Текст книги "Интернет-журнал "Домашняя лаборатория", 2007 №1"
Автор книги: Журнал «Домашняя лаборатория»
Жанры:
Хобби и ремесла
,сообщить о нарушении
Текущая страница: 35 (всего у книги 39 страниц)
Еще один блок питания аэронизатора
Г. Глухенький
Большинство устройств, предназначенных для получения высокого напряжения, питающего аэроионизатор, можно подразделить на транзисторные инверторы напряжения и тринисторные (а иногда тиристорные, поскольку в них используются разновидности этой группы: динисторы, тринисторы, симисторы) импульсные преобразователи. Недостатком первых является необходимость понижения и выпрямления сетевого напряжения, что увеличивает как стоимость, так и габариты устройства. Тринисторные же устройства сравнительно просты, что и является основным аргументом в их пользу. Как правило, работают тринисторные устройства по принципу однополупериодного разрядника (рис. 1):
в течение одной полуволны сетевого напряжения накопительный конденсатор С1 заряжается, а во время другой – разряжается на обмотку повышающего трансформатора Т1 через тринистор VS1, который включается системой управления (СУ). Отличия порою сводятся лишь к способу управления тринистором. Основной недостаток подобных конструкций, по мнению автора, заключается в пониженной частоте питания умножителя напряжения, что может привести к увеличению пульсации на выходе блока и уменьшению эффективности работы «люстры». Кроме того, иногда можно наблюдать повышенный уровень шума трансформатора, являющийся следствием большой амплитуды токовых импульсов. Всего этого автору удалось избежать, разработав блок питания, схема которого (без высоковольтного умножителя) приведена на рис. 2.
Рассмотрим его работу.
Сетевое напряжение выпрямляется диодным мостом VD1. Пульсации выпрямленного напряжения сглаживает конденсатор С1, ток зарядки конденсатора в момент включения устройства в сеть ограничивает резистор R1. Через резистор R3 заряжается конденсатор СЗ. Одновременно вступает в действие генератор импульсов, выполненный на однопереходном транзисторе VT1. Его "спусковой" конденсатор заряжается через резисторы R4, R5 от параметрического стабилизатора, выполненного на балластном резисторе R2 и стабилитронах VD2, VD3. Как только напряжение на конденсаторе С2 достигает определенного значения, "срабатывает" транзистор и на управляющий переход тринистора поступает открывающий импульс (рис. 3,б).
Конденсатор С3 разряжается через тринистор на первичную обмотку трансформатора (рис. 3,а). На его вторичной обмотке формируется импульс высокого напряжения (рис. 3,в). Частота следования этих импульсов определяется частотой генератора, которая, в свою очередь, зависит от параметров цепочки R4R5C2. Подстроечным резистором R5 можно изменять выходное напряжение блока примерно в 1,5 раза. При этом частота импульсов регулируется в пределах 250…1000 Гц. Кроме того, выходное напряжение изменяется при подборе резистора R3 (в пределах от 5 до 30 кОм). Пульсации выходного напряжения не превышают 5 %, сетевые помехи практически отсутствуют. Конденсаторы желательно применять бумажные (С1 и С3 – на номинальное напряжение не менее 400 В; на такое же напряжение должен быть рассчитан диодный мост). Вместо указанного на схеме подойдет тринистор Т10-50 или в крайнем случае КУ202Н. Стабилитроны VD2, VD3 – любые другие, с суммарным напряжением стабилизации примерно 18 В. Высоковольтный умножитель можно заимствовать из [1–3]. Трансформатор изготовлен на базе строчного ТВС-110П2 от черно-белых телевизоров, но в принципе подойдут и другие [5]. Все первичные обмотки нужно удалить и намотать на освободившееся место 70 витков провода ПЭЛ или ПЭВ диаметром 0,5…0,8 мм. Повышающую обмотку (II) трогать не следует.
