Текст книги "Физика времени"
Автор книги: Артур Чернин
сообщить о нарушении
Текущая страница: 9 (всего у книги 20 страниц)
Причина и следствие
Видеть в лучах света мы можем только поверхность конуса прошлого. Но знать мы можем обо всех событиях внутри этого конуса.
Часть из этих событий случилась с нами самими, на том отрезке нашей мировой линии, который лежит в конусе прошлого. О многом могут рассказать нам другие. Ничего недоступного знанию в конусе прошлого нет.
Для нас закрыта только та область прошлого, которая лежит вне этого конуса. О событиях, которые там разыгрываются, мы в данный момент не можем знать ничего. Мы и сами там не были, не был там никто другой, с кем мы сейчас и здесь могли бы говорить, и даже лучи света оттуда не приходят.
Можно сказать, что имеется непроницаемый барьер, который заслоняет от нас область прошлого вне конуса, ограниченного светом. Это то, что в физике называют горизонтом событий. Это горизонт всякого знания о прошлом.
Классическая механика с ее бесконечными скоростями и абсолютным временем такого ограничения не знала. Она предполагала, что мир можно видеть весь и сразу – в один и тот же момент единого мирового времени. Для нее не существовали барьеры видимости – такие, которые были бы принципиально непроницаемы. Если имеется достаточно яркий источник света, то его можно увидеть с какого угодно расстояния – так думали до создания теории относительности.
Теория относительности говорит, что источник можно увидеть, если он загорелся достаточно рано, чтобы его свет успел еще нас достичь, застать нас там, где мы сейчас находимся.
То, что лежит вне конуса прошлого, нам недоступно. Но и мы сами недоступны для этой внешней области: никакое воздействие, никакие сигналы оттуда не могут нас достичь. Там лежат события, которые никак не способны повлиять на нас сейчас.
А что же на нас влияет?
На нас способны влиять все события внутри конуса прошлого и на его поверхности. Если на нас что-то воздействует, то только те события, которые произошли в конусе прошлого. Если нас достигают сигналы, то только из этой области. И если с нами что-то здесь и сейчас происходит, то причина этого лежит именно там.
Конус прошлого – это множество событий, которые в принципе могли бы оказать воздействие на нас здесь и сейчас.
Можно сказать, что конус прошлого – это вместе с тем и конус всех причин, следствия которых мы наблюдаем здесь и сейчас.
На нас воздействует лишь прошлое из светового конуса. Но можем ли мы сами в ответ на это воздействовать на прошлое? Нет, наша собственная мировая линия в прошлое никогда не вернется. И мы не можем посылать в прошлое какие-либо сигналы. В прошлом – и в конусе, и вне его – нет таких событий, которые мы могли бы хоть как-то изменить.
Но мы можем активно воздействовать на будущее. Будущее – это область событий, еще не происшедших, на которые в принципе может влиять то, что мы делаем здесь и сейчас.
Сегодня и вчера
Среди переводов с английского у С. Я. Маршака имеется стихотворение под названием «По теории относительности»:
«Сегодня в полдень пущена ракета.
Она летит куда быстрее света.
И долетит до цели в шесть утра
Вчера.»
Возможны ли такие чудеса? Если и в самом деле допустить, что скорость ракеты больше скорости света, то это вполне возможная вещь.
Полет ракеты нужно рассматривать в двух системах отсчета. Пусть одна система отсчета – это поверхность Земли, на которой находится стартовая площадка для запуска ракеты. Представим себе, хоть это и невообразимо, что относительно этой системы отсчета ракета летит со скоростью, в пять раз превышающей скорость света, и пусть она достигает цели в полночь, то есть через 12 часов полета. В этой системе отсчета все более или менее в порядке: цель достигается после запуска.
