355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Кузнецов » Эйнштейн (Жизнь, Смерть, Бессмертие) » Текст книги (страница 25)
Эйнштейн (Жизнь, Смерть, Бессмертие)
  • Текст добавлен: 9 октября 2016, 03:22

Текст книги "Эйнштейн (Жизнь, Смерть, Бессмертие)"


Автор книги: Борис Кузнецов


Жанр:

   

История


сообщить о нарушении

Текущая страница: 25 (всего у книги 46 страниц)

Мы знаем, что частица, которая макроскопически обладает непрерывным бытием, на самом деле (в ультрамикроскопическом аспекте) превращается в иные частицы и вновь возникает из них.

Поэтому кажется естественным предположение о трансмутациях как об основе прерывности, дискретности атомистической структуры пространства-времени. Частица определенного типа переходит из одной элементарной, далее неделимой пространственной клетки в соседнюю в течение элементарного интервала, превращаясь в частицу иного типа и вновь возникая уже в другой клетке.

Такое предположение о неотделимости элементарных трансмутаций от элементарных переходов дает наглядное представление о дискретности пространства-времени. Если частица исчезает в данной клетке и возрождается в соседней, никакой сигнал не может быть отправлен на расстояние, меньшее элементарного, и в течение времени, меньшего элементарного. Два события пребывание частицы в точке х в момент времени t и пребывание частицы в точке х в момент времени t' – не могут быть разделены расстоянием, меньшим элементарного расстояния, и временем, меньшим элементарного интервала.

Предположение о дискретности пространства-времени кажется естественным хотя бы потому, что оно высказывалось на каждом этапе развития науки. Уже Эпикур – об этом речь пойдет в главе "Эйнштейн и Аристотель" – говорил о "кинемах", о микроскопических перемещениях атомов в течение "мгновений, постижимых лишь мыслью", с одной и той же скоростью. Тела, состоящие из атомов, могут двигаться с меньшей скоростью; они даже могут быть неподвижными, если число "кинем", направленных в одну сторону, примерно равно числу "кинем", направленных в обратную сторону.

367

Мир современных аналогов эпикуровских "кинем", мир элементарных трансмутаций-смещений может служить иллюстрацией, – разумеется, совершенно условной – тех закономерностей, которые Эйнштейн искал за кулисами закономерностей квантовой механики. Движение тождественной себе частицы подчинено соотношениям квантовой механики Рассматривая результат большего числа элементарных трансмутаций-переходов, игнорируя отдельные переходы, принимая во внимание макроскопическое движение частицы, мы не можем выйти за пределы этих соотношений: зная положение частицы в данный момент, мы можем узнать лишь вероятность ее скорости. Частица движется в определенную сторону, ее макроскопическая траектория имеет определенное направление, если вероятность элементарных сдвигов в эту сторону больше, чем вероятность элементарных сдвигов в другую сторону, В атом случае частица после большого числа переходов окажется прошедшей свой макроскопический путь, на котором определенное положение несовместимо с определенной скоростью. Здесь все подчинено статистическим закономерностям квантовой механики. Но это еще ничего не говорит о закономерностях, стоящих за кулисами квантовой механики.

Речь идет отнюдь не о каких-то "скрытых параметрах", не о каких-то неизвестных процессах, позволяющих точно определить в одном эксперименте положение и скорость движущейся частицы, найти закономерности движения этой частицы, определяющие достоверным образом не вероятность ее пребывания в данной точке, а самое пребывание. Подобных "скрытых параметров" нет, движение частицы (частицы, тождественной все время самой себе, частицы, движущейся, не исчезая и не возникая) определяется статистическими законами квантовой механики. Но такое движение представляет собой, быть может, только статистический результат большого числа элементарных процессов, к которым неприменимо понятие определенных или неопределенных динамических переменных.

