Текст книги "Наши космические пути"
Автор книги: авторов Коллектив
Жанры:
История
,сообщить о нарушении
Текущая страница: 19 (всего у книги 32 страниц)
Несмотря на неблагоприятную погоду в большинстве районов расположения оптических средств, ведущих наблюдение за космической ракетой, удалось получить несколько фотографий натриевой кометы.
Контроль орбиты космической ракеты вплоть до расстояний 400-500 тысяч километров и измерение элементов ее траектории производились с помощью специальной радиотехнической системы, работающей на частоте 183,6 мгц.
Данные измерений в строго определенные моменты времени автоматически выводились и фиксировались в цифровом коде на специальных устройствах.
Вместе со временем, в которое производился съем показаний радиотехнической системы, эти данные оперативно поступали в координационно-вычислительный центр. Совместная обработка указанных измерений вместе с данными измерений радиолокационной системы позволяла уточнять элементы орбиты ракеты и непосредственно контролировать движение ракеты в пространстве.
Использование мощных наземных передатчиков и высокочувствительных приемных устройств обеспечивало уверенное измерение траектории космической ракеты до расстояний порядка 500 тысяч километров.
Применение указанного комплекса измерительных средств позволило получить ценные данные научных наблюдений и надежно контролировать и прогнозировать движение ракеты в космическом пространстве.
Богатый материал траекторных измерений, выполненных при полете первой советской космической ракеты, и опыт автоматической обработки траекторных измерений на электронных счетных машинах будут иметь большое значение при запусках последующих космических ракет.
НАУЧНЫЕ ИССЛЕДОВАНИЯ
Изучение космических лучей
Одной из главных задач научных исследований, проводимых на советской космической ракете, является изучение космических лучей.
Состав и свойства космического излучения на больших расстояниях от Земли определяются условиями возникновения космических лучей и структурой космического пространства. До настоящего времени сведения о космических лучах были получены путем измерения космических лучей вблизи Земли. Между тем в результате действия целого ряда процессов состав и свойства космического излучения у Земли резко отличаются от того, что присуще самим «истинным» космическим лучам. Наблюдаемые на поверхности Земли космические лучи мало похожи на те частицы, которые приходят к нам из космоса.
При использовании высотных ракет и в особенности спутников Земли ща пути космических лучей из космоса к измерительному прибору уже нет существенного количества вещества. Однако Земля окружена магнитным полем, которое частично отражает космические лучи. С другой стороны, это же магнитное поле создает своеобразную ловушку для космических лучей. Один раз попав в эту ловушку, частица космических лучей блуждает там в течение очень долгого времени. В результате этого вблизи Земли накапливается большое число частиц космического излучения.
До тех пор, пока измеряющий космическое излучение прибор находится в сфере действия магнитного поля Земли, результаты измерений не дадут возможности изучать космические лучи, приходящие из Вселенной. Известно, что среди частиц, присутствующих на высотах порядка 1000 километров, лишь ничтожная часть (около 0,1 процента) приходит непосредственно из космоса. Остальные 99,9 процента частиц возникают, по-видимому, от распада нейтронов, испускаемых Землей (точнее, верхними слоями ее атмосферы). Эти нейтроны в свою очередь создаются космическими лучами, бомбардирующими Землю.
Лишь после того, как прибор будет находиться не только вне атмосферы Земли, но и вне магнитного поля Земли, можно выяснить природу и происхождение космических лучей.
На советской космической ракете установлены разнообразные приборы, позволяющие всесторонне изучать состав космических лучей в межпланетном пространстве.
С помощью двух счетчиков заряженных частиц определялась интенсивность космического излучения. С помощью двух фотоумножителей с кристаллами исследовался состав космических лучей.
Для этой цели измерялись:
Поток энергии космического излучения в широком диапазоне энергий.
Число фотонов с энергией выше 50 000 электрон-вольт (жесткие рентгеновские лучи).
Число фотонов с энергией выше 500 000 электрон-вольт (гамма-лучи).
Число частиц, обладающих способностью проходить сквозь кристалл йодистого натрия (энергия таких частиц больше 5 000 000 электрон-вольт).
