Текст книги "Физика времени"
Автор книги: Артур Чернин
сообщить о нарушении
Текущая страница: 10 (всего у книги 20 страниц)
Лифт Эйнштейна
Излюбленный прием Эйнштейна в его теоретических поисках – мысленный эксперимент. Вслед за Эйнштейном мы тоже наблюдали (см. главы 5, 6) за различными опытами физиков в двух лабораториях, одна из которых находилась в вагоне воображаемого поезда, несущегося с огромной скоростью. Теперь же одну из наших лабораторий поместим в кабину лифта. Представим себе, следуя Эйнштейну, «огромный лифт в башне небоскреба... Внезапно канат, поддерживающий лифт, обрывается, и лифт свободно падает по направлению к земле». В этой свободно падающей лаборатории проделываются опыты. Физик «вынимает из своего кармана платок и часы и выпускает их из рук». Они падают – относительно небоскреба – вместе с кабиной лифта. Но по отношению к этой кабине вещи остаются там же, где они были, когда их выпустили из рук. Физик в кабине лифта видит, что часы и платок спокойно висят между полом и потолком лифта, покоятся относительно него. Физик делает из этого заключение, что на них не действуют никакие силы. Об отсутствии сил мы вместе с нашим физиком судим на том основании, что расстояния между телами, если они в начальный момент покоились, не изменяются со временем. Разумеется, это возможно только потому, что – согласно опыту Галилея и принципу эквивалентности – все тела в поле тяготения движутся с одинаковым ускорением. Движение лифта и всех тел в нем является в одинаковой степени ускоренным относительно небоскреба и потому-то они покоятся друг относительно друга. Тела в свободно падающем лифте не испытывают никаких сил, в том числе и силы притяжения к Земле. Они невесомы. В свободном падении тяготения нет. Оно обнаруживает себя только тогда, когда мы ему сопротивляемся.
Если прибавить к нашему воображаемому эксперименту немного подробностей то можно сказать, что даже и не глядя на какие-то тела наш физик почувствует, что тяготение исчезло. Ведь и он сам окажется в невесомости. Он будет невесом, как невесомы и из-за этого неподвижны относительно кабины его часы и платок.
Невесомость – и притом не воображаемая, а реальная – имеется, как всем известно, в кабине спутника, обращающегося по орбите вокруг Земли. Спутник тоже, можно сказать, свободно падает, подчиняясь без сопротивления притяжению Земли. Движение по отвесной прямой в падающем лифте и движение по стационарной круговой орбите – это два примера свободного движения в поле тяготения. Еще один очевидный пример —
полет подброшенного вверх мяча – он сначала движется вверх, а затем вниз, но на всем своем пути он осуществляет свободное движение.
В свободно падающей лаборатории все тела либо покоятся, либо, если их подтолкнуть, движутся равномерно и прямолинейно относительно лаборатории. Значит, такая лаборатория представляет собой инерциальную систему отсчета – в ней справедливы законы классической механики и специальной теории относительности.
Правда, все это до тех пор, пока движущиеся тела не столкнутся со стенками лаборатории и пока сама она не столкнется с землей. Такая оговорка не слишком принципиальна, но нужно все же учитывать, что инерциальность осуществляется в данном случае в ограниченном объеме и в течение ограниченного времени.
А теперь другой мысленный эксперимент. Пусть имеется кабина лифта вдали от всяких тяготеющих масс. Можно считать, что никаких сил нет и кабина представляет собой инерциальную систему отсчета. И вот, как говорит Эйнштейн, «кто-то извне привязал к лифту канат и тянет его с постоянной силой» вверх. Лифт придет в движение и будет двигаться с постоянным ускорением в направлении действия силы. При этом все тела в лифте тоже приходят, очевидно, в движение. Если какое-то тело покоилось в середине лифта, то оно начинает двигаться вниз, к полу лифта, так как пол движется теперь вверх по направлению к этому телу. Тело движется с ускорением, равным по величине и противоположным по направлению ускорению, испытываемому лифтом. Пусть для определенности ускорение равно ускорению свободного падения на поверхности Земли (9,8 м/с2). Поскольку ускорение это постоянно, все происходит так, как если бы тело испытывало действие силы тяжести, направленной вниз, к полу лифта. Силу тяжести испытывает и сам физик – его прижимает к полу кабины точно так же, как это было бы в земном поле тяготения.
