355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Техника и вооружение 1998 05-06 » Текст книги (страница 9)
Техника и вооружение 1998 05-06
  • Текст добавлен: 24 сентября 2016, 04:58

Текст книги "Техника и вооружение 1998 05-06"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 9 (всего у книги 11 страниц)

Фото 5.

Разгон катапульты начинается с открытием быстродействующего стартового клапана, который обеспечивает заполнение цилиндров паром с большой скоростью. Перед выстрелом самолет стоит на катапульте в исходной позиции, прикрепленный бриделем или носовой стойкой к челноку и удерживаемый от преждевременного движения вперед (в результате работы собственных двигателей на полную мощность) специальным задержником, закрепленным на палубе, который разрывается силой, превышающей силу тяги двигателей данного самолета.

Когда катапульта срабатывает, задержник разрывается и челнок с самолетом устремляются вперед. В конце катапультного трека челнок резко тормозится, а самолет продолжает взлет. Напряжение катапульты может изменяться от запуска к запуску в зависимости от взлетного веса самолета, необходимой конечной скорости и других условий. Конечная скорость разгона, которая зависит от ограничений по прочности конструкции самолета и допустимых перегрузок для летного состава, должна быть равна минимальной взлетной скорости данного самолета, плюс 10-15% прироста для безопасности. Когда в конце хода поршней катапульты челнок останавливается, специальный «захват», приводимый в движение двигателем через тросовую систему, отводит челнок назад в исходное положение. (Схема 2).

Катапульта имеет много вспомогательных систем:

– пароприемники;

– кондиционеры воздуха на галерейной палубе;

– дренажная система для конденсата;

– предварительный подогрев рабочих цилиндров;

– дополнительные опреснительные установки и др.

Американцы используют паровые катапульты уже в течение 45 лет и считают, что наряду со многими преимуществами эти катапульты имеют ряд существенных недостатков:

1. Вес паровых катапульт очень велик. Каждая катапульта с вспомогательными устройствами весит 2800 тонн. Ввиду того, что все четыре катапульты на авианосце расположены ближе к верхней палубе, они значительно снижают общую остойчивость корабля.

2. Потребление огромного количества пресной воды (особенно для неатомных авианосцев) ложится тяжелым бременем на опреснительную систему авианосца. Например, за одну летную смену одна катапульта потребляет 80 т пресной воды.

3. Очень сложны техническое обслуживание и ремонт паровых катапульт. Большую трудность представляет юстировка отдельных секций рабочих цилиндров.

4. Вырывающийся из прорези при рабочем ходе пар ухудшает видимость на верхней палубе и снижает тягу двигателей самолетов.

5. Велика опасность возникновения пожаров в местах сильного нагрева.

6. Много деталей, подвергающихся коррозии.

7. Паровые катапульты занимают на корабле очень много места.

Одна катапульта (без органов дистанционного управления)занимает объем 2265 м 3 .


Катапультные команды дивизиона V-2, одетые в зеленые шлемы и фуфайки, работают как наверху, так и под палубой (где температура редко бывает ниже 37°), довольно в сложных условиях поддерживая работоспособность своей катапульты, каждый раз после пуска обеспечивая ее необходимым давлением пара и смазкой.

С помощью регулировщика самолет подруливает к катапульте. Два матроса в зеленых фуфайках «подныривают» иод хвост самолета и крепят задержник, рассчитанный на определенное разрывное усилие. Когда катапульта сработает, задержник рассо– единится, а пока он удерживает самолет от движения вперед. (Фото 6)[8*

[Закрыть]
]. Летчик выпускает закрылки, на некоторых самолетах подкачивает носовой амортизатор (для создания взлетного угла самолету). В этот момент оператор поднимает позади самолета дефлекторы газовой струи. Между прочим, в связи с появлением палубных самолетов с форсажной камерой на авианосцах пришлось изменять конструкцию дефлекторов газовой струи. В настоящий момент дефлекторы типа Мк-7 – это щиты 10,8 м шириной и 4,2 м высотой. Применение специальных сплавов и водяное охлаждение дает возможность дефлекторам выдерживать температуру свыше 1260°. (Фото 7).


Фото 6.


Фото 7.

