355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Кузнецов » Эйнштейн (Жизнь, Смерть, Бессмертие) » Текст книги (страница 37)
Эйнштейн (Жизнь, Смерть, Бессмертие)
  • Текст добавлен: 9 октября 2016, 03:22

Текст книги "Эйнштейн (Жизнь, Смерть, Бессмертие)"


Автор книги: Борис Кузнецов


Жанр:

   

История


сообщить о нарушении

Текущая страница: 37 (всего у книги 46 страниц)

542

цом, но я убежден, что в будущем развитие физики пойдет в другом направлении, чем до сих пор". Сегодня возражения Эйнштейна против квантовой механики нисколько не потеряли своей силы. Сегодня – мне кажется – он был бы менее одинок в своих воззрениях, чем в 1936 г." [21]

21 Там же, с. 173.

Действительно, в пятидесятые годы, когда Инфельд писал эти строки, и еще более в 60-70-е годы физика все более явственным образом приближалась к пределам той картины мира, которая была создана в XVII – XVIII вв., развивалась в течение XIX в. и получила завершение в нашем столетии. В XVII-XVIII вв. думали, что объяснить мир – это значит нарисовать картину перемещений частиц в пространстве; что картина, в которой указаны положения и скорости всех частиц, будет исчерпывающим объяснением бытия. В XIX в. поняли, что перемещение частиц еще не объясняет сути явлений, существуют сложные процессы, которые останутся не объясненными механическими моделями. В XX в. Эйнштейн показал, что законы перемещения частиц и всех вообще тел природы отличаются от классических законов Ньютона, а квантовая механика разъяснила, что движение частицы – сложный процесс, не допускающий одновременного точного определения положения и скорости частицы. Это было ограничением "классического идеала". Более радикальный отказ от него был подготовлен открытиями в области элементарных частиц и столь характерным для нашего времени обобщением квантовой механики и теории относительности. Но более ясное понимание необходимости такого отказа во многом зависело от того уточнения принципов квантовой механики, которое было результатом споров между Эйнштейном и сторонниками официальной вероятностной интерпретации.

Во-первых, эти споры толкнули Бора и других сторонников официальной концепции к значительному уточнению их позиции. В цитированном уже выступлении в Институте физических проблем Бор после рассказа о первой беседе и первом споре с Эйнштейном говорил о последующих дискуссиях. Отсюда и взяты строки, помещенные в качестве эпиграфа к этой главе. Что имел в виду Бор в своей процитированной там фразе: "На каждом новом этапе Эйнштейн бросал вызов науке, и, не будь этих вызовов, развитие квантовой физики надолго бы затянулось" [22].

22 Наука и жизнь, 1961, № 8, с. 73.

543

Во-вторых, в результате дискуссий была уточнена критическая платформа. Стало выясняться, что для определенного круга процессов квантовая механика не обнаруживает внутренних противоречий. В этом отношении она отличается от механики Ньютона. В последней существовали внутренние противоречия: мгновенное дальнодействие и абсолютное время, а также силы инерции как критерии абсолютного движения – все это противоречило "классическому идеалу" – общей основе всех теорий "типа ньютоновой механики".

Квантовая механика исходила из определенного постулата – существования классического объекта, и ничто в ней не противоречило исходному постулату, ничто не вводило произвольных допущений. Поэтому здесь в отличие от механики Ньютона можно было пойти вперед, только предъявив совершенно новые факты, раскрыв новый мир, в котором не было бы места исходному постулату квантовой механики.

Эти факты накоплялись в физике элементарных частиц. Но они не входили в арсенал эйнштейновской критики квантовой механики, и до поры до времени эта критика казалась лишенной эвристической ценности. Она считалась бесплодной, как и поиски единой теории поля. Отсюда – вывод о почти полной бесплодности того отрезка творческого пути Эйнштейна, на котором его гений должен был находиться в зените. С этим выводом трудно примириться.