Выходит, что, заставив лифт двигаться ускоренно, мы создали в нем искусственное тяготение. И если наш физик не вы– выглянет из своей кабины наружу, он никогда не сможет отличить это искусственное тяготение от естественного. Он не узнает, что происходит: то ли кабина покоится и в ней действует сила тяжести, то ли тяготения нет, но кабина не покоится, а движется вверх с ускорением. Эти две возможности неразличимы для нашего физика, они для него эквивалентны.
Итак, из двух наших мысленных экспериментов мы установили, что, во-первых, тяготение можно уничтожить, если свободно двигаться в поле тяжести; и, во-вторых, тяготение можно создать, если вызвать извне ускоренное движение. Ускорение и тяготение неразличимы, они выступают перед нами равноправно и оказываются, так сказать, взаимозаменяемыми. Но это означает, по существу что они представляют собой явления одной природы.
Вот к какому сильному выводу приводит простое, казалось бы, развитие идей Галилея и Ньютона. Оно дает разгадку природы тяготения.
Тяготение и свет
Из эквивалентности ускорения и тяготения вытекают далеко идущие следствия, которые и составляют, по существу, содержание общей теории относительности. Примем принцип эквивалентности и проделаем еще один мысленный эксперимент. Пусть имеется лаборатория – лифт вдали от каких бы то ни было тел, в которой силы тяготения и любые другие силы отсутствуют. Эксперимент состоит в следующем. Будем посылать световые сигналы с пола лаборатории и принимать, регистрировать их на потолке с помощью какого-либо устройства – приемника света. В момент испускания сигнала приведем лифт извне в ускоренное движение снизу вверх. Это означает, что свету придется догонять приемник который вместе с потолком тафта начнет набирать скорость благодаря приложенному к лифту ускорению. Когда свет достигнет приемника, тот будет иметь уже вполне определенную скорость. Эта скорость равна произведению ускорения на время распространения света от пола до потолка.
Но тогда должен действовать эффект Доплера, о котором мы говорили в главе 6. Раз свет догонял удаляющийся приемник, значит, период и длина волны зарегистрированною света должны быть больше, чем период и длина волны, которые свет имел в момент выхода из источника. Свет испытывает красное смещение – таков результат нашего опыта.
Представим себе, что с этом мысленном эксперименте лифт двигался вверх с ускорением, равным земному ускорению свободного падения, так что в лифте имитировалось земное тяготение. Тогда ясно, что в лаборатории, покоящейся на Земле, подобный эксперимент приведет – согласно принципу эквивалентности – к тому же результату: свет, распространяясь снизу вверх, испытает красное смещение. Никакого движения приемника в этом случае нет, пол и потолок покоятся относительно друг друга, отсутствует относительное движение источника и приемника, а красное смещение все же есть. В этом случае говорят о гравитационном красном смещении.
Замедление времени
Для физики безразлично, было ли тяготение естественным или искусственным, все физические явления происходят в обоих рассмотренных нами случаях одинаково. Но проще всего было найти интересующий нас эффект в опыте с искусственной гравитацией: мы смогли применить там сведения, с которыми уже познакомились ранее по совсем другим примерам.
Чему же научил нас этот опыт? Мы узнали, что колебания в световой волне изменяют свой ритм при ее распространении в поле тяготения. Если, как в нашем опыте, свет движется против направления силы тяжести, ритм колебаний замедляется. Сила тяготения оказывает на него замедляющее действие. Это означает, что если мы сделаем часы, «работающие» на таких колебаниях, то их тиканье будет реже в поле тяготения. Но часы указывают нам время и потому приходится заключить, что сила тяготения замедляет сам темп протекания времени.
Если с потолка лаборатории посмотреть на часы, стоящие на ее полу, то увидим, что эти часы отстают от наших собственных часов на потолке. Внизу время течет медленнее, чем наверху. Из двух братьев-близнецов, живущих в одном доме на разных этажах, быстрее растет тот, который ближе к крыше. Разница, конечно, очень небольшая, но важно, что она есть и даже может быть измерена.