Подобные схемы не претендуют на что-либо большее, чем роль условных иллюстраций, показывающих одно обстоятельство, важное для понимания и исторической оценки "бесплодных" идей Эйнштейна. Эти идеи отнюдь не тянули физику вспять, от квантово-статистической причинности к классической причинности. Приведенная

368

схема иллюстрирует принципиальную возможность такого развития теории микромира, которое отводит эту теорию еще дальше от классических представлений, чем квантовая механика, к идеям, еще более парадоксальным и "безумным" с точки зрения классической физики. Все дело в том, что процесс познания, каким он представлялся Эйнштейну, не встречает абсолютных границ в виде окончательно завершенных теорий и не возвращается назад. Процесс познания повторяет иногда уже пройденные циклы, но всегда на новой основе.

Уже в начале сороковых годов Эйнштейн подходил очень близко к идеям, созревающим сейчас, в семидесятые годы, в релятивистской квантовой физике в связи с изучением свойств элементарных частиц и различных взаимодействий полей. В начале этой главы приводились строки из письма Эйнштейна Гансу Мюзаму в 1944 г. – в них говорится о "безжалостных тисках математических мучений".

Перед этими строками изложен общий замысел единой теории:

"Целью служит релятивистская характеристика физического пространства, но без дифференциальных уравнений. Последние не приводят к разумному пониманию квантов и вещества. Это в известном смысле отказ от принципа близкодействия, в котором мы со времен Герца были столь твердо уверены. У меня нет сомнений, что это возможно. В принципе это возможно без использования статистического метода, который я всегда считал гнилым выходом..." [12]

12 Helle Zeit, 51.

"Релятивистская характеристика физического пространства" означает концепцию пространства, выводящую из его свойств характер происходящих в пространстве физических процессов. Подобная концепция должна, по мнению Эйнштейна, пользоваться иным математическим аппаратом по сравнению с современными дифференциальными уравнениями физики и механики.

Выше уже шла речь о физическом смысле этих дифференциальных уравнений. В них заданы отношения бесконечно малых приращений скорости частиц, а также бесконечно малых приращений действующих на частицы сил к бесконечно малым приращениям пространства и

369

времени. Физический смысл применения подобных уравнений состоит в том, что в любой сколь угодно малой пространственной области и в любой сколь угодно малый интервал времени что-то происходит и это что-то подчиняется законам физики, которые выражаются в уравнениях. Иными словами, их смысл состоит в непрерывности физического пространства и времени, в возможности бесконечного дробления пространства и времени, причем пространство (как и время) остается физическим, т.е. его структура определяет характер физических процессов. Согласуется ли такое допущение с атомистическим строением вещества и атомистической структурой полей, т.е. существованием квантов поля, далее неделимых порций его энергии? Нет, не согласуется, отвечает Эйнштейн. Поэтому, быть может, придется отказаться от принципа близкодействия, т.е. представления о непрерывности физических процессов, о том, что каждый процесс идет от мгновения к мгновению и от точки к точке.

Более сложной оказывается расшифровка слов о статистическом методе. Нельзя думать, что Эйнштейн считал статистические идеи "гнилым выходом" во всех случаях. Ему принадлежат крупнейшие по значению работы о статистике в классической и квантовой физике, и в этих работах, применяя и развивая методы статистики, Эйнштейн решил важные задачи. Эпитет, по-видимому, относится к представлению о статистических закономерностях квантовой механики как о последних закономерностях бытия. Эйнштейн надеялся па существование более глубоких закономерностей нестатистического характера.

Как ни странно, эта надежда в сущности не противоречит мысли Макса Борна о статистическом характере по только квантовой, по и классической механики. Ведь из письма Мюзаму (и из большого числа других высказываний Эйнштейна) видно, что "заквантовые" процессы представлялись ему отнюдь не классическими и, более того, отнюдь не механическими. Эти процессы не состоят в "классическом" движении с определенным в каждый момент положением и скоростью – иначе к ним можно было бы применить дифференциальные уравнения, т.е. прослеживать их с бесконечной точностью вплоть до сколь угодно малых областей. Но они не состоят и в "квантовом" движении с определенным положением либо с определенной скоростью. Они вообще не состоят в ме

370

ханическом движении, в перемещении физических объектов. За относительными границами, охватывающими данную форму причинности, когда-то казавшуюся парадоксальной, лежат другие формы причинности, снова парадоксальные, за классическим детерминизмом Лапласа квантовомеханический детерминизм, за ним – еще более решительно порывающий с классическими процессами детерминизм ультрамикроскопических процессов. Научное познание состоит в последовательном усложнении, модификации, обобщении и уточнении каузальных представлений об окружающем нас мире.