Вывод о бесплодности эйнштейновской критики (и в равной степени поисков единой теории поля) теряет смысл при изменении критериев того, что мы называем эвристической ценностью. Явной и непосредственной эвристической ценностью обладают однозначные и позитивные физические теории. Но значительной, хотя неявной и косвенной, эвристической ценностью обладают также концепции незавершенные, не достигшие однозначной и позитивной формы, оставившие будущему не ответы, а только вопросы.

544

Объективный смысл вопросов, содержавшихся в эйнштейновской критике квантовой механики, сейчас стал довольно ясным. Гейзенберг и Бор говорили о взаимодействии движущейся элементарной частицы с некоторым телом, в отношении которого нет никаких сомнений ни в его положении, ни в скорости. Такое тело, например диафрагма, через которую проходит частица, – вне подозрений, она заведомо не сдвигается во время эксперимента. Мы игнорируем тот факт, что сама диафрагма в конечном счете состоит из частиц, лишенных, вообще говоря, определенного положения и определенной скорости. Как только мы распространяем квантово-атомистическое представление на диафрагму, квантовая механика утрачивает смысл, ведь он как раз и заключается в утверждениях, относящихся к квантовому объекту (частице), во-первых, и к классическому объекту (например, к диафрагме), во-вторых. Квантовая механика обладает не только негативным содержанием, она не только отрицает возможность одновременного сколь угодно точного определения координат и скорости частицы. Квантовая механика, как уже было сказано, обладает позитивным содержанием, она утверждает, что при определенных условиях, с определенными ограничениями можно определить положение и скорость частицы. Вот это позитивное содержание квантовой механики и подвергается сомнению во всех более радикальных (в смысле отказа от классических понятий), чем квантовая механика, теориях начиная с тридцатых годов, когда впервые усомнились в возможности точного определения переменных поля, независимо от условий Гейзенберга, обеспечивающих и ограничивающих такую возможность.

Мир, в котором нет классических объектов, выходит за рамки квантовой механики. При его описании приходится отказаться от классических понятий радикальнее, чем это сделала квантовая механика.

Большим историческим недоразумением было длительное, господствовавшее в течение многих лет представление об эйнштейновской критике квантовой механики как о критике с классических позиций. На самом деле эта критика имела иной объективный смысл, она могла указать на границы квантовой механики, отделяющие ее от более радикальной теории.

545

Но это не было недоразумением в буквальном смысле. Это было историческим недоразумением, т.е. невозможностью для концепции выявить свой действительный смысл до того, как новые понятия не приобретут сравнительно конкретного вида. Мы вскоре остановимся на тех понятиях, которые позволяют, оглядываясь назад, увидеть действительный смысл позиции Эйнштейна в отношении квантовой механики. Здесь дело, впрочем, не только в истории науки, но и в эволюции идей Эйнштейна. В течение долгих лет он не выходил за рамки "классического идеала" науки, т.е. стремился нарисовать картину мира, в которой нет ничего, кроме движений и взаимодействий тождественных себе тел. Действительная критика квантовой механики не "сзади", а "спереди", т.е. с более радикальных позиций, с позиций еще большей неопределенности динамических переменных, возможна только за пределами "классического идеала" науки.

Критика квантовой механики спереди принципиально отличается от попыток отказа от вероятностной версии без перехода физики на некоторую новую, еще не получившую "внутреннего совершенства" более высокую ступень. Эйнштейн отнюдь не разделял надежд на антивероятностную переформулировку существующей квантовой механики. Он писал Максу Борну:

"Видел ли ты, как Бом (как, впрочем, и де Бройль, 25 лет тому назад) верит в то, что квантовую теорию можно детерминистски истолковать по-другому? Это по-моему дешевые рассуждения, но тебе, конечно, лучше судить" [23].

Взгляды Эйнштейна исходили из возможности проникновения физической мысли в область более общих закономерностей. Эйнштейн очень точно определил область применимости квантовой механики:

"В области механических (курсив Эйнштейна) процессов, т.е. всюду, где взаимодействие различных структур и их частей можно с достаточной точностью рассматривать, постулируя существование потенциальной энергии взаимодействия между материальными точками, статистическая квантовая теория и поныне представляет собой замкнутую систему, правильно описывающую эмпирические соотношения между наблюдаемыми величинами и позволяющую теоретически предсказывать их значения" [24].