Об измерении замедления времени мы расскажем чуть позже, а сейчас снова вернемся ненадолго к только что проделанному мысленному эксперименту.
Легко представить себе, что будет, если свет посылать не с пола на потолок, а, наоборот, с потолка на пол. Должен измениться знак эффекта: свет, распространяющийся по направлению силы тяготения, должен становиться более голубым. Вместо увеличения периода света и замедления ритма его колебаний получим уменьшение периода и ускорение ритма. Если снизу смотреть на часы, находящиеся на потолке, то они будут уходить вперед по сравнению с нашими собственными часами на полу. Но это снова означает, что внизу часы идут медленнее, чем наверху.
Замедление времени в поле тяготения – одно из замечательных следствий общей теории относительности. Мы узнали о нем из мысленных экспериментов, в которых для простоты считали силу тяготения и ускорение постоянными по высоте. Это вполне приемлемое приближение для условий на поверхности Земли, когда высота, на которой находятся часы, считается малой – по сравнению с радиусом Земли. Но в действи-
тельности эффект остается в силе и тогда, когда высота не мала и нужно учитывать, что сила тяготения не постоянна, а убывает обратно пропорционально квадрату расстояния. И в этом случае часы идут тем медленнее, чем ближе они к поверхности тела. Всякий раз из двух часов, находящихся на разных расстояниях от тяготеющего тела, быстрее идут те, ко– которые дальше от этого тела. На очень далекие часы тяготение уже не оказывает практически никакого действия, и там они, а с ними и время, достигают самого высокого своего ритма.
Измерение
Прямой лабораторный, а не мысленный эксперимент с замедлением времени в поле тяготения провели в 1960 году физики Гарвардского университета (США). В их эксперименте электромагнитная волна (это был не видимый свет, а гамма-излучение, что, конечно, не меняет сути дела) проходила расстояние 22 метра по высоте с потолка к полу в башне физической лаборатории. Предсказываемое теорией замедление времени очень мало – всего приблизительно на 3 • 10-13 процента. Чтобы представить себе малость этой цифры*), скажем, что при таком замедлении времени за год набирается примерно одна стомиллионная доля секунды – лишняя у верхних часов. Или иначе: чтобы набралась разность хода часов в 1 секунду, нужно ждать примерно сто миллионов лет.
*) Она получается так: нужно взять разность потенциалов поля тяготения на пути, пройденном светом, и разделить на квадрат скорости света и затем перейти к процентам, умножив это отношение на 100.
В эксперименте нужно было зафиксировать очень малый сдвиг длины волны излучения, сдвиг, который и оценивается величиной 3 • 10-13 процента. И тем не менее такой сдвиг длины волны, а с ним и эффект замедления времени, оказался измеренным. Это было сделано с помощью специальных сверхточных приборов (игравших роль часов), основанных на так называемом эффекте Мёссбауэра – явлении испускания твердыми телами гамма-излучения необычайно строго фиксированной длины волны.
Эксперимент обнаружил эффект гравитационного красного смещения, или замедления времени, в поле тяготения. Со всей экспериментальной точностью **) подтвердилась и его численная величина, предсказываемая теорией.
**) Возможная погрешность не превышала десяти процентов от измеряемой величины.
Это было одно из самых тонких и искусных измерений в современной экспериментальной физике.
Позднее, в 1976 году, эксперимент повторили – с гораздо более высокой точностью – физики Смитсоновского института (США). У них свет проходил 160 километров по высоте – аппаратура была вынесена на эту высоту ракетой. Для такой высоты, или, точнее, для такого перепада высот между источником и приемником, замедление времени в семь с лишним тысяч раз больше, чем в гарвардском эксперименте, что точно соответствует отношению высот.
Астрономический эксперимент
Самая первая попытка обнаружить эффект гравитационного замедления времени была сделана еще в 20-е годы – не в лаборатории, а по астрономическим наблюдениям. Свет, двигаясь к нам от Солнца или какой-либо звезды, распространяется, очевидно, против силы тяготения, создаваемой Солнцем или этой звездой, и потому должен испытывать гравитационное красное смещение, указывающее на то, что время вблизи Солнца или звезды течет медленнее.
