеся материалы в плотно закрытых металлических контейнерах.

7. В случае поражения электрическим током обесточьте цепь и немедленно доложите преподавателю.

МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С ВЫСОКИМ НАПРЯЖЕНИЕМ

По мере приобретения опыта в работе с электрическими цепями, люди, как это свойственно человеческой природе, становятся беспечными при выполнении рутинных операций. Многие части электрического оборудования используют опасные для жизни напряжения, которые могут оказаться смертельными при контакте с ними. При работе с высоковольтными цепями или вблизи них всегда следует соблюдать следующие меры предосторожности:

1. Обдумайте последствия каждого вашего действия. Нет абсолютно никаких причин считать, что вы не подвергнете опасности свою жизнь и жизни других.

2. Держитесь подальше от включенных цепей. Не работайте и не настраивайте цепи при включенном высоком напряжении.

3. Не работайте в одиночку. Всегда работайте в присутствии других лиц, способных оказать вам поддержку и первую помощь при несчастном случае.

4. Не нарушайте соединений.

5. Не заземляйтесь. Убедитесь в том, что вы не заземлены при проведении настроек или при использовании измерительных инструментов.

6. Никогда не включайте оборудование при повышенной влажности.

ЛИЧНЫЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ

Уделите время принятию мер предосторожности при работе с электрическими и электронными цепями. Не работайте с любыми цепями или оборудованием до тех пор, пока не будут соблюдены все меры безопасности.

1. Работайте только на чистых и сухих поверхностях. Избегайте работы в захламленных или влажных местах, так как сопротивление кожи при этом будет более низким и может увеличить вероятность электрического поражения.

2. Не надевайте свободную или распахнутую одежду. Она может не только за что-то зацепиться, но и послужить проводником электричества.

3. Используйте только непроводящую обувь. Это уменьшит риск электрического поражения.

4. Снимите все кольца, наручные часы, браслеты, цепочки и подобные металлические изделия. Не используйте одежду, содержащую металлические змейки, кнопки и другую металлическую фурнитуру. Металл, пропуская ток, может нагреваться и служить причиной ожогов.

5. Не удаляйте горячие предметы голыми руками.

6. Используйте закорачивающий электрод для удаления высоковольтных зарядов на конденсаторах. Конденсаторы могут оставаться заряженными длительное время, помните об этом.

7. Убедитесь в том, что используемое оборудование тщательно заземлено. Заземлите все тестирующее и/или тестируемое оборудование и цепи.

8. Отключите питание от цепи перед подключением к ней зажимов типа «крокодил». Использование неизолированных зажимов типа «крокодил» может служить причиной электрического поражения.

9. При измерении напряжений свыше 300 вольт не держите руками тестирующие щупы. Это предотвратит возможность электрического поражения из-за ненадежности изоляции щупов.

Безопасность – это ответственность каждого. Необходимо всем в классе и вне класса упражняться в мерах предосторожности для гарантии, что ни один ученик не получит травмы, а оборудование не будет повреждено.

В каждом классе, где вы будете работать, необходимо уделить особое внимание технике безопасности.

Раздел 1
ЦЕПИ ПОСТОЯННОГО ТОКА



Специальность – инженер-электрик

Электротехника является весьма обширной отраслью технических наук. Инженер-электрик проектирует новые изделия, определяет их технические характеристики и требования по эксплуатации. Инженеры-электрики также испытывают оборудование и решают возникающие при этом проблемы. Они должны знать, сколько времени потребуется для осуществления того или иного проекта и уметь определить стоимость этого проекта.

Область деятельности, связанная с электричеством, требует специалистов двух типов: инженеров-электриков и инженеров-электронщиков. Инженер-электрик работает с оборудованием по производству и передаче электроэнергии, электродвигателями, занят управлением и контролем электрооборудования и установкой электропроводки и освещения. Инженер-электронщик имеет дело с электронным оборудованием: радарами, компьютерами, коммуникациями и бытовой техникой.

Ожидается, что потребность в инженерах к 2000 году, значительно возрастет. Этот предполагаемый рост связан с увеличением потребности в компьютерах, коммуникационном оборудовании и военной технике. Дополнительные рабочие места создаются благодаря исследованиям и разработкам новых типов автоматов и промышленных роботов.

Глава 1. Основы электричества

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Дать определения атома, материи, элемента и молекулы.

• Перечислить части атома.

• Дать определение валентной оболочки атома.

• Знать, в каких единицах измеряется ток.

• Изобразить символ, используемый для обозначения тока в цепи.