РАДИО № 11,1998
Варианты блока питания аэронизатора
В. Утин
Известно, что постоянное напряжение отрицательной полярности на аэроионизаторе должно быть не менее 25 кВ, практически же в домашних условиях на аэроионизатор желательно подводить напряжение около 30 кВ. Исходя из этих цифр были разработаны предлагаемые блоки питания.
Схема первого варианта блока питания приведена на рис. 1.
Сетевое напряжение, поступающее через вилку ХР1 и выключатель SA1, подается на мостовой выпрямитель, выполненный на диодах VD1-VD4. Выпрямленное напряжение фильтруется конденсатором С1. В итоге на этом конденсаторе присутствует постоянное напряжение около 300 В, которое используется для питания релаксационного генератора, составленного из элементов R3, С2, VS1, VS2. Нагрузка генератора – обмотка I трансформатора Т1. С его обмотки II импульсы амплитудой примерно 5 кВ и частотой следования 800 Гц поступают на умножитель напряжения, собранный на диодах VD5-VD10 и конденсаторах С3-С8. Получившееся на 410 выходе умножителя постоянное напряжение около 30 кВ подается через токоограничительный резистор R4 на «люстру».
Таблица 1
Трансформатор ∙ Число витков ∙ Провод ∙ Сопротивление, Ом
ТВС-А, ТВС-Б ∙ 720 ∙ ПЭЛШО 0,1 ∙ 152
TBC-110JBC-110M ∙ 940 ∙ ПЭЛШО 0,1 ∙ 240
ТВС-110А ∙ 1000 ∙ ПЭВ-2 0,1 ∙ 250
ТВС-110Л1 ∙ 1300 ∙ ПЭВ-2 0,09 ∙ 430
ТВС-110Л2 ∙ 900 ∙ ПЭВ-2 0,08 ∙ 310
ТВС-110ЛЗ ∙ 940 ∙ ПЭЛШО 0,1 ∙ 240
ТВС-110ЛА ∙ 1200 ∙ ПЭВ-2 0,1 ∙ 380
ТВС-110АМ ∙ 900 ∙ ПЭВ-2 0,08 ∙ 280
ТВС-110Л4 ∙ 1290 ∙ ПЭМ-2 0,1 ∙ 410
Неоновая лампа HL1 – индикатор включения блока питания. Резистор R1 ограничивает броски тока, неизбежные при зарядке конденсатора С1. Предохранители FU1 и FU2 срабатывают при выходе из строя элементов выпрямителя либо высоковольтного умножителя напряжения.
Трансформатор Т1 – переделанный строчный трансформатор от черно-белого телевизора. Его высоковольтную обмотку II оставляют, остальные удаляют и вместо них наматывают обмотку I – 24 витка провода ПЭВ диаметром 0,5…0,8 мм. Для такого варианта подойдет практически любой строчный трансформатор, поскольку данные их вторичных обмоток различаются незначительно (для некоторых из них они приведены в табл. 1). К тому же выходное напряжение блока при необходимости можно увеличить добавлением еще одного каскада умножения. Нижний по схеме вывод обмотки II – это ее начало, вывод расположен ближе к магнитопроводу.
Динисторы VS1, VS2 – серии КН102 либо устаревшие Д228. Исходя из сведений, приведенных в табл. 2, включают последовательно столько динисторов, сколько может обеспечить суммарное напряжение включения около 200 В. Конденсаторы С3-С8 – ПСО, КОБ или другие емкостью не менее 100 пФ на номинальное напряжение не ниже 10 кВ; C1, С2 – на напряжение не ниже 400 В. Вместо указанных на схеме диоды VD1-VD4 могут быть Д237Б, Д237В, КД105Б, КД105В.