Суммарная ионизация, вызываемая в кристалле всеми видами излучения.
Счетчики заряженных частиц давали импульсы на специальные так называемые пересчетные схемы. С помощью таких схем оказывается возможным передать по радио сигнал тогда, когда сосчитано определенное число частиц.
Фотоумножители, соединенные с кристаллами, регистрировали вспышки света, визникающие в кристалле при прохождении сквозь них частиц космического излучения Величина импульса на выходе фотоумножителя в известных пределах пропорциинальна количеству света, излученному в момент прохождения частицы космических лучей внутри кристалла. Эта последняя величина в свою очередь пропорциональна той энергии, которая была истрачена в кристалле на ионизацию частицей космических лучей Выделяя те импульсы, величина которых больше определенного значения, можно исследовать состав космического излучения. Наиболее чувствительная система регистрирует все случаи, когда энергия, выделенная в кристалле, превосходит 50 000 электроновольт. Однако проникающая способность частиц при таких энергиях очень мала. В этих условиях в основном будут регистрироваться рентгено вские лучи.
Счет числа импульсов осуществляется с помощью таких же пересчетных схем, которые были использованы для счета числа заряженных частиц.
Аналогичным образом выделяются импульсы, величина которых соответствует энерговыделению в кристалле более 500 000 электроновольт. В этих условиях в основном регистрируются гамма-лучи.
Путем выделения импульсов еще большей величины (соответствующих энерговыделению более5 000 000 электроновольт) отмечаются случаи прохождения сквозь кристалл частиц космических лучей, обладающих большой энергией. Следует отметить,что заряженные частицы, входящие в состав космических лучей и летящие практически со скоростью света, будут проходить сквозь кристалл. При этом энерговыделение в кристалле в большинстве случаев будет равно примерно 20 000 000электроновольт.
Помимо измерения числа импульсов, производится определение суммарной ионизации, создаваемой в кристалле всеми видами излучений. Для этой цели служит схема, состоящая из неоновой лампочки, конденсатора и сопротивлений. Эта система позволяет путем измерения числа зажиганий неоновой лампочки определять суммарный ток, текущий через фотоумножитель, и тем самым измерять суммарную ионизацию, создаваемую в кристалле.
Исследования, проведенные на космической ракете, дают возможность определить состав космических лучей в межпланетном пространстве.
Изучение газовой составляющей межпланетного вещества и корпускулярного излучения Солнца
До недавнего времени предполагалось, что концентрация газа в межпланетном пространстве весьма мала и измеряется единицами частиц в кубическом сантиметре. Однако некоторые астрофизические наблюдения последних лет поколебали эту точку зрения.
Давление солнечных лучей на частицы самых верхних слоев земной атмосферы создает своеобразный «газовый хвост» Земли, который направлен всегда от Солнца. Свечение его, которое проектируется на звездный фон ночного неба в виде противосияния, называется зодиакальным светом. В 1953 году были опубликованы результаты наблюдений поляризации зодиакального света, которые привели некоторых ученых к выводу о том, что в межпланетном пространстве в районе Земли содержится около 600-1000 свободных электронов в кубическом сантиметре. Если это так и так как среда в целрм электрически нейтральна, то в ней должны содержаться и положительно заряженные частицы с такой же концентрацией. При некоторых предположениях из указанных поляризационных измерений была выведена зависимость электронной концентрации в межпланетной среде от расстояния до Солнца, а следовательно и плотность газа, который должен быть полностью или почти полностью ионизирован. Плотность межпланетного газа должна убывать по мере .увеличения расстояния от Солнца.
Другим опытным фактом, говорящим в пользу существования межпланетного газа с плотностью порядка 1000 частиц в кубическом сантиметре, является распространение так называемых «свистящих атмосфериков» – низкочастотных электромагнитных колебаний, вызываемых атмосферными электрическими разрядами. Для объяснения распространения этих электромагнитных колебаний от места их возникновения к месту, где они наблюдаются, приходится предполагать, что они распространяются по силовым линиям магнитного поля Земли, на расстояниях восьми-десяти земных радиусов (то есть порядка 50-65 тысяч километров) от поверхности Земли, в среде с электронной концентрацией порядка тысячи электронов в 1 кубическом сантиметре.