23 "Эйнштейновский сборник 1972". М., "Наука", 1974, с.

24 Эйнштейн, 4, 295-296.

546

Здесь дано определение механических процессов. Эйнштейн понимает под ними движения, вызванные взаимодействием частиц, причем взаимодействия зависят от пространственного положения частиц. Речь идет о картине, в которой частицы движутся так или иначе в зависимости от своего положения и соответственно от действующих на них сил, обязанных взаимодействию тел, т.е. о "классическом идеале": все, что происходит в мире, объясняется движением и взаимодействием масс.

Чтобы показать неклассический характер тех позиций, с которых Эйнштейн критиковал квантовую механику и соответственно радикально неклассические импульсы для развития квантовой механики под влиянием этой критики, следует коснуться следующего сходства и вместе с тем различия теории относительности и боровского принципа дополнительности.

Сначала остановимся на последнем.

Л. Розенфельд в одном весьма ясном и глубоком очерке принципа дополнительности излагает следующую забавную историю, заимствованную из датской литературы. Один добросовестный лиценциат, задумав написать научный труд, занялся подготовкой перьев. Но перья могут затачиваться наилучшим образом, если выбрать наиболее подходящие камни для такого затачивания. И лиценциат погрузился в минералогию. Через много лет в его комнате оказалась коллекция минералов, и он стремился получить исчерпывающее решение вопроса об оптимальном материале для точки перьев. Он не мог остановиться в охватившем его неуемном рвении и стремлении к абсолютной строгости и точности при подготовке труда, и труд не был начат. В этом мире, чтобы перейти от логической схемы к делу, всегда приходится какое-то звено объявлять далее неанализируемым. В последнем счете это объясняется воздействием "перехода к делу" на форму логической схемы тем обстоятельством, что логическая схема не может быть содержательной без некоторых заданных, не подвергающихся анализу понятий, что эти понятия воздействуют на схему и их нелинейная связь со схемой останавливает простое подведение под схему новых и новых случаев. В квантовой механике квантово-атомистический анализ, учет дискретности поля и континуально-волновой природы частиц, должен остановиться перед телами, которые мы считаем неквантовыми, к которым мы

547

подходим, закрывая глаза на корпускулярно-волновой дуализм и дискретность действия, иначе говоря, перед телами, которые мы вводим в игру как заведомо классические тела. Именно поэтому квантовая механика не имеет смысла без тex классических понятий, которые она ограничивает в части их применимости и физической представимости, без понятий импульса, скорости, положения в пространстве и т.д. Эти понятия входят в квантовый мир вместе с заведомо классическими темами, с которыми взаимодействуют квантовые объекты.

Боровское макроскопическое тело взаимодействия, тело, позволяющее идентифицировать движущуюся частицу по непрерывно изменяющимся значениям ее динамических переменных (например, диафрагма с отверстием, позволяющая с той или иной степенью точности зарегистрировать координаты электрона), это и есть тот камень лиценциата, где необходимо прекратить анализ (в данном случае квантовый анализ, учет корпускулярно-волновой природы частиц, составляющих "прибор"). Без таких последних звеньев квантового анализа, без классических, т.е. освобожденных от квантовой детализации, объектов, из картины мира исчезают частицы, тождественные себе, отнесенные к определенным типам (и поэтому принципиально наблюдаемые: частицу как таковую, частицу, не обладающую определенным типом взаимодействия с другими частицами, – определенной мировой линией, вообще не обладающую нетривиальной себетождественностью, так же трудно наблюдать, как, например, "животное как таковое", не относимое ни к какому конкретному типу). Как уже говорилось, без интегральных представлений о типах мировых линий и соответственно без представлений о типах частиц самый конкретный образ частицы в данной пространственно-временной клетке оказывается самым абстрактным и теряющим физический смысл.

