Текст книги "Интернет-журнал "Домашняя лаборатория", 2007 №1"
Автор книги: Журнал «Домашняя лаборатория»
Жанры:
Хобби и ремесла
,сообщить о нарушении
Текущая страница: 13 (всего у книги 39 страниц)
«Микро горелочная технология» позволяет быстро изготавливать внутренние спаи диаметром около двадцати миллиметров из тонкостенного стекла люминесцентных ламп. Для дальнейшего ускорения таких операций следует применять автоматическое вращение детали и строгую фиксацию отдельных частей изделия относительно друг друга специальными приспособлениями.
В работе со стеклом возможно шире следует применять различные «роботы», оправки, хватки и т. д. Они намного облегчают работу (см. раздел «Оснастка»).
Охлаждая отдельные детали и готовые, предназначенные для откачки лампы, следует помнить, что из пламени горелки в них попадает некоторое количество продуктов сгорания (в основном – воды и углекислого газа).
При конденсации вода способна вызывать коррозию стекла и металлической арматуры, давать пятна на стекле, особенно на окнах для выхода излучения, поэтому её необходимо удалить, откачивая воздух из ещё горячей лампы вакуумным насосом с газобалластом. При этом нужно слегка охладить изделие, чтобы баллон лампы не деформировался.
Глава 17. Отжиг.
Естественная скорость охлаждения разогретых при изготовлении деталей часто бывает слишком большой. Кроме того, из-за различных условий охлаждения по поверхности деталей оно может быть неравномерным. В изделии, охлаждённом таким образом, могут оставаться значительные напряжения. Они могут привести к разрушению изделия в самое неподходящее время. Для борьбы с ними применяют различные приёмы.
Изделия простых форм с тонкой стенкой без внутренних спаев и т. д. обычно обогревают на горелке до начала свечения натрия и ставят охлаждаться в спокойном воздухе. Детали симметричных форм (например, цилиндрические, трубки) следует ставить вертикально для равномерного охлаждения со всех сторон. Более сложные детали следует охлаждать, вращая в руках.
Спаи с металлом (кроме спаев пирекса с тонким вольфрамом), внутренние спаи, спаи Дюара, ножки следует охлаждать медленнее, выравнивая температуру по поверхности детали принудительно.
Для отжига небольших, до десяти миллиметров, проволочных (до одного миллиметра) впаев в молибденовое стекло типа «впай в дно пробирки» можно применять «муфель» из толстостенной латунной трубки, выстланный внутри несколькими слоями тонкой нержавеющей сетки. Муфель следует нагреть до свечения и надеть на ещё мягкий спай. Латунь не должна касаться стекла. Между ней и стеклом должна находится сетка. Толщина стенок муфеля должна быть в несколько миллиметров. Снова прогрев муфель до начала свечения, изделие ставят на подставку для охлаждения (см. рис. 32).

Более полный отжиг можно провести, поместив снятое с огня изделие в горячую (500°-600°) печь. Обычно достаточно «инерционного» снижения температуры в выключенной печи. Если в изделии после такой операции остаются напряжения, явно оставшиеся от нагрева горелкой, то отжиг следует проводить с более (на 50°) высокой температуры, либо провести полный отжиг с нагревом и охлаждением.
При спаивании стёкол, слегка различающихся по К.Т.Р., следует проверить напряжения более тщательно. Цвет их в поляриметре не должен быть больше красного, то есть фиолетовый фон может превратится в красный, но уже оранжевые и жёлтые цвета свидетельствуют о недопустимых натяжениях. Несколько пробных спаев следует поцарапать ножом и оставить на пару дней. Уничтожить напряжения в таком спае обычным отжигом – невозможно.
Их можно несколько уменьшить, быстрее охлаждая деталь с большим К.Т.Р. Вообще говоря, таких спаев следует избегать.
Проваривать спаи следует полностью. Внутренние наплывы портят вид и резко снижают термостойкость изделий.
Остекловывание проволочных и стержневых вводов следует проводить под вакуумом и тщательно. Не остеклованные тугоплавкие металлы (особенно – молибден) горят в пламени, загрязняя изделие. Окислы этих металлов не должны попадать внутрь фотоэлементов, где они восстанавливаются цезием и создают паразитную эмиссию и проводящие мостики.