Таблица 2
Тип динистора ∙ Напряжение включении, В
КН102А, Д228А ∙ 20
КН102Б, Д228Б ∙ 28
КН102В, Д228В ∙ 40
КН102Г, Д228Г ∙ 56
КН102Д, Д228Д ∙ 80
КН102Е ∙ 75
КН102Ж, Д228Ж ∙ 120
КН102И, Д228И ∙ 150
При монтаже высоковольтной части блока желательно предусмотреть запивку умножителя компаундом с высоким удельным сопротивлением, например, парафином. В этом отношении перспективным представляется вариант использования готового умножителя УН 8,5/25-1,2, используемого в цветных телевизорах. Правда, в телевизоре он предназначен для получения плюсового напряжения, поступающего на анод кинескопа, нам же нужно минусовое напряжение для питания «люстры».
Чтобы "перевернуть" умножитель, достаточно сделать в нем еще один вывод – Д (рис. 2) аккуратным высверливанием и спиливанием компаунда для обеспечения доступа к нужной точке внутреннего монтажа умножителя. Для этого умножитель располагают так, чтобы перед вами было неперевернутое обозначение типа и выводов (прорезь для крепления умножителя на плате окажется при этом справа), тогда расположение элементов в компаунде будет соответствовать расположению их на приведенной принципиальной схеме. Два горизонтальных выступа по краям умножителя являются местами расположения конденсаторов, а интересующая нас точка Д находится у левого края верхнего выступа.
Если использовать только доработанный умножитель, напряжение на выходе его не превысит 25 кВ. Поэтому к умножителю придется добавить еще один каскад на диоде VD7 и конденсаторе С5.
Номиналы конденсаторов СЗ и С4 (типов К15-У1, К15-4, К15-13, К73-13) соответствуют тем, что стоят в умножителе.
Схема еще одного варианта блока питания приведена на рис. 3.
Релаксационный генератор в нем выполнен на элементах R1, VD1, C1, HL1, VS1. Он работает при положительных полупериодах сетевого напряжения, когда конденсатор С1 заряжается до напряжения включения аналога динистора на неоновой лампе HL1 и тринисторе VS1. Диод VD2 демпфирует импульсы самоиндукции первичной обмотки повышающего трансформатора Т1 и позволяет повысить выходное напряжение блока питания. При показанных на схеме трех каскадах умножения выходное напряжение достигает 26 кВ. Неоновая лампа – не только элемент аналога динистора, но и сигнализатор включения блока в сеть.
Высоковольтный трансформатор – самодельный, его наматывают на отрезке стержня диаметром 8 и длиной 60 мм из феррита М400НН. Вначале наматывают первичную обмотку – 30 витков провода ПЭЛШО 0,38, а затем вторичную – 5500 витков ПЭЛШО 0,05 или большего диаметра. Между обмотками и через каждые 800…1000 витков вторичной обмотки прокладывают слой изоляции из обычной поливинилхлоридной изоляционной ленты.
В любом из описанных блоков возможно введение дискретной (а при желании – и плавной) многоступенчатой регулировки выходного напряжения коммутацией включенных в последовательной цепи аналогов динисторов (рис. 3,б) либо динисторов (рис. 3,в). В первом варианте обеспечиваются две ступени регулирования, во втором – до десяти (при использовании динисторов КН102А с напряжением включения 20 В).
В качестве высоковольтного провода, соединяющего блок питания с "люстрой", автор использовал телевизионный антенный кабель РК диаметром 8 мм со снятыми наружной изоляцией и экранирующей оплеткой.
Электронный пылеуловитель
Обычно для очистки воздуха от пыли применяют сложные и громоздкие механические фильтры, имеющие низкую производительность. Заметно увеличить производительность и уменьшить размеры воздухоочистительных установок можно, применив электронный пылеуловитель.
Принцип действия такого пылеуловителя заключается в том, что загрязненный воздух проходит через металлическую трубу 1, внутри которой установлены две проволочные сетки 2 и 3, играющие роль фильтра (рис. 1).