Быть может, ультрамикроскопические закономерности позволят обобщить исходные закономерности теории относительности. Не исключено, что "поведение масштабов и часов" зависит от соотношений между элементарными расстояниями и элементарными интервалами времени. В качестве условной иллюстрации можно предложить, например, следующую модель. Минимальная длина равна приблизительно 10 в -13 степени см. Есть основания принять для нее такой или близкий порядок величины. Впрочем, есть основания и для значительно меньшего минимального расстояния. Поскольку перед нами не физическая модель, а историко-физическая, иллюстрирующая лишь некоторые тенденции современной науки, выбор значения здесь несуществен [13].

13 См.: Kouznetsov В. Complementarity and Relativity. – Philosophy of science, 1966, v. 33, N 3, p. 199-209.

Таким образом, 10 в -13 степени см – минимальное расстояние, на которое может быть послан сигнал, минимальное расстояние, на которое может переместиться частица. Меньшее расстояние уже не характеризует поведение частицы, здесь само понятие ее движения теряет смысл. Соответственно здесь неприменимы понятия относительности движения и соотношения теории относительности. Но именно здесь им, по-видимому, суждено найти то обоснование, о котором думал Эйнштейн.

Представим себе, что время состоит из минимальных интервалов, равных времени прохождения света через указанное выше минимальное расстояние.

371

Такой минимальный интервал будет равен 3-10 -24 степени сек. Если минимальное расстояние 10 -13 степени см, то 3 10 -24 степени сек – это и будет минимальное время распространения сигнала, минимальное время, в течение которого частица может переместиться в пространстве. Сделаем еще одно столь же условпое предположение: частица перемещается на минимальное расстояние ~10~13 см в течение минимального времени 3 10 -24 сек. Иначе говоря, движение частицы состоит из переходов на расстояние 10 -13 см, происходящих в течение интервалов 3 10 -24 сек. Скорость таких переходов равна частному от деления пройденного расстояния на время, т.е. 10 -13: 3 10 -24 = 3 1010 см/сек, т.е. 300 тыс. километров в секунду – скорости света. Быстрее частица двигаться не может, быстрее не будет двигаться и тело, состоящее из частиц. Если мы будем следить за всеми микроскопическими элементарными (па 10 -13 см в течение 3 10 -24 сек) переходами частицы, то мы зарегистрируем микроскопическую траекторию, которая будет в общем случае ломаной линией: переходы имеют одну и ту же абсолютную скорость, но различное направление. Если не смотреть на отдельные микроскопические переходы и принимать во внимание лишь результат очень большого числа их, то можно зарегистрировать непрерывную макроскопическую траекторию. Она может быть значительно короче микроскопической траектории, состоящей из всех элементарных переходов. Например, если частица переходила примерно так же часто в одну сторону, как и в противоположную, то в результате эта частица окажется вблизи исходного пункта, ее макроскопическая траектория будет очень короткой – будет приближаться к нулевой. Соответственно и макроскопическая скорость (скорость на макроскопической траектории) будет ничтожной, близкой к нулю. Если число сдвигов в одну сторону будет значительно превышать число сдвигов в противоположную сторону, макроскопическая траектория, пройденная за тот же срок, окажется большой. Наконец, при максимальной несимметричности элементарных переходов, т.е. в том случае, когда все эти переходы направлены в одну и ту же сторону, макроскопическая траектория совпадает с микроскопической и, соответственно, макроскопическая скорость – со скоростью света. Это и будет максимальной скоростью для всякого тела. Отсюда можно вывести определенные законы "поведения масштабов и часов" – соотношения теории относительности Эйнштейна.