Загрязнённые детали и изделия можно слегка протравить плавиковой кислотой. Окислы молибдена и вольфрама смываются крепким раствором аммиака. Эти реактивы выделяют вредные пары и опасны для глаз, поэтому необходимо работать в очках и под тягой.
Глава 18. Отпайка изделий от поста.
Откачав и заполнив газом лампу, её отпаивают. Эта операция требует навыка и некоторой сноровки. Толстостенную трубку, соединяющую лампу и вакуумную систему (штенгель) прогревают до размягчения, стекло деформируется внешним давлением и перекрывает её просвет. Это место трубки при отпайке следует растягивать, оттягивая лампу или гибкую трубку, через которую ведётся откачка, чтобы избежать вдавливания стекла внутрь внешним давлением и получить отпай конической формы. Обычно приходится идти на компромисс между длиной отпая и опасностью повредить изделие, вызвав в нём трещины и втянутости. Переплавив образующуюся перемычку, иногда следует при аккуратном нагреве отобрать избыток стекла. Идеальный отпай имеет одинаковую толщину стенок, коническую форму и отношение длины к диаметру 1–2.
Если в месте затяжки просвета остаются «особенности» – цепочки пузырей, плёнки и другие видимые дефекты, это может указывать на течь. Запаянный конец штенгеля следует проплавить в пламени гремучего газа или напаять на него капельку стекла для закрытия дефектного участка. Дефектное место после некоторого подстуживания можно закрыть капелькой гудрона. Если изделие в этом месте не нагревается свыше 50°, то такая мера вполне надёжна. Внутренние дефекты при отпае могут возникнуть из-за длительного горения разряда сквозь штенгель или при попадании в него углерода из лампы (например, при перегонке масла из лампы с щёлочными или щёлочноземельными металлами). Иногда, из-за особенностей конструкции, приходится отжигать место отпая в печи. В этом случае следует тщательно контролировать температуру во избежание деформации вакуумированного объёма.
Затяжка ввода
Часто для улучшения конструкции, внешнего вида и уменьшения габаритов приходится совмещать отпайку лампы от поста с вплавлением в штенгель проволочного ввода. Эту операцию лучше делать в два приёма. Внутрь лампы помещают остеклованный ввод таким образом, чтобы его можно было переместить в штенгель. Диаметр штенгеля и толщину стенок следует делать такими, чтобы после сплавления с остекловкой проволоки спай имел нормальные размеры (диаметр 3–4 мм и длину 5-10 мм). При изготовлении штенгеля добиваемся, чтобы ввод входил в него на должную глубину. Это значительно упрощает затяжку. Остекловку следует делать тем же стеклом, из которого сделан штенгель лампы.
Обычно электрод с припаянным вводом помещают внутрь изделия и затем, осаживая стекло и растягивая его, делают штенгель нужного диаметра. Ввод должен входить в него без большого зазора. При «примерке» следует опасаться его заклинивания. Дело в том, что ввод – холодный. Попадая внутрь горячего штенгеля, он нагревается и, естественно, расширяется. А с горячим штенгелем всё происходит наоборот. Поэтому надо переместить ввод в штенгель не полностью, чтобы он прогрелся там, где зазоры ещё велики и только через несколько секунд попытаться ставить его на место. Заклиненный ввод можно попытаться вытолкнуть с помощью проволоки или разогрева штенгеля снаружи. На стёклах с большим К.Т.Р. такая операция может привести к растрескиванию.
Электрод, предназначенный к затяжке, следует перед помещением в лампу очистить прогревом. Греть следует или «до натрия» или до слабого свечения. Можно, подогревая электрод, следить за выделением дыма от сгоревшей органики.
Запах «палёной шерсти» от электрода указывает на недостаточный прогрев. Если электрод содержит магний, то надо опасаться его воспламенения, которое происходит при нагреве выше начала свечения.
Отпаивают лампу обычным порядком, оставляя от штенгеля достаточный остаток, чтобы за него можно было взяться рукой и чтобы в нём поместился наружный проволочный ввод. Можно также не перетягивать заплавленную перемычку, используя для работы всю длину штенгеля, вынутого из гнезда вакуумного поста.