Существует, однако, весьма существенная связь между: 1) определением формы мировой линии (т.е. интегральной характеристикой движущейся частицы), отнесенным к данной мировой точке, взятым в локальном представлении, иначе говоря, значением импульса и энергии частицы, и 2) чисто локальной характеристикой частицы – ее пространственно-временнымши координатами. Они связаны неконтролируемым воздействием одного опреде

548

ления на другое, одной характеристики на другую. В такой констатации основа негативной стороны принципа дополнительности, невозможности в одном эксперименте точно определить сопряженные динамические переменные. Но принцип дополнительности имеет позитивную сторону. Прежде всего он позволяет переосмыслить гарантию нетривиальной себетождественности частицы – непрерывное и закономерное изменение ее динамических переменных, – которая существовала в классической физике, и этой ценой ввести такую гарантию в микромир. Переосмысление заключается в замене переменной ее вероятностью, которая изменяется непрерывно, в точном соответствии с законом. Сохраняется ли при таком переосмыслении эйнштейновский критерий физической содержательности понятий? Не противоречит ли этому скачок – в понятии фигурирует точное значение вероятности, а в эксперименте измеряется значение самой переменной? Эйнштейновский критерий сохраняется потому, что мы в принципе можем экспериментально проверить значение переменной с любой точностью и получить непрерывный ряд экспериментально проверенных значений самой переменной, а не только ее вероятностей. Мы это можем сделать за счет сопряжений переменной. Можем, впрочем, только в нерелятивистской квантовой механике. В релятивистской квантовой теории исчезает, вообще говоря, возможность точного измерения значений даже одной переменной. Мы постараемся показать, что и здесь возможность оперировать образами нетривиально-себе-тождественных частиц вытекает из принципа дополнительности. Но для этого требуется изложить принцип дополнительности в более общей форме, отказавшись от специфического для нерелятивистской квантовой механики противопоставления сопряженных динамических переменных. Такое обобщение оказывается нетавтологическим, оно позволяет увидеть некоторые новые аспекты релятивистской теории элементарных частиц. Но при этом уже несколько модифицируется (и усиливается!) требование физической содержательности понятий и внутреннего совершенства теории.

Внутреннее совершенство состоит в максимально общем характере исходных понятий и постулатов, а внешнее оправдание – в их связи с экспериментом. В теории относительности такое требование было адресовано гео

549

метрическим постулатам и понятиям. Физическая содержательность соотношений, характеризующих координатные преобразования и их инварианты, была взята под подозрение, физика проверила наличие физических эквивалентов, которое казалось бесспорным для ряда соотношений. Оказалось, что в мире скоростей, сопоставимых со скоростью света, физическими эквивалентами обладают четырехмерные псевдоевклидовы, а в непренебрежимых гравитационных полях – римановы геометрические соотношения. Попытка сохранить за трехмерной геометрией физическую содержательность была признана искусственной, не обладающей "внутренним совершенством". В квантовой механике физическую содержательность обрели многие математические абстракции теории матриц, учения о бесконечномерных пространствах и т.д. Но основным для идейного стержня квантовой механики – принципа дополнительности – была идея физической содержательности логического парадокса.

Когда Нернст говорил, что теория относительности Эйнштейна – это уже не физическая, а более общая теория, он мог с тем же основанием повторить такую характеристику в адрес принципа дополнительности. Но и принцип Эйнштейна, и принцип Бора – физические принципы, только физика здесь охватывает более общие, приобретающие физический смысл понятия. В первом случае это понятия геометрической размерности и геометрической аксиоматики. Во втором случае речь идет о принципиальной возможности измерений и рассматриваются более общие логико-математические или математические понятия, с помощью ю которых формулируются условия возможности измерений сопряженных динамических переменных.

Именно логическая парадоксальность свойственна боровскому принципу дополнительности. Он не противоречит ни одному из математических постулатов. Частица проходит через последовательные пространственные точки с той или иной скоростью. Можно ли утверждать, что частица прошла через данную точку? Нет, в общем случае, когда в той или иной мере определена скорость частицы, уже нельзя точно определять ее местонахождение в данный момент. В этом сказывается волновая природа частицы. Мы не можем сказать, что частица находится в данной точке в данный момент и не можем сказать, что частица не находится в ней. Все это противоречит логическому постулату исключенного третьего.