372

Мы взяли такие элементарные пространственные расстояния и элементарные интервалы времени, чтобы частное от деления одной величины на другую, т.е. скорость перехода из одной пространственной клетки в другую, было равно скорости света. Если бы не существовало других оснований для выбора таких постоянных, т.е. если бы оси были выбраны ad hoc, то такое предположение в целом было бы типичным примером произвольной конструкции, соответствующей наблюдениям и тем не менее совершенно лишенной правдоподобия. Но общее предположение о существовании атомов пространства-времени – наименьших, элементарных, далее недробимых четырехмерных интервалов – вводится отнюдь не ad hoc. Это же можно сказать и о порядке величин, названных выше: 10 -13 см и 310 -24 сек. В большом числе физических проблем эти числа появляются довольно естественным образом. Поэтому можно предположить, что в своем дальнейшем развитии физика придет к некоторому квантово-атомистическому обоснованию теории относительности как макроскопической теории и что в таком обосновании будут фигурировать естественные, постоянные величины минимальные расстояния и интервалы времени.

Высказанные только что соображения о возможной трансмутационной подоснове существования и движения тождественных себе частиц были бы физически содержательными, если бы физически содержательным был основной и исходный образ схемы, если бы мы могли приписать физический смысл понятию элементарной трансмутации, понятию аннигиляции и регенерации частицы, не обладающей еще макроскопической (по сравнению с элементарными ячейками) мировой линией. Такая возможность кажется весьма сомнительной. Что, собственно, означают фразы: "частица данного типа аннигилирует", "частица данного типа превращается в частицу иного типа", "частица иного типа превращается в частицу того же типа, что и исходная"? Частица одного типа отличается от частицы другого типа массой, зарядом и другими свойствами, проявляющимися в характере мировых линий при заданных условиях, а также распадом, т.е. характером мировых линий, возникших при распаде частицы. Пока частица не обладает мировой линией, пока мировая точка, в которой она находится, не входит в определенную мировую линию, отнесение частицы к тому или ино

373

му типу и понятие трансмутации не имеют никакого смысла. Понятие трансмутации, изменения массы, заряда и т.д. имеет смысл только по отношению к "реальным", т.е. нетривиально себетождественным частицам, обладающим большими по сравнению с элементарными интервалами сроками жизни. Определения, лежащие в основе отнесения частицы к тому или иному типу, имеют интегральный, а не локальный характер, и чисто локальное понятие частицы определенного типа и, соответственно, чисто локальное определение трансмутации не имеют смысла.

Но и чисто интегральное определение типа частицы но имеет физического смысла. Это очень древняя апория, достигшая особенно явной и острой формы в физике Декарта. Геометризация физики, отождествление вещества с пространством сделали невозможным физическую индивидуализацию тела, выделение его из окружающего мира и лишили смысла понятие движения тела. Лейбниц отмечал эту ахиллесову пяту картезианской физики. С развитием атомистических представлений проблема различения тела и занимаемого им места стала проблемой различения частицы, с одной стороны, и пространственно-временной точки, с другой. Уже говорилось выше, что мы и сейчас не можем отличить четырехмерную линию как чисто геометрическое понятие от физического понятия реального движения частицы, если не припишем частице какого-то иного бытия помимо пребывания в мировой точке, какого-то иного предиката помимо четырех координат, какого-то иного изменения помимо перехода в следующую мировую точку. Это "некартезианское" бытие частицы могло бы состоять в ее взаимодействии с другими частицами, вызывающем трансмутацию данной частицы. Но тут мы снова из Сциллы чисто интегрального представления попадаем в Харибду чисто локального представления: представление о трансмутации в данной точке физически бессодержательно, пока мы не вводим интегрального определения мировой линии и интегрального, принадлежащего "реальной" частице, определения ее типа.

Все дело в том, что в квантово-релятивистской области ультрамикроскопических расстояний и интервалов времени теряет смысл весьма фундаментальное классическое понятие, удержавшееся в релятивистской и в квантовой