Сетка 2 изолирована от короба и находится по отношению к нему под постоянным положительным напряжением 5,2 кв. Сетка 3 имеет надежный электрический контакт с коробом (заземлена). Частицы пыли, проходя через первую сетку, приобретают сильный электрический заряд, который заставляет их оседать на сетке второго фильтра, имеющей по отношению к первой сетке отрицательный потенциал.
Для очистки от крупных частиц между первым и вторым фильтрами установлен дополнительный механический фильтр 4. Очищенный от пыли чистый воздух выходит из противоположного отверстия трубы, а пыль осаждается на дне, вблизи второго фильтра.
Устройство электронного пылеуловителя несложно, но требует источника постоянного напряжения 5,2 кв. Его можно собрать по предлагаемой схеме (см. рис. 2).
Он представляет собой выпрямитель сетевого напряжения, состоящий из повышающего трансформатора Тр1 и выпрямителя с удвоением напряжения на диодах Д1, Д2 и конденсаторах С2, С3. Ограничение выходного тока до безопасной для человека величины 5 ма осуществляется с помощью токоограничительных резисторов R1-R3, а также дополнительной обмотки III, трансформатора Тр1, (вместе с конденсатором С1 она образует феррорезонансный стабилизирующий контур). Действие его сводится к тому, что в случае превышения выпрямленного тока более 5 ма, напряжение на выводах обмотки II снижается.
Неоновая лампа Л1 в данном устройстве играет роль сигнализатора величины выпрямленного напряжения. Включается она параллельно резистору R1. Сопротивление его подобрано таким образом, чтобы при выпрямленном напряжении 5,2 кв падение напряжения на резисторе R1 составляло около 100 в, то есть достаточное для зажигания неоновой лампы. По мере накопления пыли на второй сетке, происходит увеличение потребляемого тока, это приводит к понижению выходного напряжения. Лампа Л1 гаснет, что свидетельствует о том, что пылеуловитель требует очистки. Очистку устройства можно производить только после выключения питания.
В выпрямителе пылеуловителя использованы кремниевые диодные столбы и высоковольтные конденсаторы, применяемые в телевизорах. Трансформатор Тр1, с целью повышения его электрической прочности, залит эпоксидной смолой. В качестве диодов Д1 и Да можно использовать кремниевые высоковольтные выпрямительные столбы Д1006-Д1008.
«Radio Electronics», 1971, июль.
СПРАВОЧНИК
Общие сведения по малогабаритным электромагнитным реле
Малогабаритные электромагнитные реле постоянного тока
Электромагнитное реле коммутирующее устройство, работа которого основана на воздействии магнитного поля неподвижной обмотки на подвижный ферромагнитный элемент (ГОСТ 16022-76). Электромагнитное реле состоит из корпуса, который обычно является и частью магнитопровода, сердечника, катушки, якоря, контактной группы, основания и чехла. Реле открытого типа чехла не имеют. Реле выпускают в различных исполнения:
– зачехленные,
– завальцованные (пылебрызгозащищенные),
– герметичные.
Реле одного типа различаются обмоточными данными, числом и видом контактных групп и электрическими параметрами. Номер паспорта, по которому находят необходимые данные в таблицах, маркируется на чехле. Основные параметры малогабаритных электромагнитных реле приведены в таблице 1. Допустимые коммутируемые токи и напряжения, а также максимальное число коммутаций приведены в таблице эксплуатационные и технические характеристики таблице 5.
Реле типов РЭС-42 РЭС-44, РЭС-55А и РЭС-55Б имеют герметизированные магнитоуправляемые контакты (МУК), представляющие собой контактные ферромагнитные пружины, которые помещены в герметичные стеклянные баллоны, заполненные инертным газом, азотом высокой чистоты или водородом. Контактные элементы являются одновременно элементами магнитной цепи. Под действием магнитного поля достаточной напряженности ферромагнитные контактные пружины деформируются и замыкают или размыкают контакты. Достоинство МУК большая износоустойчивость и очень малое время срабатывания. Основные параметры малогабаритных электромагнитных реле с герметизированными контактами приведены в таблице 2.