Самой ответственной фигурой при катапультировании является офицер катапульты. Он одет в зеленый шлем и желтую фуфайку. Офицер катапульты отвечает за взлет всех самолетов с вверенных ему катапульт. На каждую пару катапульт имеется один офицер, который во время выпуска самолетов находится на палубе между катапультами. Он обязан убедиться, что самолет поставлен точно по оси катапультного трека и на нем закреплены бридель и стопорный задержник, что задержник установлен на определенное разрывное усилие, что давление пара точно соответствует взлетному весу самолета, что закрылки выпущены на необходимый угол, что катапультный трек свободен. Офицер катапульты лично подает сигнал на выстрел катапульты и взлет самолета.

Оператор катапульты со своим пультом управления находится на за– палубном мостике и держит связь с офицером катапульты по радио и с помощью зрительных сигналов (фото 8). По команде офицера он нажимает на пульте кнопку «натяжение», и самолет, растянутый бриделем и задер– жником, слегка» приседает». Офицер катапульты поднимает оба больших пальца вверх, что означает: «Натяжение в норме». Затем он поднимает вверх два пальца левой руки, и летчик начинает выводить обороты до максимальных.

8* В данном случае приводится описание процесса катапультирования самолетов типа А-4 и F-4. О старте самолетов типа F/A-18, F14 и др. будет рассказано далее по тексту


Фото 8.

Все матросы в зеленых фуфайках убегают от самолета. Последним покидает место старта старшина, отвечающий за закрепление бриделя к челноку катапульты. Теперь офицер показывает пять пальцев: «Форсаж!» (фото 9). Летчик включает форсаж и проверяет показания приборов в кабине самолета. Затем он салютует офицеру катапульты и откидывает голову на заголовник сиденья. То же проделывают все члены экипажа на многоместных машинах. Офицер катапульты дает ответный салют, еще раз окидывает взглядом самолет, катапультный трек и, вынося руку вперед по взлету, согнув колено, поворачивается лицом против ветра. Такой сложный зрительный сигнал введен для того, чтобы нельзя было его перепутать с каким-нибудь другим (фото 10). Оператор катапульты, который до сего момента держал руки поднятыми вверх (чтобы исключить преждевременный выстрел), нажимает кнопку «Пуск», и самолет, пробежав по треку две секунды и освободившись от бриделя, оказывается в воздухе.


Фото 9.


Фото 10.

Таково лишь краткое описание работы катапультной команды при выпуске самолетов. На самом же деле, очень многое нужно проделать, чтобы самолет мог взлететь. Палубные самолеты имеют разную конструкцию и различный полетный вес. Раньше каждому типу самолета соответствовал свой способ крепления бриделя к челноку катапульты. Бридель – это петля стального троса весом 80-130 кг, которая крепится концами к буксирным гакам самолета, а петлей набрасывается на специальный «рог» на челноке. Бридель имеет свои недостатки: он очень тяжел, требует для крепления минимум 5 человек, работающих в опасной зоне под самолетом. Почти каждый самолет требует различного типа оснастки, а для этого нужно было иметь в готовности на палубе множество разных тросов.


Фото 11.

Кроме того, бридель подвержен износу и должен часто заменяться (фото 11). В настоящий момент почти все палубные самолеты снабжены носовой буксирной передней стойкой шасси. Носовая буксирная передняя стойка шасси устраняет недостатки крепления самолета к челноку с помощью бриделя. Обычно установка самолета на катапульте с использованием тросовой системы занимает не менее 2 минут. Установка же передней стойки непосредственно на челнок и создание натяжения на катапульте занимает всего около минуты. Носовой буксир состоит из «Т»-образной стальной полосы, встроенной в переднюю стойку шасси. Эта полоса вставляется в специальное гнездо на стандартном челноке катапульты и застопоривается там при создании натяжения. Одним из главных, преимуществ «Т»-образной полосы является то, что она попадает в гнездо и застопоривается без помощи людей (фото 12). Это преимущество в значительной степени влияет на сокращение времени подготовки к катапультированию и дает возможность освободить несколько человек из расчета обслуживания.

Идея носовой буксирной стойки существовала давно, однако осуществить ее удалось только, когда применили новые сверхпрочные сплавы и более совершенную инженерную конструкцию передней стойки шасси, которая при катапультировании выдерживает очень большие динамические нагрузки. Катапультирование непосредственно за носовую стойку явилось целой революцией в палубной авиации, и теперь начали говорить о дне, когда процесс катапультирования станет полностью автоматическим и на верхней палубе не будет ни одного человека. Летчик подрулит к катапульте, встанет передним колесом на челнок – загорится лампочка в кабине; вторая лампочка обозначит создание натяжения на катапульте; третья – зеленая лампочка загорится, когда необходимое давление создано и самолет готов к пуску. Осмотрев приборы и приготовившись, летчик нажмет кнопку в кабине, сам себя выстреливая на взлет.