550

Можно довольно далеко провести аналогию между отношением принципа дополнительности к логике и отношением принципа относительности к геометрии. В XIX в. уже существовали попытки построения так называемой поливалентной логики, отказывающейся от постулата исключенного третьего и вводящей наряду с оценками "истинно" и "ложно" третью оценку высказываний (например, "неопределенно"). Этим схемам иногда придавали онтологический смысл, но изучаемые логикой тривалентные физические образы, как в XIX в. физические образы неевклидовой геометрии, напоминают виртуальные фотоны, поглощаемые излучившей их частицей, – их эффект сказался только в самой логике. Критика классической логики давно расшатала уверенность в абсолютном характере принципа исключенного третьего, но отсюда было еще далеко до однозначной физической теории.

Начиная со второй четверти нашего столетия положение изменилось. Концепции Бора и других основателей квантовой механики связали неопределенность и дополнительность сопряженных динамических переменных движущейся частицы с экспериментально проверенными, достоверными физическими выводами. Абсолютная реальность, абсолютная достоверность, несомненная физическая содержательность логического парадокса так же характерны для квантовой механики, как для теории относительности характерна достоверность и физическая содержательность парадоксальных геометрических соотношении. Парадоксальность самого бытия, парадоксальный характер упорядочивающего Вселенную объективного ratio – вот что поразило широкий круг людей, ознакомившихся с идеями Эйнштейна и Бора, а иногда лишь интуитивно угадавших скрывавшийся в них переворот в характере научного мышления.

Как известно, в теории функции кроме числовых значений функции, зависящих от значений аргумента, фигурируют операторы, превращающие уже не одно значение функции в другое, а один вид функции в другой вид. Крупные физические открытия всегда в какой-то мере играли аналогичную роль. Они не только увеличивали число известных людям закономерностей природы, но изменяли также методы науки, стиль научного мышления,

551

характер пути, ведущего от частных наблюдений к общим законам. В обобщениях Эйнштейна и Бора "операторный" эффект гораздо сильнее, чем в теориях прошлого. В руках Эйнштейна и Бора физика изменила не только содержание результатов научной мысли. Она радикально изменила логическую структуру и математический аппарат. Более того, изменилось, стало принципиально иным отношение физики к логике и математике. Физика неизбежно должна включать в свои рамки геометрические аксиомы и логические принципы в качестве физических констатации. Вместе с тем она может представить соотношения и связи физических объектов в масштабах Вселенной в целом и становится, таким образом, общей концепцией мироздания. Наряду с беспрецедентным проникновением собственно физических понятий и методов во все области науки преобразующее воздействие физики XX столетия на науку и культуру определяется новыми математическими и логическими принципами, которые получили в физике онтологический смысл.

Поэтому имя Эйнштейна будет всегда символом не только гигантского приращения сведений о Вселенной, но и гигантского преобразования вида функции, связывающей результаты научных обобщений с их исходными данными. Речь идет о преобразовании и наделении физическим содержанием математических понятий. Имя Бора также будет символом преобразования вида функции, связывающей выводы науки с наблюдениями, но здесь уже речь идет о преобразовании логики научных умозаключений.

Эйнштейн и Достоевский

Достоевский дает мне больше, чем любой мыслитель, больше, чем Гаусс.

Эйнштейн

Достоевский показал нам жизнь, это верно; но цель его заключалась в том, чтобы обратить наше внимание на загадку духовного бытия...

Эйнштейн

Что мог дать Достоевский создателю теории относительности? [1] Этот вопрос будет здесь рассмотрен с той же точки зрения, с которой рассматривались и остальные параллели, проводимые между идеями Эйнштейна и творчеством других мыслителей, – в связи с понятием бытия и его ролью в генезисе и в перспективах дальнейшего развития идей Эйнштейна. Можно думать, что в этом случае, как и в некоторых других, сопоставление позволяет яснее увидеть не только идеи Эйнштейна, но и прибавить ге или иные штрихи к оценке прошлого.