Однако выводы о существовании в межпланетном пространстве столь плотной газовой среды отнюдь не являются бесспорными. Так, ряд ученых указывает на то, что наблюдаемая поляризация зодиакального света может вызываться не свободными электронами, а межпланетной пылью. Высказывается предположение о том, что в межпланетном пространстве газ присутствует только в виде так называемых корпускулярных потоков, то есть потоков ионизированного газа, выбрасываемых с поверхности Солнца и движущихся со скоростью 1000-3000 километров в секунду.
По-видимому, при современном состоянии астрофизики вопрос о природе и концентрации межпланетного газа нельзя решить с помощью наблюдений, проводимых с поверхности Земли. Эта проблема, имеющая большое значение для выяснения процессов обмена газом между межпланетной средой и верхними слоями земной атмосферы и для изучения условий распространения корпускулярного излучения Солнца, может быть решена с помощью приборов, устанавливаемых на ракетах, движущихся непосредственно в межпланетном пространстве.
Целью установки приборов для изучения газовой составляющей межпланетного вещества и корпускулярного излучения Солнца на советской космической ракете является проведение первого этапа подобных исследований – попытки прямого обнаружения стационарного газа и корпускулярных потоков в области межпланетного пространства, находящегося между Землей и Луной, и грубой оценки концентрации заряженных частиц в этой области. При подготовке эксперимента на основании имеющихся в настоящее время данных принимались в качестве наиболее вероятных две следующие модели межпланетной газовой среды:
А. Имеется стационарная газовая среда, состоящая в основном из ионизированного водорода (то есть из электронов и протонов – ядер водорода) с электронной температурой 5000-10000° К (близкой к ионной температуре). Через эту среду временами проходят корпускулярные потоки со скоростью 1000-3000 километров в секунду с концентрацией частиц – 1-10 в кубическом сантиметре.
Б. Имеются только спорадические корпускулярные потоки, состоящие из электронов и протонов со скоростями 1000-3000 километров в секунду, иногда достигающие максимальной концентрации 1000 частиц в кубическом сантиметре.
Эксперимент проводится с помощью протонных ловушек. Каждая протонная ловушка представляет собой систему из трех концентрически расположенных полусферических электродов с радиусами 60 мм, 22,5 мм и 20 мм. Два внешних электрода изготовлены из тонкой металлической сетки, третий – сплошной – служит коллектором протонов. Электрические потенциалы электродов относительно корпуса контейнера таковы, что электрические поля, образуемые между электродами ловушки, должны обеспечить как полное собирание всех протонов и выталкивание электронов, попадающих в ловушку из стационарного газа, так и подавление фототока с коллектора, возникающего под действием ультрафиолетового излучения Солнца и других излучений, действующих на коллектор.
Разделение протонного тока, создаваемого в ловушках стационарным ионизированным газом и корпускулярными потоками (если они существуют совместно), осуществляется одновременным использованием четырех протонных ловушек, отличающихся друг от друга тем, что у двух из них на оболочки (внешние сетки) подан положительный потенциал, равный 15 вольтам относительно оболочки контейнера. Этот тормозящий потенциал препятствует попаданию в ловушку протонов из стационарного газа (имеющих энергию порядка 1 электроновольта), но не может помешать попаданию на коллектор протонов корпускулярных потоков, обладающих гораздо большими энергиями. Две остальные ловушки должны регистрировать суммарные протонные токи, создаваемые как стационарными, так и корпускулярными протонами. Внешняя сетка у одной из них находится под потенциалом оболочки контейнера, а у другой имеется отрицательный потенциал, равный 10 вольтам относительно той же оболочки.
Токи в цепях коллекторов после усиления регистрируются с помощью радиотелеметрической системы
Исследование метеорных частиц
Наряду с планетами и их спутниками, астероидами и кометами в солнечной системе присутствует большое количество мелких твердых частиц, движущихся относительно Земли со скоростями от 12 до 72 километров в секунду и называемых в комплексе метеорным веществом.