Фото 12.

В октябре 1977 г. в состав ВМС США был введен новый атомный авианосец «Эйзенхауэр» (CVN-69). На авианосце установлена система автоматического руления и постановки на катапульту. На авианосцах типа «Ни– митц» удалось убрать с полетной палубы офицеров катапульты, благодаря новой системе ручного ввода исходных данных самолета перед катапультированием – MADIS (Manu-al Aircraft Data Input System). Система была сконструирована в научно-техническом центре (NAEC) и является большим шагом вперед по сравнению со старыми способами контроля исходных данных самолета перед взлетом. Известно, что залогом успешного взлета с катапульты является точная установка давления пара, соответствующего взлетному весу самолета.



Фото 13.

На авианосцах старого типа специально выделенный для этой цели матрос катапультной команды после установки самолета на катапульту записывает на доске или выставляет набором цифр бортовой номер и точный взлетный вес самолета. После этого он показывает цифры летчику и, получив от того подтверждение, показывает офицеру катапульты, который отдает приказание установить соответствующее давление пара (фото 13). Так делалось на всех авианосцах, кроме последних. На авианосце «Нимитц» офицер катапульты имеет специальный пост, размещенный под полетной палубой. Объединенный пост управления катапультой представляет собой стеклянный блистер, выступающий над палубой на 45 см. Под блистером располагается офицер катапульты с пультом управления. Один из матросов стоит на верхней палубе между дефлекторами газовой струи, откуда ему хорошо видны оба самолета, установленные на катапультах. На груди у матроса имеется специальный прибор, на котором он вручную устанавливает цифровые значения взлетного веса самолета, его тип и бортовой номер. В передней части прибора загорается электронное табло, обозначающее вес самолета, который матрос показывает летчику. Получив подтверждение от летчика, он обеспечивает ввод данных на пост управления катапультой.

Офицер катапульты проверяет правильность исходных данных и нажимает кнопку «пуск». Когда взлет самолетов закончен, стеклянный блистер опускается под палубу, а отверстие наглухо закрывается стальной заслонкой. Один такой объединенный пост управления катапультой на авианосцах типа «Нимитц» расположен в носовой части корабля между катапультами № 1 и № 2, а второй – на запалубном мостике левого борта на траверзе островной надстройки. В Лэйкхерст (штат Нью-Джерси) в настоящее время установлена наземная катапульта ТС– 13 модель 1, на которой обучают офицеров катапульты и старшинский состав, входящий в расчет катапультной команды. Курс обучения рассчитан на 5 недель и предусматривает подготовку команд для работы с новым оборудованием на авианосцах типа «Нимитц».

Таким образом, американцы постепенно осуществляют идею полной автоматизации процесса катапультирования, что в результате должно значительно ускорить темп выпуска самолетов в воздух.

Чтобы закончить описание функций катапультной команды дивизиона V-2, необходимо также отметить, что многие из них работают внизу, под палубой, управляя различными вспомогательными устройствами и механизмами: двигателем системы возврата челнока и создания натяжения, гидротормозной установкой, паровым коллектором, приборами, записывающими конечную скорость разгона самолета по катапультному треку и др. Весь личный состав катапультной команды по боевому расписанию имеет свои посты и выполняет очень ответственные функции по обеспечению взлета палубных самолетов.

Каждый взлетевший самолет должен быть благополучно посажен обратно на палубу авианосца. Этим занимается аэрофинишерная команда дивизиона V-2. В ее состав входит 30 человек под командованием офицера (обычно в звании «капитан-лейтенант»). Эти 30 человек обслуживают четыре аэрофинишера, держат в постоянной готовности «последний шанс» или баррикаду из большой нейлоновой сети, которая в считанные минуты сооружается на палубе, если самолет имеет повреждения и не может выполнить нормальную посадку с аэрофинишером. Часть команды работает на полетной палубе и постоянно проверяет на износ стальные тросы аэрофинишеров, смазывает их, по необходимости заменяет новыми.