1 Эта глава излагает и частично включает некоторые параграфы статей об Эйнштейне и Достоевском, напечатанных в 1966– 1968 гг. в "Diogene" и в "Вопросах литературы" и вошедших в "Заметки об Эпикуре и Лукреции. Галилее в Ариосто, Эйнштейне и Достоевском", помещенные в "Этюдах об Эйнштейне" (изд. 2. М., 1970, с. 110-190).

Забегая вперед, отметим прежде всего следующее. Эйнштейн мог получить в творчестве Достоевского значительный импульс, потому что в центре этого творчества находились интеллектуальные конфликты, потому что поэтика Достоевского была рационалистической, потому что сквозной темой его романов была мысль, бьющаяся в своих противоречиях, стремящаяся к воплощению человеческая мысль.

Проблемы мысли в ее отношении к действительности, проблемы познания и действия, проблемы истины и добра – ровесницы цивилизации. Но мы коснемся только

553

трех столетий, предшествовавших нашему. XVII век должен был ответить на вопрос, поставленный перед ним Гамлетом. В душе датского принца происходила трагическая замена новым идеалом старого, средневекового идеала логически безупречной схоластической мысли. Мысль должна переходить в действие, она должна питаться действием и воплощаться в действие. Наука ответила экспериментом и, столетие спустя, промышленным переворотом. Общественная мысль через два столетия – якобинской диктатурой.

В XVII в. разум создавал исходные рубежи для предстоящей атаки. Галилей нашел в понятии движения, спонтанно продолжающегося и не требующего поддерживающего агента, основу для новой схемы бытия. Уже не аристотелева схема естественных мест, а схема равномерных движений объясняла гармонию мироздания. Декарт уточнил понятие инерции, приписав сохранение скорости телам, движущимся по прямолинейным траекториям. Он создал физику, в которой не было ничего, кроме движущейся материи. Спиноза сделал эту физику всеобъемлющим мировоззрением, отринув непротяженные субстанции, сохранившиеся в метафизике Декарта. Наконец, Ньютон, аксиоматизировав механику с помощью понятия силы и сформулировав закон всемирного тяготения, завершил первый круг развития рациональной схемы мироздания. Он допускал воздействие на тела не только со стороны других тел, но и со стороны самого пространства, и это было некоторым отходом от классического идеала науки. Но зато научная картина мира приобрела однозначную достоверность, количественные соотношения классической механики уже допускали сопоставление с опытом.

Следующий, XVIII век был веком рационалистической атаки. Его назвали веком Разума. Он и был веком разума, претендовавшего на абсолютную точность своих выводов, на универсальную применимость их к космосу и микрокосму. Тогда думали, что логическое развитие ньютоновой механики может объяснить всю сумму явлений природы, что знание координат и скоростей всех молекул Вселенной позволяет предсказать с любой детальностью всю будущую ее историю. Думали также, что логическое конструирование понятий позволит построить схему гармоничного общественною порядка, и эта надежда вдохновляла Бабефа, а раньше – предреволюционных адептов такого порядка.

554

В XIX в. увидели, что мысль может постичь и преобразовать действительность только в том случае, когда она отказывается от незыблемых форм, от универсальных математических соотношений и застывших логических законов. Лаплас писал, что разуму легче идти вперед, чем углубляться в себя. Но последнее оказалось неизбежным. Гёте указывал на несводимость действительности к логическим схемам ("теория, друг мой, сера, но зелено вечное дерево жизни"). Немецкая классическая философия обнаружила, что, не углубляясь в себя, не меняя своих канонов, мысль приходит к тяжелым, неразрешимым антиномиям. Затем классическая философия пришла к позитивному выводу: мысль обретает бесконечную мощь, когда она становится пластичной и живой, когда она не останавливается ни перед одним абсолютом. Карно, Клаузиус и в конце столетия Больцман показали, что законы поведения больших множеств молекул иные по своему характеру, чем законы поведения отдельных молекул. Первые носят статистический характер и придают процессам природы необратимый вид, а вторые укладываются в рамки механики обратимых процессов. Аналогичным образом Дарвин открыл статистические законы филогенеза: среда управляет судьбою вида, судьбою статистического множества, изменяя только вероятность тех или иных индивидуальных судеб. Лобачевский, а позже Риман пришли к мысли о двух уже известных нам, исключающих одна другую системах геометрии – евклидовой (сумма углов треугольника равна двум прямым углам; через точку вне прямой можно провести только одну параллельную ей прямую, перпендикуляры к прямой параллельны и т.д.) и неевклидовой (сумма углов треугольника меньше либо больше двух прямых углов; через точку вне прямой можно провести либо множество, либо ни одной параллельной ей прямой; перпендикуляры к прямой расходятся либо, напротив, сходятся в одной точке), причем от физических процессов и от масштабов взятой области зависит, какая из различных геометрий соответствует действительным процессам. Вскоре термин "неевклидова" относили уже не только к математически парадоксальной системе, но и ко всякой концепции, отказывающейся от канонов, казавшихся рапее незыблемыми.