374

физике, но не проходящее в теорию, синтезирующую релятивистские и квантовые идеи. В классической физике и с некоторыми условиями в квантовой физике элементарными процессами – "кирпичами мироздания" – считались движения тождественных себе частиц. После того как появилось квантово-релятивистское по своему характеру представление о трансмутациях, возникла мысль об элементарных трансмутациях как об исходной реальности, как о "кирпичах мироздания", из которых складываются макроскопические процессы движения тождественных себе тел. Но в действительности из современной физики вытекает более радикальный вывод: представление об "элементарных процессах", существующих независимо от "неэлементарных", должно быть в общем случае оставлено, природа не состоит из "кирпичей", адекватное описание природы должно с самого начала оперировать локальными и интегральными характеристиками, которые теряют физический смысл, взятые изолированно. Локальное "некартезианское" бытие частицы состоит в трансмутациях, обладающих физическим смыслом в качестве локальных изменений эвентуальных мировых линий (изменений не только формы этих линий, но также изменений коэффициентов, связывающих определения мировой линии между собой и с интенсивностью взаимодействий, т.е. изменений массы покоя, заряда, спина и т.д.). В свою очередь, мировая линия обладает экзистенциальным смыслом, т.е. принципиальной возможностью сопоставления с экспериментом, когда она рассматривается не только как последовательность четырехмерных положений, но и как последовательность локальных событий, в которых участвуют виртуальные частицы.

Таким образом, только сейчас, в свете наметившихся перспектив теории элементарных частиц, в связи с более или менее определенными прогнозами в этой области мы можем пересмотреть традиционную чисто негативную оценку последних сорока лет жизни Эйнштейна. И раньше казалось неестественным вычеркивать из истории науки столь длительную полосу, заполненную чрезвычайно напряженной работой одного из самых мощных умов, какие известны истории науки. Можно было предположить, что Эйнштейн имел в виду какие-то неопределенные контуры новой картины мира. Теперь эти контуры еще не стали однозначно определенными, по мы мо

375

жем конкретнее иллюстрировать их. Объективный смысл "ворчания", как назвал Макс Борн позицию Эйнштейна в отношении квантовой механики, не состоял в попытках вернуться к классическим представлениям. Эйнштейн не сочувствовал объяснению квантовой механики с классических позиций "скрытых параметров". Теперь мы можем несколько конкретнее иллюстрировать противоположный путь пересмотра квантовой механики – более радикальный отказ от классического образа тождественной себе движущейся частицы как исходного образа картины мира.

Думается, что такой отказ содержится implicite в отказе Эйнштейна от принципа Маха. Этому посвящена значительная часть главы "Эйнштейн и Мах". Припцип Маха, как нам уже известно, сводит мироздание к движениям и силовым взаимодействиям тел. С этим принципом явно не согласуется возникновение частицы и ее распад, нарушающий принцип себетождественности объектов, из которых составляется картина мира. Подобные процессы не входят в "классический идеал", в картину мира "того же типа, что и механика Ньютона". К выходу за рамки такой картины подошла теория относительности при ее синтезе с квантовой механикой. Однако выход за пределы первоначального замысла никогда не приобретал у Эйнштейна той силы, какой обладала тяга к "классическому идеалу".

В этом выражалась характерная особенность научного гения. Эйнштейн интересовался основами пауки – общими принципами, определяющими все, что происходит в мире. В 1924 г. он писал Соловину о своих научных интересах:

"Интерес к науке был для меня ограничен изучением принципиального, и это лучше всего объясняет характер моей деятельности. То, что я опубликовал так мало вещей, проистекает из указанного жо обстоятельства: страстное желание познать принципиальное привело к тому, что большая часть времени была потрачена на бесплодные усилия" [14].

14 Lettres a Solovine, 49.

Это было написано в 1924 г., в период блестящего подтверждения теории относительности. Уже тогда Эйнштейн стремился найти еще более общие основы универсальной гармонии бытия. Такие основы не были найдены, и Эйп

376

штейн подчас считал их поиски бесплодными усилиями. Они не были найдены и позже. Более того, интерес к принципиальным основам картины мира не совпадал с наиболее распространенным в тридцатые – сороковые годы стилем научного творчества в физике. В пятидесятые – шестидесятые годы положение изменилось. Чтобы заменить чисто рецептурные приемы квантовой электродинамики и общей теории элементарных частиц единой непротиворечивой концепцией, обладающей "внутренним совершенством", нужно было вернуться к размышлениям об общих основах физики. Здесь-то и обнаружилось, что идеи Эйнштейна, разрабатывавшиеся в течение тридцати лет, не были бесплодными. Если не по результатам, то по поставленным проблемам вторая половина жизни Эйнштейна наложила неизгладимый отпечаток на пути науки второй половины столетия.