После посадки самолета «гаковые» подбегают к нему и отцепляют посадочный гак от троса финишера. Два человека из команды постоянно находятся на КДП и сообщают по телефону тип самолета, заходящего на посадку и его посадочный вес для создания правильного натяжения стальных тросов аэрофинишеров. Эти же данные передаются на пост управления оптической системой посадки для установки необходимой глиссады планирования. Восемь человек аэрофинишерной команды записывают на видеомагнитофон все взлеты и посадки для последующего разбора полетов и расследования происшествий. В их распоряжении имеется пять телекамер, два магнитофона. «Стоп– кадр» и «мгновенное повторение» повышают возможности телеоборудования и делают их не хуже, чем у популярных спортивных передач. После полетов личный состав дивизиона V-2 просматривает видеозапись всей работы на палубе по приему и выпуску самолетов за летную смену.

Современные аэрофинишеры – это большие амортизаторы, связанные с толстыми (35 мм) стальными тросами длиной до 32 м, натянутыми поперек угловой палубы в районе касания ее самолетами при посадке. На авианосцах имеется по четыре аэрофинишера. Подвески тросов, натянутые на палубе, соединяются с длинными подпалубными тросами (длиной около 600 м), уходящими через систему шкивов под палубу, где расположены двигатели аэрофинишеров и огромные гидравлические амортизаторы. Двигатели наматывают тросы на барабаны и создают необходимое натяжение. Подвески тросов приподнимаются над палубой на стальных дугообразных пластинах. (Фото 14). Когда посадочный гак самолета захватывает один из четырех тросов аэрофинишера, трос растягивается, огромный плунжер входит в гидравлический цилиндр и, вытеснял из него тормозную жидкость, гасит энергию до нуля.

Самолеты, заходящие на посадку, обычно имеют посадочный вес 16-24 тонны и скорость 220-250 км/ч. Аэрофинишер за время, равное 2,5-3 секундам, останавливает самолет на участке длиной 90 м. Перегрузки, возникающие при этом, не превышают 5g.

После каждой посадки трос аэрофинишера смазывается и проверяется на обрыв отдельных проволок и прядей. При необходимости последующий самолет отправляется на второй круг, а подвеска весом в 180 кг заменяется на новую в течение 2 минут. Аэрофинишерная команда ведет строгий учет работы тросов, и независимо ог износа трос заменяется через каждые 100 посадок.


Фото 14.

Все четыре аэрофинишера управляются от одного пульта, где оператор, получив данные с КДП, устанавливает натяжение тросов, соответствующее посадочному весу самолета, заходящего на посадку.

Аэрофинишерная группа дивизиона V-2 с помощью личного состава авиаэскадрилий в течение 2 минут способна соорудить аварийный барь– ер(«баррикаду») для самолета, имеющего малый остаток горючего, неисправность шасси, посадочного гака, или по причине плохого самочувствия летчика, не способного выполнить нормальную посадку. «Баррикада» состоит из большой нейлоновой сети, растягиваемой между двумя прочными металлическими стойками, которые в нормальном положении заламываются вровень с палубой. Основу «баррикады» составляет трос в нижнем основании сети, имеющий то же устройство, что и обычный аэрофинишер. Самолет, попадая в сеть, увлекает ее носовой частью и приподнимает нижний трос, за который зацепляются основные стойки шасси. Перегрузки в этом случае будут несколько большими, чем при нормальной посадке с аэрофинишером, однако самолет получает лишь незначительные поломки. (Фото 15)


Фото 15.


Управление оптической системой посадки также является обязанностью аэрофинишерной группы. Оптическую систему посадки впервые придумали англичане. Она состояла из вогнутого зеркала размером 1,2 м х 1,2 м, расположенного на левом борту авианосца. Перед зеркалом, ближе к корме, находился прожектор. Свет, направленный на зеркало, фокусировался в одной точке, называемой в просторечии «митбол» ( в переводе означает «мясной тефтель» или еще – изображение японского восходящего солнца). Отраженный зеркалом луч образовывал оптическую глиссаду планирования. По обеим сторонам зеркала располагались зеленые горизонтальные огни. Для выдерживания точной глиссады планирования летчику необходимо было удерживать горизонтальные огни и «митбол» на одном уровне. Над зеркалом, кроме того, устанавливались красные огни ухода на второй круг. Вся установка монтировалась на подвижном основании для перемещения по палубе. Зеркальная система посадки была впервые испытана американцами в 1955 г. на авианосце «Беннингтон». Эта система до начала семидесятых годов стояла на всех авианосцах и береговых авиабазах. Она имела ряд недостатков. При выполнении посадки со стороны солнца зеркало отражало солнечные лучи и ослепляло летчика.