555

Общественная мысль XIX в. пришла к революционному выводу: социальная гармония может воцариться на обломках институтов, которые казались чисто логическими и столь же незыблемыми, как аксиомы Евклида. Но здесь аналогия оканчивается. Социальная гармония, о которой думали наиболее передовые и революционные мыслители XIX в., отличается от космической гармонии, о которой думали самые революционные математики, астрономы и физики этой эпохи. Лобачевский и Риман считали возможным отступление от евклидовых соотношений в очень больших космических областях. Космическая гармония, даже неевклидова, оставалась космической. Микроскопические процессы не нарушали ее, гармонии подчинялись лишь статистически усредненные процессы, судьба одной песчинки была безразлична для движения планеты так же, как судьба одного организма – для филогенетической эволюции, для гибели или процветания вида. Но социальная гармония была основана на освобождении человечества от власти стихийных сил, управляющих статистически усредненными величинами. Гармоничное общественное устройство должно обеспечить счастье каждого индивида. Здесь "геометрия" целого основана не на игнорировании его микроскопических частей, а, напротив, на учете каждой микроскопической судьбы.

Таким образом, передовая естественнонаучная мысль XIX в. и его общественная мысль пришли к различным результатам. Первая сконструировала схему евклидовой или неевклидовой статистической гармонии мироздания. Вторая пришла к констатации: статистическая социальная гармония не удовлетворяет требованиям разума и совести человечества, – и к прогнозу: дальнейшее развитие науки и производительных сил потребует перехода к новой социальной организации, исключающей слепую статистическую игру стихийных общественных сил.

Как мы увидим дальше, это глубокое различие научного идеала XIX в. и его общественного идеала вызвало характерный протест против подчинения человеческой истории тем законам, которые управляют природой. Такой протест был связан с абсолютизацией научного идеала XIX в. В XX в. положение изменилось, неклассическая наука оперирует вероятностными законами, освобождающими частицу от абсолютного подчинения динамическим законам макрокосма, но исключающими также свойственное классической статистике игнорирование индивидуальных судеб человека.

555

А каковы в этом плане итоги художественного творчества XIX в.?

Здесь мы подходим к проблеме "Эйнштейн – Достоевский", связывая ее с самыми общими проблемами истории философии, науки и литературы. В последние десятилетия такая связь стала особенно существенной. В литературе, посвященной творчеству Эйнштейна, теории относительности и современной физике в целом, все чаще и шире анализируются этические критерии последней и прежде всего значение науки для жизни людей, для конкретных жизненных ситуаций, которые всегда были и всегда будут объектом художественного воспроизведения. Вместе с тем художественная литература и посвященные ей исследования чаще и во все более обобщенной форме показывают коллизии научного творчества, поднимаясь от отдельных литературоведческих экскурсов к интегральной демонстрации связи науки, морали и эстетики. Литература о Достоевском все точнее показывает связь его творчества с общими тенденциями русской и мировой культуры, преемственность всей русской литературы XIX в. Эти две тенденции, физико-философская, от Эйнштейна в хронологических и профессиональных рамках его творчества – к общей проблеме этической, эстетической, культурной ценности науки, и литературоведческая, от Достоевского – к исторической роли русской и мировой литературы XIX в., значительно сблизились.


    Ваша оценка произведения:

Популярные книги за неделю