• Описать разницу между проводниками, изоляторами и полупроводниками.

• Дать определения разности потенциалов, электродвижущей силы и напряжения.

• Изобразить символ, используемый для обозначения напряжения.

• Знать, в каких единицах измеряется напряжение.

• Дать определение сопротивления.

• Знать характеристики сопротивления в цепи.

• Знать, в каких единицах измеряется сопротивление.

• Изобразить символ, используемый для обозначения сопротивления в цепи.

Любая вещь, созданная природой или человеком, может быть разбита на мельчайшие кусочки. Однако наименьшей частью вещества является атом. Атом состоит из протонов, нейтронов и электронов. Протоны и нейтроны сгруппированы в центре атома и образуют ядро. Электроны расположены на оболочках на различных расстояниях от ядра.

Когда соответствующая внешняя сила воздействует на электроны, находящиеся на внешней оболочке, они отрываются от атома и становятся свободными. Движение свободных электронов называется током. Внешняя сила, необходимая для создания тока, называется напряжением.

На своем пути ток встречает некоторое противодействие, называемое сопротивлением.

В этой главе рассмотрено, как связаны между собой ток, напряжение и сопротивление – эти основополагающие понятия учения об электричестве.


1–1. МАТЕРИЯ, ЭЛЕМЕНТЫ И СОЕДИНЕНИЯ

Материей является все, что занимает окружающее нас пространство и имеет вес. Материя бывает в одном из трех основных состояний: твердом, жидком или газообразном. Примерами материи являются: воздух, которым мы дышим, вода, которую пьем, одежда, которую носим, и мы сами. Материя может быть либо элементом, либо соединением.

Элемент является основным строительным материалом природы. Он представляет собой субстанцию, которая не может быть разделена на более простые субстанции химическим путем. В настоящее время известно около 100 элементов. Примерами элементов являются золото, серебро, медь и кислород.

Химическая комбинация двух или более элементов называется соединением (рис. 1–1).


Рис. 1–1. Химическая комбинация двух или более элементов называется соединением. Молекула – это химическая комбинация двух или более атомов. Примерами являются вода (Н2О) и соль (NaCl).

Соединение может быть разделено химическим, но не механическим способом.

Примерами соединений являются вода, которая состоит из кислорода и водорода, и поваренная соль, состоящая из натрия и хлора. Наименьшая частица соединения, которая еще сохраняет его свойства, называется молекулой. Молекула – это химическая комбинация двух или более атомов. Атом – это наименьшая частица элемента, сохраняющая характеристики элемента.

Комбинация элементов и соединений, не вступивших в химическую реакцию, называется смесью. Примерами смесей являются воздух, состоящий из кислорода, азота, углекислого газа и других газов, и соленая вода, которая состоит из соли и воды.

1–1. Вопросы

1. В каких состояниях бывает материя?

2. Как называется субстанция, которая не может быть разделена на более простые субстанции химическим путем?

3. Что является наименьшей частицей соединения, которая сохраняет его характеристики?

4. Что является наименьшей частицей, которая сохраняет характеристики элемента?


1-2. ЗНАКОМСТВО С АТОМАМИ

Атом является наименьшей частицей элемента, сохраняющей его характеристики. Атомы различных элементов отличаются друг от друга. Поскольку существует свыше 100 различных элементов, то существует и свыше 100 различных видов атомов.

Каждый атом имеет ядро. Ядро расположено в центре атома. Оно содержит положительно заряженные частицы – протоны и незаряженные частицы – нейтроны. Отрицательно заряженные частицы – электроны вращаются вокруг ядер (рис. 1–2).


Рис. 1–2. Части атома.

Количество протонов в ядре атома называется атомным номером элемента. Атомные номера позволяют отличить один элемент от другого.

Каждый элемент имеет атомный вес. Атомный вес – это масса атома, которая определяется общим числом протонов и нейтронов в ядре. Электроны практически не дают вклада в общую массу атома, масса электрона составляет только 1/1845 часть массы протона и ею можно пренебречь.

Электроны вращаются по концентрическим орбитам вокруг ядра. Каждая орбита называется оболочкой. Эти оболочки заполняются в следующей последовательности: сначала заполняется оболочка К, затем L, М, N и т. д. (рис. 1–3).


Рис. 1–3. Электроны расположены на оболочках вокруг ядра.

Максимальное количество электронов, которое может разместиться на каждой оболочке показано на рис. 1–4.


Рис. 1–4. Количество электронов, которое может принять каждая оболочка.

Внешняя оболочка называется валентной, и количество электронов, содержащееся в ней, называется валентностью.