Рассмотрим полет ракеты из другой системы отсчета, которая движется с большей скоростью в том же направлении, что и ракета. Если скорость системы отсчета действительно достаточно велика (но, конечно, не превосходит скорости света), то порядок событий с точки зрения наблюдателя в этой системе окажется обращенным. Сначала ракета достигает цели, а затем взлетает со стартовой площадки. Цель достигается в шесть утра, то есть 30 часов тому назад. С помощью формул специальной теории относительности можно подсчитать, что так будет в системе отсчета, которая движется относительно Земли со скоростью 3/5 скорости света.
Какова мораль этого немыслимого эксперимента? Мировая линия сверхсветовой ракеты лежит вне светового конуса с вершиной в момент и в точке запуска. Два события – запуск и попадание в цель – разделены в пространстве на слишком большое расстояние. Расстояние между событиями в пространстве больше, чем разделяющий их промежуток времени, умноженный на скорость света. Такие события не могут, очевидно, лежать на мировой линии реальных тел, ибо все тела движутся со скоростью, не превосходящей скорость света. Столь сильно разделенными в пространстве могут быть лишь события, происшедшие не с одним, а с разными телами. И вот для таких событий порядок их следования во времени оказывается относительным. То событие, которое в одной системе отсчета случилось позже, в другой системе отсчета может оказаться, наоборот, более ранним. Иными словами, понятия раньше и позже лишены в этом случае абсолютного смысла и являются относительными. Ясно, что при этом невозможна причинная связь: ведь то, что в одной системе отсчета было следствием, может в другой оказаться причиной.
Временной порядок следования событий необратим, когда эти события находятся в пределах светового конуса друг для друга. И именно для таких событий имеет смысл сама принципиальная необратимость времени, то есть невозможность переставить местами прошлое и будущее.
Интервал
На диаграмме путь – время два любых события можно соединить прямой и тогда образуется прямоугольный треугольник, гипотенузой которого служит эта прямая, а катетами – расстояние между событиями в пространстве и промежуток времени между ними. Чтобы придать обоим катетам одинаковую размерность, будем считать, что по горизонтальной оси откладывается не просто время, а время, умноженное на скорость света. На рисунке один катет обозначен символом Δx, а другой – сΔt. События обозначены буквами О и А, и первое из них взято в качестве начала координат.
По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов. Это хорошо известно из геометрии. Но здесь у нас не просто геометрия, а геометрия пространства-времени. И гипотенуза нашего треугольника должна вычисляться по другому правилу. Нужно возвести в квадрат катеты, как и
в обычной геометрии. Но квадрат гипотенузы равен не сумме, а разности квадратов катетов. Именно: из квадрата (сΔt)2 нужно вычесть квадрат (сΔx)2. Корень квадратный из этой разности называется интервалом между событиями.
Самое замечательное то, что определенный таким образом интервал не зависит от системы отсчета. В какой бы системе отсчета ни вычислять интервал между двумя данными событиями, он окажется всегда одним и тем же. Это похоже на обычную геометрию: расстояние между точками всегда одно и то же, в какой системе координат его ни вычислять. Можно пользоваться прямоугольной системой, можно выбрать косоугольную, полярную и вообще какую угодно систему координат – результат всегда один и тот же.
Но почему интервал, расстояние между событиями в пространстве-времени вычисляется по такому необычному правилу? Ведь, казалось бы, треугольник, нарисованный на нашей диаграмме путь – время, – это вполне обычная фигура планиметрии, то есть евклидовой геометрии на плоскости. В том-то, однако, и дело, что это именно диаграмма, а отнюдь не само пространство-время. Для простоты рисунка мы опустили две пространственные координаты. Это не принципиально. Важнее всего то, что одна пространственная координата в комбинации со временем составляют вместе все же не плоскость (с ее двумерной евклидовой геометрией), а пространство-время. Геометрию пространства-времени называют псевдоевклидовой. (Псевдос по-гречески значит ложь.) Такая «лжеевклидова» геометрия и отличается от евклидовой тем, что в теореме Пифагора нужно брать не сумму квадратов катетов, а их разность.