К настоящему времени основные сведения о метеорном веществе, вторгающемся в земную атмосферу из межпланетного пространства, получены астрономическими, а также радиолокационными методами.
Сравнительно крупные метеорные тела, влетая с огромными скоростями в атмосферу Земли, сгорают в ней, вызывая свечение, наблюдаемое визуально и при помощи телескопов. Более мелкие частицы прослеживаются радиолокаторами по следу заряженных частиц – электронов и ионов, образующихся при движении метеорного тела.
На основании этих исследований получены данные о плотности метеорных тел вблизи Земли, их скорости и масс от 10-4 грамма и больше.
Данные о мелких и самых многочисленных частицах с поперечником в несколько микрон получаются из наблюдения рассеяния солнечного света лишь на огромном скоплении таких частиц. Исследование индивидуально микрометеорной частицы возможно только при помощи аппаратуры, установленной на искусственных спутниках Земли, а также на высотных и космических ракетах.
Изучение метеорного вещества имеет существенное научное значение для геофизики, астрономии, для решения проблем эволюции и происхождения планетных систем.
В связи с развитием ракетной техники и началом эры межпланетных полетов, открытой первой советской космической ракетой, изучение метеорного вещества приобретает большой чисто практический интерес для определения метеорной опасности для космических ракет и искусственных спутников Земли, находящихся длительное время в полете.
Метеорные тела при соударении с ракетой способны производить на нее разного рода воздействия: разрушить ее, нарушить герметичность кабины, пробив оболочку. Микрометеорные частицы, длительное время воздействуя на оболочку ракеты, могут вызвать изменение характера ее поверхности. Поверхности оптических приборов в результате столкновения с микрометеорными телами могут превращаться из прозрачных в матовые.
Как известно, вероятность столкновения космической ракеты с метеорными частицами, способными повредить ее, мала, но она существует, и важно правильно оценить ее.
Для исследования метеорного вещества в межпланетном пространстве на приборном контейнере космической ракеты установлены два баллистических пьезоэлектрических датчика из фосфата аммония, регистрирующих удары микрометеорных частиц. Пьезоэлектрические датчики превращают механическую энергию ударяющей частицы в электрическую, величина которой зависит от массы и скорости ударяющей частицы, а число импульсов равно числу частиц, сталкивающихся с поверхностью датчика.
Электрические импульсы с датчика, имеющие вид кратковременных затухающих колебаний, подаются на вход усилителя-преобразователя, разделяющего их на три диапазона по амплитуде и подсчитывающего число импульсов в каждом амплитудном диапазоне.
Магнитные измерения
Успехи советской ракетной техники открывают перед геофизиками большие возможности. Космические ракеты позволят производить непосредственно измерения магнитных полей планет специальными магнитометрами или обнаруживать поля планет благодаря их возможному влиянию на интенсивность космического излучения непосредственно в пространстве, окружающем планеты.
Полет советской космической ракеты с магнитометром в сторону Луны является первым таким экспериментом.
Помимо исследования магнитных полей космических тел, громадное значение имеет вопрос об интенсивности магнитного поля в космическом пространстве вообще. Напряженность магнитного поля Земли на расстоянии 60 земных радиусов (на расстоянии лунной орбиты) практически равна нулю. Есть основания полагать, что магнитный момент Луны невелик. Магнитное поле Луны, в случае однородного намагничивания, должно убывать по закону куба расстояния от ее центра. При неоднородном намагничивании интенсивность поля Луны будет убывать еще быстрее. Следовательно, оно может быть надежно обнаружено лишь в непосредственной близости от Луны.
Какова интенсивность поля в пространстве внутри орбиты Луны при достаточном удалении от Земли и Луны? Определяется ли оно значениями, вычисленными из магнитного потенциала Земли, или оно зависит и от других причин? Магнитное поле Земли измерено на третьем советском спутнике в диапазоне высот 230-1800 километров, то есть до 1/3 радиуса Земли. Относительный вклад возможной непотенциальной части постоянного магнитного поля, влияние переменной части магнитного поля будет больше на расстоянии нескольких радиусов Земли, где интенсивность ее поля уже достаточно мала. На расстоянии пяти радиусов поле Земли должно составлять примерно 400 гамм (одна гамма – 10-5 эрстед).