Почему ответы Эйнштейна на поставленные им вопросы не вошли в содержание современной науки? И почему выход за пределы "классического идеала" несопоставим в творчестве Эйнштейна но своей интенсивности с тягой к этому идеалу, приведшей к теории относительности?

Здесь приходится вернуться к самым первым вводным характеристикам. Идеи Эйнштейна были высшей точкой трехвекового господства "классического идеала", который последовательно воплощался в рационализме Декарта и Спинозы, в механике Ньютона, в физике XIX в. Теперь наука подошла к новому периоду. Гений Эйнштейна выразился в очищении "классического идеала" от ньютоновых абсолютов, далее он выразился в понимании ограниченности "классического идеала", в поисках новой каузальной гармонии, выходящей, как мы сейчас знаем, за рамки этого идеала.

Новая каузальная гармония еще не воплотилась в стройные, как бы литые из бронзы, формы, в каких предстал перед Эйнштейном "классический идеал". Новый идеал науки приобретет стройные очертания – уже сейчас поиски единой, непротиворечивой общей теории становятся содержанием физической мысли. При этом наука станет еще ближе к стилю мышления Эйнштейна. Но позитивные решения будут иными.

Стиль мышления Эйнштейна характеризуется, помимо прочего, близостью, а иногда даже слиянием физических проблем с философскими. Такая черта связана с поисками "внутреннего совершенства", с задачей построения физических теорий, естественно вытекающих из общей схемы бытия.

377

Эта идея подтверждается все с большей силой современным развитием теоретической физики. Эйнштейн уже в начале сороковых годов говорил, что затруднения физической мысли могут быть преодолены только на путях более глубокого и тесного соединения философского анализа с собственно физическим. В 1944 г. Эйнштейн утверждал, что затруднения, которые физик испытывает сейчас в своей области, заставляют его соприкоснуться с философскими проблемами в значительно большей степени, чем это приходилось делать физику прошлых поколений [15].

15 См.: Эйнштейн, 4, 248.

Эйнштейн указывает на основную проблему, которая должна интересовать сейчас физика: каково соотношение между "чистой мыслью" и эмпирической базой познания. По мнению Эйнштейна, через хаос различных ответов на этот вопрос пробивает себе дорогу единая тенденция – "возрастающий скептицизм по отношению к любой попытке что-либо узнать о мире "вещей", об "объективном мире" с помощью чистой мысли".

Слова "вещи" и "объективный мир" поставлены Эйнштейном в кавычки, чтобы, как он говорит, "ввести понятия, подозрительные в глазах философской полиции". Эйнштейн пишет далее, что со времен Галилея все быстрее распространяется и становится господствующим представление об опыте как единственном источнике достоверных сведений о природе. Эйнштейн согласен с этим представлением. Но он не может согласиться с феноменализмом как выводом из этого представления.

Этот ход мысли нам уже знаком, Эйнштейн повторяет его во всех своих эпистемологических экскурсах. Эмпирическое происхождение знания не препятствует "чистой мысли" строить гипотетические выводы, не вытекающие из данного комплекса экспериментов, исходящие из общей схемы мироздания. Эти выводы должны в принципе подлежать экспериментальной проверке, но вместе с тем они должны обладать "внутренним совершенством" – максимально естественным образом вытекать из общей концепции бытия.

378

Навстречу этой идее – наиболее общей идее эпистемологических выступлений Эйнштейна – идут столь частые сейчас требования общей, непротиворечивой, вытекающей из всей совокупности сведений о мире теории, обосновывающей рецептурные приемы, выдвинутые ad hoc. Они были приняты "в кредит", в надежде на теорию, обладающую "внутренним совершенством". Сейчас нужно платить по векселям, и именно эта необходимость толкает физическую мысль к общим, охватывающим все мироздание проблемам и соответственно к новому синтезу интегрального философского анализа мироздания с конкретными физическими концепциями и с частными экспериментальными результатами.