Для света Солнца эффект приблизительно в миллиард раз сильнее, чем в лабораторном эксперименте гарвардских фи– физиков. И сам по себе он был бы вполне измерим, если бы не побочные неблагоприятные обстоятельства – например, движение газа в солнечной атмосфере, которые маскируют гравитационное красное смещение.
В последние годы гравитационное красное смещение искали в свете самых плотных из известных сейчас звезд – белых карликов и нейтронных звезд. В ряде успешных попыток эффект был обнаружен, и снова его величина оказалась наилучшим образом согласующейся с тем, что предсказывает общая теория относительности.
Интересные космические эксперименты проделаны недавно с помощью радиолокации. Представим себе, что мы посылаем импульс радиоизлучения на планету, когда она находится за Солнцем и, так сказать, выглядывает из-за него. Луч радиоволн пройдет вблизи края солнечного диска, достигнет поверхности планеты, а затем отразится от нее и вернется на Землю, где его приход зарегистрируют. Можно измерить время путешествия сигнала туда и обратно.
Тяготение Солнца влияет на темп протекания времени, замедляет его вблизи себя. Поэтому путешествие радиосигнала займет в этом случае больше времени, чем тогда, когда на его пути – при том же пройденном расстоянии – нет никакого те– тела, создающего тяготение. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с.
Эксперименты такого рода проводились неоднократно, сигналы посылались на планеты Меркурий и Венеру. Использовались также и космические аппараты, запущенные на орбиту вокруг Солнца и снабженные специальными отражающими устройствами, ретрансляторами. Во всех случаях предсказание общей теории относительности, касающееся замедления времени в поле тяготения, подтверждалось с очень хорошей точностью – до 1—2 процентов от измеряемой величины*).
*) Подробнее об экспериментальной проверке общей теории относительности см. книгу: Брагинский В. Б., Потарев А. Г. Удивительная гравитация – М.: Haука, 1985. Вып. 39 – (Б-чка «Квант»)
Черные дыры: время остановилось
Одно из самых фантастических предсказаний общей теории относительности – полная остановка времени в очень сильном поле тяготения.
Мы уже говорили о том, что замедление времени тем больше, чем сильнее тяготение. Замедление времени проявляется в гравитационном красном смещении света. И это смещение тоже, естественно, тем ощутимее, чем сильнее тяготение. Период принимаемого света увеличивается при распространении против силы тяготения, увеличивается и его длина волны, а частота света, обратно пропорциональная периоду и длине волны, соответственно убывает. Общая теория относительности утверждает, что при определенных условиях период и длина волны принимаемого света могут устремиться к бесконечности, а его частота – к нулю.
Со светом, испускаемым Солнцем, это могло бы случиться, если бы наше светило вдруг сжалось и превратилось в шар с радиусом всего 3 километра или еще меньше**). Из-за такого сжатия сила тяготения на поверхности, откуда и исходит свет, возрастет настолько, что гравитационное красное смещение окажется действительно бесконечным.
**) Радиус Солнца равен 700 тысяч километров.
Скажем сразу, что с Солнцем этого никогда на самом деле не произойдет. В конце своего существования, через 15 – 20 миллиардов лет, оно испытает, вероятно, множество превращений; его центральная область может значительно сжаться, но все же не так сильно.
Однако другие звезды, массы которых в три и более раз превышает массу Солнца***), в конце своей жизни и вправду испытают скорее всего быстрое катастрофическое сжатие под действием своего собственного тяготения Это приведет их к состоянию черной дыры. Черная дыра – физическое тело, создающее столь сильное тяготение, что красное смещение для света, испускаемого вблизи него, способно обратиться в бесконечность.
***) Масса Солнца равна 2•1030 килограммов.
Черные дыры возникают в результате неудержимого сжатия вещества под действием его собственного тяготения. Чтобы возникла черная дыра, тело должно сжаться до радиуса, не превосходящего отношения массы тела к массе Солнца, умноженного на 3 километра. Это критическое значение радиуса называется гравитационным радиусом тела.