Если система отсчета связана с данным телом, то в этой собственной системе отсчета тело покоится, его положение в пространстве не меняется. Поэтому мировая линия тела изображается на диаграмме путь—время прямой, параллельной оси времени. А это время – собственное время тела (можно, как выше, считать, что по горизонтальной оси откладывается не
время, а время, умноженное на скорость света; это, конечно, сути дела не меняет). Отсюда ясно, что если взять какие-то два события А и А' на мировой линии тела (см. рисунок), то в этом случае разделяющий их отрезок собственного времени равен просто интервалу между событиями, деленному на скорость света.
Далее, так как интервал одинаков во всех системах отсчета, то это соображение дает нам рецепт вычисления собственного времени тела, когда оно наблюдается из другой системы отсчета, движущейся относительно него. Для этого нужно найти интервал между событиями по известному нам правилу («лжетеореме» Пифагора), а затем разделить его на скорость света. Это и будет собственное время.
Отсюда, между прочим, лишний раз видно, что собственное время всегда короче любого промежутка времени, измеренного по другим, не собственным часам: ведь интервал, а с ним и собственное время выражаются именно через разность.
Мы рисуем диаграмму путь—время, но не можем изобразить на листе бумаги псевдоевклидово пространство-время. Конечно, все дело в том, что сам лист бумаги – это евклидова плоскость. Отличие евклидовой плоскости от двумерного псевдоевклидова пространства-времени особенно хорошо видно, когда проводятся мировые линии света. На диаграмме путь—время – это лучи, составленные из точек-событий. Но в пространстве-времени интервал между любыми двумя событиями на мировой линии света равен нулю: так получается из нашего определения интервала. Мировые линии света имеют, можно сказать, нулевую длину в пространстве-времени. Поэтому равен нулю и интервал собственного времени между любыми со– событиями в истории луча света.
Конечно, никакие реальные часы нельзя заставить двигаться вместе со светом, со скоростью света. Но если часами считать сам свет, то эти часы не идут, они стоят – на них всегда один и тот же час собственного времени. Таковы свойства света: у него особые взаимоотношения с временем.
Бег времени
Знакомясь с событиями и мировыми линиями в пространстве-времени, мы многое узнали о том, что в действительности означает объединение времени и пространства в новую «независимую реальность», о которой говорил Минковский. В новой физике, познающей эту реальность, – немало старого, заимствованного из классической физики. Так, естественно, и должно быть. Но имеются в ней и совершенно новые, особые черты.
В первую очередь это – существование трех областей пространства-времени: мира событий нашего прошлого, мира событий нашего будущего и третьей области, где содержатся все остальные события, которые не имеют никакого отношения ни к нашему прошлому, ни к нашему будущему. В этом еще раз проявляется относительность времени,– точнее, невозможность существования абсолютного времени, которое было бы единым для всех систем отсчета, для всех наблюдателей, находящихся в различных лабораториях, и которое делило бы все события в мире только на общее для всех прошлое и общее для всех будущее (тогда в пространстве-времени были бы, как мы говорили, лишь две области).
В этой структуре, содержащей три области, время выступает на равных правах с пространством. Но все же оно играет свою собственную роль, и полного «поглощения» времени четырехмерием не происходит: отличие времени от пространства имеет неустранимый внутренний характер. Время не сводится просто к еще одной, дополнительной размерности пространства. В каком-то отношении – например, в том, что касается двух осей на нашей диаграмме путь—время, – различие между временем и пространством может маскироваться или действительно исчезать и не проявляться. Но уже и самые простые особенности мировых линий в пространстве-времени очевидным образом обнаруживают такие своеобразные качества времени, которые нельзя ни скрыть, ни устранить.
Действительно, мы можем находиться в одном и том же месте в какой-то инерциальной системе координат, и тогда наша мировая линия будет горизонталью на диаграмме путь – время. Но возможна ли вертикаль в качестве мировой линии? Нет, никогда, ни в какой системе отсчета мы не можем застыть во времени, остаться в одном его мгновении. И все дело, конечно, в том, что время не стоит на месте, а с ним и все в мире движется от прошлого к будущему – необратимо, безостановочно и только в одном направлении.