Чем дальше от ядра валентная оболочка, тем меньшее притяжение со стороны ядра испытывает каждый валентный электрон. Таким образом, потенциальная возможность атома присоединять или терять электроны увеличивается, если валентная оболочка не заполнена и расположена достаточно далеко от ядра.

Электроны валентной оболочки могут получать энергию. Если эти электроны получат достаточно энергии от внешних сил, они могут покинуть атом и стать свободными электронами, произвольно перемещающимися от атома к атому.

Материалы, содержащие большое количество свободных электронов называются проводниками. На рис. 1–5 сравниваются проводимости различных металлов, используемых в качестве проводников. В таблице серебро, медь и золото имеют валентность равную единице (рис. 1–6). Однако серебро является лучшим проводником, поскольку его валентные электроны слабее связаны.


Рис. 1–5. Проводимость различных металлов, используемых в качестве проводников.


Рис. 1–6. Валентность меди равна 1.

Изоляторы, в противоположность проводникам, препятствуют протеканию электричества. Изоляторы стабильны благодаря тому, что валентные электроны одних атомов присоединяются к другим атомам, заполняя их валентные оболочки, препятствуя, таким образом, образованию свободных электронов. Материалы, классифицируемые как изоляторы, сравниваются на рис. 1–7.


Рис. 1–7. Диэлектрические свойства различных материалов, используемых в качестве изоляторов.

Слюда является наилучшим изолятором, потому что она имеет наименьшее число свободных электронов на своих валентных оболочках.

Промежуточное положение между проводниками и изоляторами занимают полупроводники. Полупроводники не являются ни хорошими проводниками, ни хорошими изоляторами, но они важны, потому что их проводимость можно изменять от проводника до изолятора.

Кремний и германий являются полупроводниковыми материалами.

Об атоме, который имеет одинаковое число электронов и протонов, говорят, что он электрически нейтрален. Атом, получающий один или более электронов, не является электрически нейтральным. Он становится отрицательно заряженным и называется отрицательным ионом. Если атом теряет один или более электронов, то он становится положительно заряженным и называется положительным ионом. Процесс присоединения или потери электронов называется ионизацией. Ионизация играет большую роль в протекании электрического тока.

1–2. Вопросы

1. Какая атомная частица имеет положительный заряд и большую массу?

2. Какая атомная частица не имеет заряда вообще?

3. Какая атомная частица имеет отрицательный заряд и маленькую массу?

4. Что определяется количеством электронов на самой внешней оболочке атома?

5. Каким термином описывается присоединение и потеря электронов атомом?


1–3. ТОК

При наличии внешней силы движение электронов направлено от отрицательно заряженных атомов к положительно заряженным. Этот поток электронов называется током (I). Ток измеряется суммой зарядов всех электронов, прошедших через заданную точку.

Электрон имеет очень маленький заряд, такой, что заряд 6 280 000 000 000 000 000 электронов, собранных вместе, называется кулоном (Кл). Когда заряд в один кулон проходит через заданную точку за одну секунду, это означает, что по проводнику течет ток в один ампер (А). Единица силы тока названа в честь французского физика Андре Мари Ампера (1775–1836). Сила тока измеряется в амперах.

1–3. Вопросы

1. Какое действие приводит к появлению тока в электрической цепи?

2. Какое действие приводит к появлению тока в один ампер?

3. Какой символ используется для обозначения силы тока?

4. Какой символ используется для обозначения единицы силы тока?


1–4. НАПРЯЖЕНИЕ

Если имеет место избыток электронов (отрицательный заряд) на одном конце проводника и дефицит электронов (положительный заряд) на другом конце проводника, то по проводнику течет ток. Ток будет течь до тех пор, пока эти условия выполняются. Источник, который создает избыток электронов на одном конце проводника и дефицит электронов на другом конце, характеризуется потенциалом. Потенциал – это способность источника выполнять электрическую работу.

Реальная работа, производимая в цепи, является результатом наличия разности потенциалов на двух концах проводника. Именно эта разность потенциалов заставляет электроны двигаться или течь в цепи (рис. 1–8).


1–8. Поток электронов в цепи, обусловленный разностью потенциалов.

Разность потенциалов связана с электродвижущей силой (э.д.с.) или напряжением. Напряжение – это сила, которая перемещает электроны в цепи. Напряжение можно представить как давление или насос, перемещающий электроны.