Вспомним замечательную характеристику современной ситуации в теоретической физике, принадлежащую Нильсу Бору. Сейчас нас может удовлетворить лишь самая "безумная" физическая теория. Этот термин почти совпадает по смыслу с эйнштейновским "чудом", он характеризует парадоксальность теории. У Эйнштейна "бегство от чуда", не укладывающегося в старые схемы, состоит в выдвижении новой, парадоксальной теории, в свете которой парадоксальное явление оказывается вполне естественным. Теперь речь идет уже не об отдельных явлениях, а о парадоксальных концепциях. Наука находится на пороге единой теории, охватывающей все мироздание, радикально отличающейся по основным посылкам от "классического идеала" и в этом смысле наиболее "безумной". Она снимет ореол "безумия" с частных физических концепций так же, как теория относительности сняла ореол "чуда" с результатов Майкельсона. Эйнштейновское "бегство от чуда", от удивительного факта, с помощью удивительной теории – это прообраз современного "бегства от безумия", перехода от удивительной частной теории к удивительной общей схеме бытия. Степень "безумия" определяется общностью и исторической устойчивостью пересматриваемых концепций. Высказанное Бором требование более высокой степени "безумия" означает, что сейчас физике нужен пересмотр весьма общих и устойчивых принципов.

Естественно было бы предположить, что пересмотру подлежит сейчас "классический идеал", которым руководствовался в своих исканиях Эйнштейн и к ограничению которого он пришел в конце жизни.

379

Современный пересмотр "классического идеала" резко отличается от эйнштейновских попыток построения единой теории поля. Современные наброски позитивных решений исходят из квантово-атомистических понятий, из микроструктуры бытия. Эйнштейновские концепции исходили из геометрии макроскопического мира, из обобщения этой геометрии. Но мы находим в "принстонских" вариантах единой теории поля и в современных тенденциях теоретической физики нечто общее, как только мы переходим от позитивного содержания тех и других к другой стороне дела.

Каждая фундаментальная по своему значению полоса в развитии физической мысли оказывает воздействие не только на позитивное содержание картины мира, но и на сумму тех вопросов, которые не могут быть решены в данный период и адресуются будущему. В этом смысле негативные результаты оказываются весьма важными, иногда определяющими для прогресса науки. Взглянем с этой точки зрения на принстонские варианты единой теории поля, выдвигавшиеся в тридцатые – пятидесятые годы. Они исходили из существования единых закономерностей, которые объясняют существование различных но своей природе полей – гравитационного и электромагнитного. Эйнштейн не пришел к однозначной, обладающей и "внутренним совершенством" и "внешним оправданием" единой концепции. Он сомневался в каждом из очередных результатов. Уже известный нам Клайн рассказывает об одной беседе с Эйнштейном по поводу единой теории поля. Эйнштейн назвал один из старых, оставленных вариантов "романтической спекуляцией". "А нынешняя версия?" спросил Клайн. "Сейчас она базируется на объединяющей логике, на гармонии мышления", – ответил Эйнштейн. Но на вопрос Клайна, насколько эта версия может считаться окончательной, Эйнштейн сказал: "Либо это здесь, либо необходим полностью иной подход" [16].

16 Michelmore, 252-253.

Это постоянное, неугасающее сомнение, эта готовность радикального преобразования теории, этот неопределенный, неокончательный, допускающий новые и новые преобразования, новые интерпретации характер научного конструирования и является основой гибкости принстонских идей, позволяющей сейчас, подвергая эти идеи новым преобразованиям, ввести их в арсенал современных поисков единой теории поля. В этот арсенал входит не конкретная геометрическая схема, объединяющая гравитационное и электромагнитное поля. Входит более общая идея: все поля (теперь мы знаем гораздо большее множество различных полей) – это модификации единой субстанции. И то, что у Эйнштейна не было однозначного ответа на вопрос о природе этой единой субстанции, не отдаляет Эйнштейна от современной науки; ведь и она не обладает таким однозначным ответом. В науке тридцатых – сороковых годов подобная тенденция не могла лежать в основном фарватере физической мысли. Сейчас она стала необходимой для решения самых настоятельных задач теоретической физики, которая испытывает острую потребность расплатиться за рецептурные приемы, введенные "в кредит".


    Ваша оценка произведения:

Популярные книги за неделю