Но откуда у времени этот неудержимый бег с его неизменной направленностью? Это один из тех вопросов в физике, которые до сих пор остаются открытыми. Вопрос этот не решается теорией относительности, ни специальной, ни общей. Теория относительности – и это отчетливо звучит в высказывании Минковского – с большой глубиной и полнотой объясняет, описывает и анализирует те свойства времени, которые объединяют его с пространством, роднят с ним. Неудержимость и направленность – особенное, неповторимое свойство времени.
В предпоследней главе книги мы снова вернемся к этому и познакомимся с некоторыми гипотезами, стремящимися объяснить бег времени и его направление.
ГЛАВА 8
ВРЕМЯ И ТЯГОТЕНИЕ
Специальная теория относительности дала начало новой физике времени. Дальнейшие шаги к пониманию природы времени связаны с общей теорией относительности, которая углубила и расширила идею относительности времени.
Общая теория относительности родилась из размышлений над самыми простыми, но и самыми «принципиальными вещами», если вспомнить это выражение Эйнштейна. Почему время, решительно влияя на все явления природы, на все физические тела, само не испытывает в ответ никакого обратного влияния этих явлений и тел? Может ли время вообще существовать само по себе без всякой связи с физическими процессами в мире?
А если обратиться к пространству: неужели это только неизменное вместилище всех тел природы, пустая арена для разыгрывающихся на ней явлений? Существует ли оно вообще, если оно пусто, то есть если в нем ничего нет и ничего не происходит?
Специальная теория относительности решила много вопросов, но на эти она бессильна ответить. Здесь нужны были какие-то новые идеи, имеющие столь же глубокий смысл, как принцип относительности и постулат о постоянстве скорости света. Важнейшей из этих новых идей стало представление об особой роли тяготения в физическом мире. Рассуждения о свете привели к созданию специальной теории относительности, а идея тяготения – к общей теории относительности, в которой время лишилось своей странной неподатливости и – вместе с пространством – оказалось зависящим от физических процессов в мире, от распределения и движения в нем физических тел. «Передатчиком» их обратного влияния на время и пространство служит тяготение.
Всемирное тяготение
Новейшая физика и здесь отталкивается от классической физики, спорит с ней и вместе с тем основывается на ней. Ньютон был первым, кто разгадал всемирную роль тяготения. Он понял, что земное тяготение, наше притяжение к Земле и падение созревшего яблока представляют собой явления той же природы, что и движение Луны вокруг Земли и обращение планет вокруг Солнца.
Все тела природы притягиваются друг к другу. Сила притяжения, действующая между двумя телами, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Таков закон всемирного тяготения Ньютона. (Вместо слова «тяготение» говорят еще и «гравитация» – оно означает просто то же самое.)
В физике известны и другие примеры сил притяжения. Два разноименных электрических заряда притягиваются друг к другу с силой, которая, как мы знаем, прямо пропорциональна произведению зарядов и – как сила тяготения – обратно пропорциональна квадрату расстояния между ними. Это действительно похоже на закон Ньютона. Однако электрические силы могут быть не только силами притяжения, но и силами отталкивания, когда заряды одноименны. Эти силы и вовсе отсутствуют, если у тел нет зарядов.
Силы же тяготения, гравитация – это всегда силы притяжения. И для их действия не требуется никаких особых зарядов, всякое тело имеет массу, и потому оно должно испытывать действие этих сил и создавать их. Можно сказать, что масса тела это и есть его неотъемлемый «гравитационный заряд».
Гравитационное взаимодействие – одно из четырех фундаментальных взаимодействий, к которым сводится все разнообразие взаимных физических воздействий всех тел природы. Три других взаимодействия – это всем знакомое электромагнитное взаимодействие, а также сильное взаимодействие (скрепляющее, например, частицы в атомных ядрах) и слабое взаимодействие (ответственное, например, за радиоактивный распад ядер). Два последних взаимодействия проявляются только в микромире – мире атомных ядер и элементарных частиц. Электромагнетизм известен нам по многим явлениям природы, но разнообразным его применениям в технике, науке, в повседневной жизни. Действие электромагнитных сил проявляется и в мире элементарных частиц; оно заметно в мире звезд и галактик. Свет, столь многое давший теории относительности, – это тоже, конечно, проявление электромагнетизма. Но там, где нет зарядов, электрических и магнитных полей, – там нет и электромагнетизма.