Установка магнитометра на борту ракеты, летящей в сторону Луны, преследует следующие цели:
1. Измерить магнитное поле Земли и возможные поля токовых систем в пространстве внутри орбиты Луны.
2. Обнаружить магнитное поле Луны.
Вопрос о том, намагничены ли, подобно Земле, планеты солнечной системы и их спутники, является важным вопросом астрономии и геофизики.
Статистическая обработка большого числа наблюдений, выполненная магнитологами с целью обнаружения магнитных полей планет и Луны по их возможному влиянию на геометрию корпускулярных потоков, выбрасываемых Солнцем, не привела к определенным результатам.
Попытка установления общей связи между механическими моментами космических тел, известных для большинства планет солнечной системы, и их возможными магнитными моментами не нашла экспериментального подтверждения в целом ряде наземных экспериментов, которые следовали из этой гипотезы.
В настоящее время наиболее часто используется в различных гипотезах происхождения магнитного поля Земли модель регулярных токов, текущих в жидком проводящем ядре Земли и вызывающих основное магнитное поле Земли. Вращение Земли вокруг оси при этом привлекается для объяснения частных особенностей земного поля.
Таким образом, согласно этой гипотезе, существование жидкого проводящего ядра является обязательным условием наличия общего магнитного поля.
О физическом состоянии внутренних слоев Луны мы знаем очень мало. До недавнего времени полагали, исходя из вида поверхности Луны, что если даже горы и лунные кратеры имеют вулканическое происхождение, вулканическая деятельность на Луне давно окончилась и Луна вряд ли имеет жидкое ядро. При такой точке зрения следовало бы полагать, что Луна не обладает магнитным полем, если верна гипотеза происхождения земного магнитного поля. Однако если вулканическая деятельность на Луне продолжается, то не исключается возможность существования неоднородной намагниченности Луны и даже общей однородной намагниченности.
Чувствительность, диапазон измерения магнитометра и программа его работы для советской космической ракеты были выбраны, исходя из необходимости решения указанных выше задач. Так как ориентация измерительных датчиков относительно измеряемого магнитного поля непрерывно меняется из-за вращения контейнера и вращения Земли, для эксперимента используется трехкомпонентный магнитометр полного вектора с магнитно-насыщенными датчиками. Три взаимно-перпендикулярных чувствительных датчика магнитометра закреплены неподвижно относительно корпуса контейнера на специальной немагнитной штанге длиной более метра. При этом влияние магнитных частей аппаратуры контейнера все же составляет 50-100 гамм, в зависимости от ориентации датчика. Достаточно точные результаты при измерении магнитного поля Земли могут быть получены до расстояний 4-5 ее радиусов.
* * *
Научная аппаратура, установленная на борту ракеты, функционировала нормально. Получено большое количество записей результатов измерений, которые обрабатываются. Предварительный анализ показывает, что результаты исследований имеют большое научное значение. Эти результаты будут публиковаться по мере обработки наблюдений.
Искусственная натриевая комета и аппаратура для ее образования
Искусственная натриевая комета представляет собой облако паров натрия в атомарном состоянии, которое выбрасывается в космическое пространство с борта ракеты в определенный момент времени. Свечение натриевого облака происходит результате резонансной флюоресценции. Сущность этого явления состоит в том, что атомы натрия рассеивают солнечный свет в узком интервале частот в желтый части солнечного спектра.
Свет, рассеиваемый натриевым облаком, обладает монохроматичностью, что делает возможным в значительной степени ослабить фон неба при наблюдении облака через специальные светофильтры.
Яркость натриевого облака, содержащего 1 килограмм натрия и образованного на расстоянии113 000 километров от Земли, по расчету должна быть примерно равной шестой звездной величине, что соответствует предельной возможности наблюдения облака невооруженным глазом. Для сравнения следует указать, что яркость самой космической ракеты в полете на этом расстоянии равна примерно четырнадцатой звездной величине.
Следовательно, создание искусственной натриевой кометы позволяет осуществить оптическое наблюдение с Земли определенной точки траектории космической ракеты.