Фото 16.

Прожектор создавал помехи в работе палубных команд. Во время килевой качки оптический луч делал огромные «скачки» и заход по такой «глиссаде» был невозможен. Зеркальная установка мешала работе катапульт, расположенных на шкафуте, а также уходу самолетов на второй круг. (Фото 16)

На замену зеркалу пришла новая оптическая система посадки с применением линз Френеля. Линзы Френеля используют внутренний источник света. Каждая линза состоит из пяти линзовых ячеек, расположенных одна над другой. Зеленые горизонтальные огни и красные огни ухода на второй круг остались как и у зеркальной системы. Вся установка вынесена за пределы левого борта и стабилизирована по качке. (Фото 17).


Фото 17.

Угол оптической глиссады составляет в среднем 4° и может изменяться в зависимости от типа самолета, заходящего на посадку(вследствие разницы в раз– мерениях «посадочный гак-глаза летчика»). Новая линзовая система позволила устранить недостатки зеркала и явилась эффективным средством обеспечения посадки на палубу. Если летчик будет держать постоянно «митбол» в центре горизонтальных огней, это обеспечит ему посадку и захват посадочным гаком третьего троса аэрофинишера, что является идеальным вариантом посадки на палубу авианосца. (Схема 3).

Система очень надежна и хорошо «облетана». Бывают случаи, когда летчики выполняют посадку ночью лучше, чем днем. Причина, видимо, в том, что ночью они не видят палубы и доверяются целиком световому лучу. Обычно ночью или в сложных метеоусловиях летчик сначала заходит на посадку по командам диспетчера или по индикатору, а с дальности 1,5 км начинает входить в оптический луч глиссады, о чем обязательно докладывает руководителю.


Схема 3. Заход самолета на посадку визуально с помощью FLOLS (Fresnel Lens Optical Landing System – оптическая посадочная система на основе линз Френеля)

Значение и роль оптической системы посадки на авианосцах очень велики, ошибки недопустимы, поэтому специалисты ежедневно проводят тщательный осмотр и регулировку этого точного и сложного прибора.

Не менее важной системой в обеспечении посадки самолетов, которая также находится в ведении аэрофинишерной команды дивизиона V-2, является телевизионная система объективного контроля за выполнением посадки – PLAT (Pilot Landing Aid Television). Она состоит из четырех телевизионных камер, расположенных на авианосце в разных местах. Все четыре камеры передают изображение на контрольный пост, где оператор записывает всю видеоинформацию на магнитофон и распределяет ее по различным приемным устройствам на корабле. Основой системы является видоизмененная стандартная телевизионная камера, установленная под посадочной палубой точно по осевой линии на расстоянии 90 м от последнего (четвертого) троса аэрофинишера. Объектив камеры смонтирован на перископическом основании, надежно прикрыт стальной крышкой от разрушения колесами самолетных шасси. В стальной крышке имеется вырез, обеспечивающий обзор телеобъективу в необходимом секторе. Перископическое устройство стабилизируется от оптической системы посадки. Перекрестие, нанесенное на призме перископа, свизировано точно по линии заданной глиссады планирования. Все устройство смонтировано на амортизаторах для исключения влияния вибрации корабля на изображение. (Фото 18).


Фото 18.

Вторая телевизионная камера, имеющая аналогичное устройство, установлена в качестве резервной. Третья камера постоянно направлена на приборную доску с репитерами в контрольном посту и дает изображение следующих показаний: даты, времени события, скорости относительно ветра на палубе и скорости самолета, заходящего на посадку.

Изображение с двух телекамер накладывается одно на другое, и на контрольном посту, а также в других местах, где это требуется, на экранах отображаются: самолет, перекрестие точно глиссады и все необходимые объективные данные.

Четвертая телекамера установлена на мостике островной надстройки авианосца и управляется оператором вручную. Оператор может следить за самолетами при полетах по кругу от момента пролета траверза и до заруливания на стоянку. Обязательными для съемки являются момент касания палубы при посадке, захват троса аэрофинишера посадочным гаком, остановка и руление самолета за линию безопасности. Камера с помощью трансфокатора дает крупным планом изображение бортового номера самолета, затем следует по тросу финишера до шкивов. Если самолет не захватил трос, оператор продолжает следить телекамерой до пролета этого самолета носовой части авианосца. Эта камера позволяет показать крупным планом любое происшествие на палубе. (Фото 19).