Физики и астрономы совершенно уверены, что черные дыры существуют в природе. Это мнение основывается на их доверии к обшей теории относительности, следствия которой всегда подтверждались в разнообразных экспериментах и наблюдениях. Но черных дыр до сих пор не удалось обнаружить. Трудности астрономических поисков связаны с самой природой этих необычных объектов. Ведь бесконечное красное смещение, из-за которого обращается в нуль частота принимаемого света, делает их просто невидимыми. Они не светят и потому в полном смысле слова являются черными. Лишь по ряду косвенных признаков можно надеяться заметить черную дыру, например, в двойной системе, в которой ее партнером была бы обычная звезда. Из наблюдений движения видимой звезды в общем поле тяготения такой пары можно было бы оценить массу невидимой звезды, и если эта величина превысит массу Солнца в три и более раз (см. выше), можно будет утверждать, что мы нашли черную дыру.
Сейчас имеется несколько хорошо изученных двойных систем, в которых масса невидимого партнера оценивается в 5 или даже 8 масс Солнца. Скорее всего, это и есть черные дыры. Но астрономические оценки масс почти всегда содержат некоторую неопределенность, так что впредь до дальнейших уточнений этих оценок астрономы предпочитают называть такие объекты лишь кандидатами в черные дыры.
Нейтронные звезды, о которых мы уже не раз упоминали, не так уж далеки от состояния черной дыры. Это сильно сжавшиеся тела, размеры которых всего лишь в несколько раз превышают их гравитационные радиусы. Это почти черные дыры. Измерения, когда они удаются, определенно указывают на большое гравитационное красное смещение, которое в их излучении в десятки тысяч раз больше, чем в свете Солнца.
Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронной звезды, а вблизи черной дыры, у ее гравитационного радиуса оно столь велико, что время там как бы замирает. Можно сказать, что у часов, расположенных вблизи черной дыры и покоящихся там, одно «тик-так» отделено от другого столь значительным промежутком времени, что по часам, находящимся далеко от черной дыры, этот промежуток оказывается бесконечным по своей длительности.
А если часы не покоятся вблизи черной дыры, а свободно падают в ее поле тяготения – что они покажут?
Свободно падающие часы не испытывают действия тяготения. Они долетят до гравитационного радиуса и ничего особенного с ними не произойдет. Их «тик-так» будут следовать друг за другом в одном и том же ритме в течение всего их движения. Они будут отмерять собственное время, полностью игнорируя сильное поле тяготения, в котором они падают. Длительность падения, измеренная в этом собственном времени, будет совсем не велика. Свободное падение в поле тяготения черной дыры, образованной массой, равной, скажем, 3 массам Солнца, с расстояния миллион километров до гравитационного радиуса, занимает всего около часа.
Однако по часам, которые покоятся вдали от черной дыры, свободное падение тела в ее поле тяжести растянется во времени до бесконечности. Чем ближе падающее тело к гравитационному радиусу, тем более медлительным будет представляться этот полет удаленному наблюдателю. Тело, наблюдаемое издалека, будет бесконечно долго приближаться к гравитационному радиусу и никогда не достигнет его. В этом снова проявляется замедление времени вблизи черной дыры по сравнению с его ходом на большом расстоянии от него.
Итак, теория относительности показывает нам, что бег времени можно затормозить и даже совсем остановить. Время на первом этаже дома течет медленнее, чем на двенадцатом. На поверхности Солнца его бег еще медленнее, а на поверхности нейтронной звезды это уже, можно сказать, не бег, а легкая трусца. Наконец, у гравитационного радиуса черной дыры время останавливается и замирает. Часы, которые могли бы там «висеть» (то есть покоиться), всегда показывали бы одно и то же время, хотя они при этом отнюдь бы не «стояли». Например, на них всегда могло бы быть пять пополудни – как на чаепитии, описанном в известной и многими любимой книжке, где из-за этого все непрерывно «пьют чай как ненормальные».
Но любое хоть сколько-нибудь заметное торможение времени требует немыслимых перегрузок: нужно не падать под действием тяжести, не двигаться, а именно выдерживать ее. Чем больше ваши перегрузки, тем медленнее течет ваше собственное время. Например, на поверхности Солнца ускорение свободного падения в несколько тысяч раз больше, чем на Земле. Значит, и сила тяжести там во столько же раз больше. Такая огромная перегрузка давала бы «экономию» всего нескольких секунд за год.
Мгновение, как мы видим, можно удержать и остановить. И мы даже знаем, приблизительно какой ценой. О перегрузках нам предстоит еще говорить и в следующей главе.