Малогабаритные дистанционные переключатели.
Дистанционный электромагнитный переключатель представляет собой электромагнитное реле с управляющими обмотками для прямого и обратного включения с контактными группами и магнитной системы для фиксации якоря в двух положениях. Из одного положения в другое якорь переходит при подаче импульса тока в соответствующую обмотку.
Дистанционный переключатель прибор полярный. Плюсовой вывод источника управляющих импульсов необходимо подключать к началу обмоток, а минусовой – к концу. Подача напряжения другой полярности и одновременная подача напряжения на прямую и обратную обмотки (они обозначены соответственно цифрами I и II) не допускается. При подаче импульса на прямую обмотку переключателя подвижный контакт каждой из групп перемещается в право по рисунку (см. рис.). Для того чтобы контактная система вернулась в исходное состояние, подают импульс на обратную обмотку.
Переключатели РПС-24, РПС-26, РПС-28 имеют две обмотки для прямого включения и две для обратного. Все обмотки содержат одинаковое число витков и намотаны одинаковым проводом. Параллельное включение двух прямых или двух обратных обмоток уменьшает вдвое соответствующее напряжение срабатывания по сравнению с одной обмоткой. При последовательном соединении обмоток напряжение срабатывания не изменяется.
Для надежной работы переключателей управляющие импульсы тока должны иметь крутой фронт и длительность не менее 25 мс. Непрерывное пребывание обмоток под напряжением в течении более 1 мин. не допускается Импульсное напряжение, подаваемое на обмотки переключателей, не должно содержать пульсаций, превышающих 5 %.
В отличии от от обычного электромагнитного реле дистанционный переключатель имеет более сложную магнитную цепь, содержащую постоянный магнит, а якорь выполнен в виде коромысла. При подаче импульса напряжения нужной полярности на обмотку переключателя якорь не притягивается, а отталкивается от полюсного наконечника, к которому он был перед этим прижат. Поэтому, недопустимо увеличение напряжения на обмотках по отношению к номинальному, так как при увеличении напряжения примерно в двое якорь начинает притягиваться к полюсному наконечнику, что нарушает нормальную работу переключателя.
Значение напряжения срабатывания переключателей РПС-20, РПС-24, РПС-26, РПС-28 при работе якоря на отталкивание и притяжения значительно отличаются одно от другого, поэтому-то и нельзя одновременно подавать рабочие напряжения на прямую и обратную обмотки. Появляющийся при этом разностный магнитный поток оказывается достаточным для отрыва якоря от наконечника, но слишком слабым для его фиксации в одном из рабочих положений. Якорь при этом может зависнуть в некотором среднем положении.
Переключатель РПС-23, у которого каждая из обмоток разделена на равные части, размещенные на двух магнитопроводах, имеет симметричную магнитную цепь, поэтому он допускает перемену полярности напряжения, подаваемого на каждую из обмоток. При подаче одинакового напряжения одновременно на прямую и обратную обмотки их магнитные потоки взаимно компенсируются и якорь остается в исходном положении.
Дистанционные переключатели не рассчитаны на работу с включением обмоток через собственные контакты. При включении обмотки переключателя через свой контакт якорь не всегда успевает приобрести запас кинетической энергии, необходимый для перехода в другое положение, и зависает в неопределенном положении. Поэтому включать обмотки переключателей следует только через контакты других коммутирующих устройств.
Отсутствие магнитной экранировки у переключателей приводит к увеличению напряжения срабатывания при их установке вплотную один к другому из-за взаимного влияния. Для восстановления надежной работы переключателей в таких условиях необходимо увеличение рабочего напряжения примерно на 20 %. Поэтому не следует располагать переключатели на панели из магнитного материала и вблизи элементов, создающих магнитные поля.