Наблюдение натриевой кометы возможно только в ночное время. Это обстоятельство определяет время и место образования натриевого облака при полете космической ракеты. Время образования искусственной кометы было выбрано с таким расчетом, чтобы ее могло видеть возможно большее число наблюдательных станций Советского Союза.
Для образования искусственной натриевой кометы использовалась специальная аппаратура, установленная на последней ступени космической ракеты. Основным у ал ом этой аппаратуры является испаритель натрия. Конструкция испарителя дает возможность осуществить испарение одного килограмма натрия в течение 5-7 секунд и выброс натриевого облака в условиях невесомости и глубокого вакуума космического пространства.
Команда, необходимая для срабатывания испарителя в строго определенный момент времени, подается от малогабаритного электронного командного устройства, основой которого являются кварцевые часы.
* * *
Успешный запуск советской космической ракеты в сторону Луны и создание первой искусственной планеты – выдающееся достижение советской науки и техники.
Уже недалеко то время, когда по космическим путям, начало которым положено запуском советской ракеты, будут двигаться межпланетные корабли к самым отдаленным уголкам солнечной системы. Человечество вступило в эпоху непосредственного проникновения во Вселенную.
♦ МЫ ГОРДЫ СВОЕЙ ОТЧИЗНОЙ
Трудно выразить словами бурю радостных чувств, возникшую в сердце. Хочется от души, по-русски расцеловать всех тех людей, которые создали такую замечательную ракету.
Мы, советские люди, вновь испытывали чувство величайшей гордости за свою социалистическую Родину. Она первой открыла путь в космос, запустив искусственные спутники Земли. Она первой создала спутник Солнца.
Я помню дореволюционную Россию, отсталую и нищую страну. За какие-то четыре десятка лет Советской власти наша страна вышла в число самых развитых и могучих государств мира. Мы оставляем позади капиталистические государства одно за другим, как говорится, по всем статьям. Вот что значит свободный труд свободного народа! Вот что значит социализм! А то ли еще будет, когда мы осуществим свою семилетку, так славно начатую сегодня.
Каждый советский человек, как я, сейчас чувствует, наверное, что в космической ракете заложена какая-то частица его труда. Мы с гордостью говорим: «Наши ракеты». Именно наши, потому что в Советской стране каждое достижение – это плод труда всего народа. Мы начинаем забывать слова «твое», «мое», а говорим «наше». В том-то и сила советского народа. Когда люди действуют сообща и дружно, им все по плечу, для них нет никаких преград и расстояний.
Мы знаем твердо, что скоро нога советского человека ступит на Луну и другие планеты. У нас молодежь уже поет частушку:
Полетим мы на Луну
И освоим целину!
Меня, старика, разменявшего уже седьмой десяток лет, не возьмут, конечно, на ракету. Но я уверен, что еще буду свидетелем полетов советских людей на небесные тела.
Г. ЩЕРБИНИН, хлебороб-опытник, Герой Социалистического Труда. Алтайский край
Сообщение ТАСС
♦ О ЗАПУСКЕ СОВЕТСКИМ СОЮЗОМ КОСМИЧЕСКОЙ РАКЕТЫ К ЛУНЕ
В соответствии с программой исследования космического пространства и подготовки к межпланетным полетам 12 сентября 1959 года в Советском Сбюзе осуществлен второй успешный пуск космической ракеты.
Пуск ракеты произведен с целью исследования космического пространства при полете к Луне.
Запуск произведен с помощью многоступенчатой ракеты.
Последняя ступень ракеты, превысив вторую космическую скорость – 11,2 километра в секунду, движется к Луне.
На 15 часов московского времени 12 сентября советская космическая ракета удалилась на 78,5 тысячи километров от Земли и находилась к этому времени над пунктом, расположенным севернее острова Новая Гвинея.
Последняя ступень космической ракеты представляет собой управляемую ракету весом 1511 килограммов (без топлива). Она несет на себе контейнер с научной и радиотехнической аппаратурой. Контейнер, имеющий форму шара, герметизирован и заполнен газом. В нем предусмотрена система автоматического регулирования теплового режима.
После выхода на орбиту контейнер с научно-измерительной аппаратурой был отделен от последней ступени ракеты.