Символ Е используется в электронике для обозначения напряжения. Единицей измерения напряжения является вольт (В), названный в честь графа Алессандро Вольта (1745–1827), изобретателя первого элемента, вырабатывающего электричество. Один вольт – это потенциал, приложенный к проводнику сопротивлением в один ом, для получения тока в один ампер.

1–4. Вопросы

1. Как называется устройство, которое создает напряжение?

2. Каким термином обозначается потенциал между двумя концами проводника?

3. Какой символ используется для обозначения напряжения?

4. Какой символ используется для обозначения единицы напряжения?


1-5. СОПРОТИВЛЕНИЕ

Когда свободные электроны перемещаются по цепи, они встречают на своем пути атомы, которые не очень охотно уступают им дорогу. Это противодействие потоку электронов (току) называется сопротивлением (R).

Каждый материал обладает некоторым сопротивлением или противодействием току. Степень сопротивления материала зависит от его размера, формы и температуры.

Материалы с низким сопротивлением называются проводниками. Проводники содержат много свободных электронов и оказывают малое сопротивление току. Как упоминалось раньше, серебро, медь, золото и алюминий являются примерами хороших проводников.

Материалы с высоким сопротивлением называются изоляторами. Изоляторы содержат немного свободных электронов и оказывают высокое сопротивление току. Как упоминалось ранее, стекло, резина и пластмасса являются примерами хороших изоляторов.

Сопротивление измеряется в омах (Ом), эта единица названа в честь немецкого физика Георга Симона Ома (1787–1854). Один ом – это такое сопротивление, которое позволяет течь току в один ампер при приложенном напряжении в один вольт. Символом, обозначающим ом, является греческая буква омега (Ω).

1–5. Вопросы

1. Какой термин используется для обозначения противодействия току?

2. Какое основное отличие между проводниками и изоляторами?

3. Какой символ используется для обозначения сопротивления?

4. Какой символ используется для обозначения единицы сопротивления?

РЕЗЮМЕ

• Материей является все, что заполняет окружающее нас пространство.

• Материя может быть элементом или соединением.

• Элемент является основным строительным материалом природы.

• Соединение – это комбинация двух или более элементов.

• Молекула – это наименьшая частица соединения, которая сохраняет его свойства.

• Атом – это наименьшая частица материи, которая сохраняет структуру элемента.

• Атом состоит из ядра, содержащего протоны и нейтроны. Он также содержит электроны, находящиеся на орбитах вокруг ядра.

• Протоны имеют положительный заряд, электроны имеют отрицательный заряд, а нейтроны не имеют заряда.

• Атомный номер элемента – это число протонов в ядре.

• Атомная масса элемента является суммой масс протонов и нейтронов.

• Орбиты, по которым движутся электроны, называются оболочками.

• Внешняя оболочка атома называется валентной оболочкой.

• Число электронов на валентной оболочке называется валентностью.

• Атом, который имеет одинаковое число протонов и электронов, называется электрически нейтральным.

• Процесс, при котором атом присоединяет или теряет электроны, называется ионизацией.

• Поток электронов называется током.

• Ток обозначается символом I.

• Заряд 6 280 000 000 000 000 000 электронов называется кулон.

• Ток в один ампер означает, что через данную точку за одну секунду проходит один кулон заряда.

• Ампер обозначается символом А.

• Ток измеряется в амперах.

• Электрический ток течет через проводник при наличии избытка электронов на одном конце проводника и дефицита на другом конце.

• Источник, обеспечивающий избыток электронов, характеризуется потенциалом или электродвижущей силой.

• Потенциал или электродвижущая сила связаны с напряжением.

• Напряжение – это сила, перемещающая электроны в цепи.

• Для обозначения напряжения используется символ Е.

• Единицей измерения напряжения является вольт (В).

• Сопротивление – это противодействие току.

• Сопротивление обозначается символом R.

• Все материалы оказывают некоторое сопротивление току.

• Сопротивление материала зависит от размеров материала, его формы и температуры.

• Проводники – это материалы с низким сопротивлением.

• Изоляторы – это материалы с высоким сопротивлением.

• Сопротивление измеряется в омах (Ом).

• Для обозначения омов используется греческая буква омега (Ω).

Глава 1. САМОПРОВЕРКА

1. Каким критериям должен удовлетворять атом хорошего проводника?

2. Что определяет принадлежность материала к проводникам, полупроводникам или изоляторам.

3. Почему важно понимание связи между проводниками, полупроводниками и изоляторами?

4. Объясните разницу между током, напряжением и сопротивлением.

5. Опишите, как определяется сопротивление материала.


    Ваша оценка произведения:

Популярные книги за неделю