Из четырех взаимодействий природы одна только гравитация обладает свойством неустранимости и всеобщей универсальности. Она действует всюду и везде – от микромира до всей Вселенной. Недаром со времен Ньютона тяготение называют всемирным. Но вся важность этого факта была впервые осознана только Эйнштейном.
Эйнштейн придавал исключительное значение и другому свойству тяготения, тоже давно уже известному. Силы тяготения сообщают разным телам одинаковое ускорение. Все тела в данной точке пространства падают в поле тяготения с одинаковым ускорением. Этот замечательный факт открыл еще Галилей. Согласно легенде, он наблюдал падение различных тел с наклонной Пизанской башни и установил, что все они, независимо от массы, размера, формы и вещества, из которого сделаны, достигали земли за одинаковое время. Историки науки не находят, кажется, подтверждения тому, что это было именно на Пизанской башне; но несомненно, что Галилей первым обратил внимание на эту особенность тяготения и исследовал ее в экспериментах со свойственным ему стремлением к точному знанию, полученному из опыта.
Позднее движение тел в поле тяготения изучал Ньютон с помощью тонких экспериментов, в которых он использовал маятники. В своих «Началах» он писал: «Но другими уже давно наблюдалось, что (с поправкой на слабое сопротивление воздуха) все тела спускаются на одинаковое расстояние за одинаковые промежутки времени, и с помощью маятников это свойство промежутков времени может быть установлено с большой точностью».
Ньютон исследовал «это свойство промежутков времени» в связи с той ролью, которую играет масса тел в их динамике.
Принцип эквивалентности
Роль массы в физике двояка, как двояк и способ ее измерения. С одной стороны, массу тела можно определить с помощью измерения ускорения, испытываемого телом под действием какой-то известной силы. По второму закону Ньютона масса есть отношение силы к ускорению. Определяемая таким путем физическая характеристика тела служит, как говорят, мерой его инертности и ее называют инертной массой.
Но с другой стороны, массу можно определить и другим способом – путем измерения силы, с которой она притягивается к другому телу, например к Земле. В этом измерении проявляется «гравитационный заряд» тела, и потому определенную таким путем массу называют тяжелой, или гравитационной, массой.
Чтобы все тела падали с одинаковым ускорением, достаточно, очевидно, чтобы для каждого из них инертная масса равнялась гравитационной.
Две роли массы – как меры инертности и как «гравитационного заряда» – и изучал Ньютон в своих экспериментах с маятниками. По его данным, инертная и гравитационная массы совпадают с точностью до десятых долей процента. За все времена от Галилея и Ньютона до наших дней ни при каких обстоятельствах не было замечено никакого различия между инертной и гравитационной массой какого-либо тела.
Изобретательные опыты, поставленные в конце XIX века венгерским физиком Р. Этвешем дали совпадение масс с точностью до миллионной доли процента. В измерениях, проведенных недавно в Московском университете В. Б. Брагинским и его сотрудниками, точность возросла еще в 10 тысяч раз.
Равенство инертной и гравитационной масс возведено Эйнштейном в ранг фундаментального принципа физики. Совпадение, эквивалентность этих масс составляет содержание эйнштейновского принципа эквивалентности. По существу это тот же результат опыта Галилея, который с точки зрения классической физики был просто одним из фактов – в некотором смысле даже случайным; во всяком случае он не играл никакой роли в том, что составляло идейную основу механики Галилея – Ньютона. Теперь же ему придается исключительно важное и самое общее значение – он находит место среди «принципиальных вещей» новейшей физики, становится рядом с принципом относительности.