Фото 19.

Система PLAT может по необходимости подключаться к внутренней телевизионной сети корабля. PLAT значительно облегчает разбор полетов, особенно при выполнении массовых полетов по кругу. Все посадки, выполняемые на палубу авианосца, записываются на видеомагнитофонную ленту. Запись возможна также и ночью благодаря специальной подсветке на верхней палубе. Каждый летчик может видеть и оценить свой заход на посадку, посадки других летчиков, а также проанализировать радиообмен между летчиком и руководством полетов.

Система PLAT помогает не только проведению послеполетного анализа. На платформе у офицера визуального управления посадкой имеется контрольный экран, на котором дается изображение самолета, заходящего на посадку, перекрестия, обозначающего заданную глиссаду планирования и всех остальных объективных данных. LSO может в любой момент проверить правильность подачи им команды на исправление ошибок и следить за точностью их исполнения.

Камера, расположенная на мостике островной надстройки, имеет также возможность передавать изображение процесса катапультирования, обеспечивая, таким образом, боевой информационный центр (БИЦ) корабля немедленной информацией о взлете самолетов. В период относительного «затишья» между взлетами и посадками камера передает изображение полетной палубы, и летчики, ожидающие вылета в эс– кадрильских «рэди-рум»,могут наблюдать перемещение и расстановку своих самолетов.

Одним из наиболее существенных преимуществ PLAT является возможность проведения объективного анализа летных происшествий. Очень часто, например, при разрушении основной стойки шасси при посадке непосредственной причиной считается ошибка летчика, однако тщательный просмотр видеоматериалов неоднократно объективно доказывал его невиновность. После случившегося летного происшествия кассета с видеозаписью отсылается командующему авиацией соответствующего флота для расследования. Использование системы PLAT значительно повышает безопасность полетов на авианосцах.

Американцы считают, что система не слишком дорога по сравнению со стоимостью даже одного самолета, да и к тому же почти вся аппаратура к ней продается на обычном промышленном рынке. Подготовка специалистов, обслуживающих систему, проводится в течение 16 недель на авиабазе Грейт Лэйкс (штат Иллинойс). Один из матросов аэрофинишерной команды обслуживает радиолокатор AN/SPN-12, с помощью которого измеряется скорость заходящего на посадку самолета относительно авианосца. Приемопередатчик и антенна SPN-12 вручную разворачивается в направлении самолета. Значение скорости приближения передается на приборную доску контрольного поста телевизионной системы PLAT офицеру визуального управления посадкой (LSO) и руководителю полетов на КДП. (Фото 20)


Фото 20.

Дивизион ангарной палубы – V– 3 – в шутку называют «смотрителем гаража». «Гараж» на авианосце довольно большой и составляет около 50% площади верхней палубы. На ангарной палубе производится ремонт и техническое обслуживание самолетов, хранятся наземные обеспечивающие средства («желтые механизмы»), техническое оборудование, самолетные топливные баки, контейнеры со средствами постановки пассивных помех и много других вспомогательных устройств и механизмов.

В период пополнения запасов на ходу в море ангарная палуба является перевалочной базой для поставляемого вооружения, авиационно-технического имущества, продовольствия. На ангарной палубе организуется широкая торговля магазинов для личного состава корабля и просмотр кинофильмов. Основной обязанностью личного состава дивизиона V-3 является прием самолетов с полетной палубы вниз (с помощью элеваторов грузоподъемностью до 50 т), размещение в ангаре для авиационно-технического обслуживания и подача их в исправном состоянии обратно на полетную палубу.

Стесненные условия, короткое время реакции требует тренировки регулировщиков и их помощников (в синих шлемах и фуфайках), для того чтобы выполнить эти эволюции быстро и безопасно. Все эти опускания– подъемы самолетов есть залог успешного выполнения полетов наверху. От неумелых действий команды ангарной палубы выполнение плановой таблицы может быть нарушено. Только тесное взаимодействие со службой авиационно-технического обслуживания гарантирует постоянный поток исправных и подготовленных к вылету самолетов.