С помощью второй советской космической ракеты должны быть осуществлены:
– исследование магнитного поля Земли и магнитного поля Луны;
– исследование поясов радиации вокруг Земли;
– исследование интенсивности и вариаций интенсивности космического излучения;
– исследование тяжелых ядер в космическом излучении;
– исследование газовой компоненты межпланетного вещества;
– изучение метеорных частиц.
Общий вес научной и измерительной аппаратуры с источниками питания и контейнером составляет 390,2 килограмма.
Для передачи на Землю всей научной информации, измерения параметров движения и контроля за полетом ракеты на ней установлены:
– радиопередатчик, работающий на двух частотах – 20,003 и 19,997 мегагерца.
Передатчик излучает сигналы в виде телеграфных посылок длительностью от 0,8 до 1,5 секунды и работает таким образом, что во время пауз в излучении первой частоты 20,003 мегагерца передаются импульсы на второй частоте – 19,997 мегагерца;
– радиопередатчик, работающий на частотах 19,993 мегагерца и 39,986 мегагерца.
Сигналы передатчика представляют собой импульсы переменной длительности от 0,2 до 0,8 секунды. Частота повторения импульсов 1 плюс минус 0,15 герца;
– радиопередатчик, работающий на частоте 183,6 мегагерца.
На космической ракете имеются вымпелы с гербом Союза Советских Социалистических Республик и надписью – сентябрь 1959 год.
Для визуального наблюдения за космической ракетой на ней имеется специальная аппаратура для создания натриевого облака – искусственной кометы. Искусственная комета будет образована 12 сентября в 21 час 39 минут 42 секунды московского времени. Она будет наблюдаться в созвездии Водолея приблизительно на линии, соединяющей звезды Альфа созвездия Орел и Альфа созвездия Южная Рыба.
Экваториальные координаты кометы будут равны: прямое восхождение – 20 часов 41 минута, склонение – минус 7,2 градуса.
Искусственная комета может наблюдаться и фотографироваться оптическими средствами (со светофильтрами, выделяющими спектральную линию натрия) с территории Средней Азии, Кавказа, Украины, Белоруссии, центральной части европейской территории СССР, а также Европы, Африки, стран Ближнего Востока, Индии и западной части Китая.
Все радиопередатчики, установленные на космической ракете, работают нормально. Наземные радиотехнические станции ведут прием научной информации с борта ракеты.
С помощью специального автоматизированного измерительного комплекса, станции которого размещены в различных точках Советского Союза, непрерывно производится измерение параметров движения ракеты. Обработка результатов измерений и определение элементов ее орбиты осуществляются на быстродействующих электронно-вычислительных машинах.
Передачи информации о движении космической ракеты будут вестись всеми радиостанциями Советского Союза.
По предварительным данным, ракета движется по траектории, близкой к расчетной. Ожидается, что космическая ракета достигнет Луны 14 сентября в 00 часов 05 минут московского времени.
Успешный пуск второй советской космической ракеты – новый важный этап в исследовании и завоевании космоса человеком. Этим расширяются перспективы международного сотрудничества в области освоения космического пространства, что будет способствовать дальнейшему смягчению международной напряженности и укреплению дела мира.
Сообщение ТАСС
♦ О ДОСТИЖЕНИИ ВТОРОЙ СОВЕТСКОЙ КОСМИЧЕСКОЙ РАКЕТОЙ ПОВЕРХНОСТИ ЛУНЫ
Сегодня, 14 сентября, в 0 часов 02 минуты 24 секунды московского времени вторая советская космическая ракета достигла поверхности Луны. Впервые в истории осуществлен космический полет с Земли на другое небесное тело. В ознаменование этого выдающегося события на поверхность Луны доставлены вымпелы с изображением герба Советского Союза и надписью «Союз Советских Социалистических Республик. Сентябрь, 1959 год».
Для обеспечения сохранности вымпелов при встрече с Луной были приняты конструктивные меры.
Программа научных измерений завершена.
Работа радиосредств, установленных в контейнере с научной и измерительной аппаратурой, в момент встречи с Луной прекратилась.