Основные параметры малогабаритных дистанционных электромагнитных переключателей приведены в таблице 3.
Рекомендации по выбору реле.
Надежность работы реле в аппаратуре различного назначения в значительной степени зависит от правильного выбора электрических режимов работы обмотки и контактов.
Рабочие напряжения и токи в обмотке реле должны находится в пределах допустимых значений. Уменьшение рабочего тока в обмотке приводит к снижению надежности контактирования, а увеличение к перегреву обмотки, снижению надежности реле при максимально-допустимой положительной температуре. Нежелательна даже кратковременная подача на обмотку реле повышенного рабочего напряжения, так как при этом возникают механические перенапряжения в деталях магнитопровода и контактных групп, а электрическое перенапряжение обмотки при размыкании ее цепи может вызвать пробой изоляции.
При выборе режима работы контактов необходимо учитывать значение и род коммутируемого тока, характер нагрузки, общее количество и частоту коммутации.
При коммутации активных и индуктивных нагрузок наиболее тяжелым для контактов является процесс размыкания цепи, так как при этом из-за образования дугового разряда происходит основной износ контактов.
Износостойкость контактов реле при коммутации цепей переменного тока с частотой до 1 000 Гц выше, чем при коммутации цепей постоянного тока, при одинаковой нагрузке. При увеличении частоты коммутируемого тока выше 1000 Гц эрозия контактов становится такой же, как и при коммутации постоянного тока.
Необходимо также учитывать, что разные контакты одного реле замыкаются и размыкаются не одновременно. Поэтому суммарный ток, коммутируемый параллельно соединенными контактами, не должен превышать максимально-допустимого значения для одной группы контактов.
Примечание:
1 – Цифры обозначают число контактных групп, буквы: з – замыкание; р – размыкание; п – переключение.
2 – Реле с серебряными контактами; контакты остальных реле из платино-иридиевого сплава.
3 – Реле этих типов с буквенным индексом А выпускают без крепежных уголков, а с буквенным индексом Б – с уголками.
В таблице применены следующие условные обозначения:
Rном. – номинальное сопротивление обмотки;
Iср. – ток срабатывания, не более;
Iопт. – ток отпускания, не менее;
Uраб. – рабочее напряжение;
Iраб. – рабочий ток;
tcp. – время срабатывания, не более;
tопт. – время отпускания, не более;
Примечание
1 – Цифры обозначают число контактных групп, буквы: з – замыкание; п – переключение.
2 – При параллельном включении обмоток.
3 – При последовательном включении обмоток.
В таблице применены следующие условные обозначения:
Rном. – номинальное сопротивление обмотки;
Uср. – напряжение срабатывания, не более;
Uопт. – напряжение отпускания, не менее;
Uном. – номинальное напряжение;
tcp. – время срабатывания, не более;
tопт. – время отпускания, не более
В таблице применены следующие условные обозначения:
Rном. – номинальное сопротивление обмотки;
Uср. – напряжение срабатывания, не более;
Uопт. – напряжение отпускания, не менее;
Uном. – номинальное напряжение;
tcp. – время срабатывания, не более;
Примечание.
1 – данные по переменному току приведены для частоты 50…1000 Гц.
2 – для переключателей с паспортами PC4.521.756, PC4.521.760, PC4.521.761, PC4.521.762, PC4.521.763;
3 – для переключателей с паспортами РС4.521.916, РС4.521.919, РС4.521.920.
Примечание.
1 – меньшая масса соответствует реле с буквенным индексом А, большая – с Б.
2 – для переключателей с паспортами РС4.521.917 от -10 до +40 °C, РС4.521.918 и РС4.521.919 от -60 до +60 °C;
3 – для переключателя с паспортом РС4.521.928 от -10 до +40 °C;
4 – для переключателя с паспортом РС4.521.940 от -10 до +40 °C.