Пополнение запасов на ходу корабля является особо трудным моментом для дивизиона V-3. Для этого все самолеты должны быть перешвартованы, чтобы освободить место для провизии и амуниции. Вся команда ангарной палубы должна быть хорошо подготовлена к борьбе с пожарами, уметь управлять четырьмя постами тушения пожаров и быть в постоянной бдительности в вопросах поддержания противопожарной безопасности. Ибо нет на авианосце бедствия страшнее, чем пожар на ангарной палубе.

Четвертый дивизион авиационной боевой части – дивизион горюче-смазочных материалов V-4 – состоит из 90-100 человек. Все «хозяйство» этого дивизиона иногда сравнивают с айсбергом, потому что на верхней палубе работают лишь люди в пурпурных фуфайках, занимающихся непосредственно заправкой самолетов, в то время как огромные танки для хранения горючего, топливные насосы, очистители, регуляторы давления и контрольные приборы остаются невидимыми для глаза и простираются от носа до кормы по левому и правому бортам и уходят вглубь корабля до самого киля.

На современном авианосце имеется до 16 расходных баков и около 150 емкостей для хранения керосина марки JP-5, а также бензина, масла и химического растворителя для очистки топливных систем. Общий запас ГСМ составляет 8-11 тысяч тонн.

Личный состав дивизиона V-4 отвечает за качество топлива и заправляет не только самолеты, но и корабли охранения авианосной группы. За время, которое предназначается для заправки, перевооружения и расстановки самолетов на верхней палубе, матросы дивизиона успевают обеспечить топливом самолеты очередного вылета. Темп заправки выдерживается достаточно быстрым, благодаря большому количеству заправочных точек на полетной и ангарной палубах, а также методу «горячей» дозаправки при работающих двигателях (особенно при массовых полетах по кругу).

В среднем на заправку 30 самолетов затрачивается около 40 минут. Дивизион V-4 за одну летную смену перекачивает до 530 тонн горючесмазочных материалов.

Как уже было сказано вначале, работой всех четырех дивизионов авиационной БЧ руководит командир в звании «коммандер», находящийся в период проектов на КДП. Командир БЧ имеет заместителя, тоже в звании «коммандер». КДП расположен на самом верху левой части островной надстройки авианосца и обеспечивает хороший обзор всей левой полусферы, включая сюда взлет, полет по кругу и посадку самолетов. (Фото 21).


Фото 21. КДП авианосца «Энтерпрайз»

КДП имеет широкую систему коммуникации со всеми дивизионами, постами управления и командованием. Рабочий день «авиабосса» начинается за два часа до начала полетов и заканчивается через 2 часа после посадки последнего самолета. Он руководит взлетом, посадкой самолетов и работой всех дивизионов своей БЧ одновременно. В течение летной смены его голос постоянно слышится в динамиках по всему кораблю. На авианосце это – «фигура», вполне заслуженно называемая «боссом». На «боссе» лежит ответственность (вместе с офицером визуального управления посадкой) за принятие решения для отправки самолета на второй круг. В помощь руководителю полетов выделяется специальный расчет, состоящий из телефонистов, планшетистов и других необходимых для обеспечения руководства людей.

Метеорологическим обеспечением полетов занимается дивизион службы погоды, входящий в состав оперативной БЧ авианосца. Обычно он состоит из 12-18 человек (из них 1-3 офицера), несущих посменно круглосуточную вахту. На дивизион ложится большая ответственность за обеспечение авианосца и в целом авианосной группы своевременными и точными прогнозами.

Метеобюро на современном авианосце входит в состав системы командования службы погоды ВМС – NWSC (Naval Weather Service Command). Основанная в июле 1967 г. система обеспечивает ВМС глобальными метеорологическими и океанографическими прогнозами от 360 м глубины под поверхностью моря и до 37,5 км высоты над его поверхностью. Штаб командования, находящийся в Вашингтоне, связан компьютерами с флотскими Центрами службы погоды на Гуаме, в Перл Харборе, Роте, Аламеде (штат Калифорния). В свою очередь, флотские центры связаны с подразделениями службы погоды на береговых базах и кораблях. В большинстве случаев процесс анализа и распространения полностью автоматизирован применением компьютеров, сопряженных с высокоскоростной системой связи (Naval Environmental Data Network), передающей со скоростью 14000 слов в минуту. Командование службы погоды ВМС имеет свой искусственный спутник, запущенный на 450-мильную высоту. Период обращения спутника 2,5 часа. На спутнике установлены электронные камеры с высокой чувствительностью.


    Ваша оценка произведения:

Популярные книги за неделю