Затяжку производят при вращении на пламени настольной горелки. Вначале место затяжки обогревают на мягком пламени. Затем, равномерно вращая изделие, на остром пламени осаживают стекло в месте окончания остекловки, наиболее удалённой от баллона лампы. После сплавления стекла и герметизации соединения слегка подстуживаем стекло и ножом отрезаем стекло в месте выхода проволоки из спая. Оплавляем внешнюю часть спая, обогреваем его в пламени и ставим на охлаждение в печь или латунный муфель. Небольшие по размеру спаи пирекса с тонкой вольфрамовой проволокой можно охлаждать в спокойном воздухе. При изготовлении спая электрода, с которого идёт разряд (катода) остеклованную часть ввода следует делать достаточно длинной и стараться, чтобы до места соединения остекловки с колбой был достаточно длинный и узкий зазор. Это затруднит нагрев спая разрядом (см. рис. 10).
Глава 19. Изготовление ножек.
Ножкой прибора называется деталь или место, в которое впаян ввод. Она может быть частью баллона лампы или иметь отдельное оформление и состоять из нескольких деталей. Конструкция ножки определяется назначением прибора и технологическими возможности. Особенно красивые и оригинальные ножки заводских приборов следует собирать и хранить на рабочем месте, украшая его таким образом.
Ножку типа гребешковой (см. рис. 33) выполняют следующим образом: на конце трубки развёртывают тарелочку нужного размера. Трубку в месте изготовления спая с вводом, если нужно, оттягивают и отрезают по размеру. Впаивают ввод (вводы), одев ножку со стороны тарелочки на хваток из стеклянной трубки с надетой на неё муфтой из силиконовой резины или проволочной сетки (асбеста следует избегать). Для впаивания большого числа проволок одновременно, их следует соединить между собой, приварив контактной сваркой к кусочку жести и, если нужно, применить хваток специальной конструкции, с направляющими гнёздами для каждой проволоки.

Спай обязательно отжигают в печи. Готовую ножку ставят на место спая и спаивают по ранту. Поддув воздуха обязателен. Во время работы спай нужно обогревать в мягком пламени и сваривать отдельные участки (лучше микрогорелкой). Качественный спай должен иметь равномерную толщину и правильную форму. Часть детали со спаем следует, после равномерного обогрева на мягком пламени, охладить в печи.
Иногда ножка может быть выполнена следующим образом: дно колбы лампы делают полукруглым, похожим на дно пробирки, но более плоским. К нему микрогорелкой припаивают нужное число трубок диаметром 4–5 мм Одна из них служит штенгелем, а в остальные запаивают предварительно остеклованные вводы. Смысл такой конструкции состоит в том, что колбу с припаянными трубками отжигают в печи без внутренней арматуры. После монтажа арматуры в лампу изготовляют спаи и отжигают их по одному в муфте, не перегревая арматуру. Такой порядок сборки удобно применять для изготовления ламп с полым катодом.
В некоторых ЛПК заводского изготовления применяют ножку со сквозным спаем. После изготовления такую ножку следует обязательно отжечь в печи. Ввод катода ведётся через центральную трубку. Спай следует отжечь в муфте. Для молибденового стекла такой отжиг может быть недостаточен.
Ввод анода делают через припаянную трубку рядом со сквозным спаем. Такая конструкция снижает термостойкость, поэтому баллон с смонтированным анодом и другими электродами следует подвергнуть тщательному отжигу. Катод, если он не может выдержать температуру сборки, монтируют и запаивают его ввод в последнюю очередь. Автором изготовлялись лампы такой конструкции из пирекса с окном из стекла ЛК-5 с колбой диаметром 22 мм, имеющими катод с Ва, Тl и другими металлами.
В заключение главы мы заметим вот что. С приобретением опыта каждый мастер вырабатывает свой набор приёмов и методов работы. Для этого необходимо время и опыт. Не следует отчаивается, если какая-либо работа не получается с первого раза. Работайте и любите своё дело. Рано или поздно – получится!
Глава 20. Изготовление и тренировка ламп.
При изготовлении каждого вида приборов приходится решать как общие задачи технологии (изготовление внутренней арматуры, стеклодувные операции), более-менее сходные для всех приборов, так и специфические для каждого из них. Например, в одной из книг автор прочитал, что при изготовлении ламп бегущей волны на уровень их шумов катастрофически влияет загрязнение волокнами бумаги (то есть тем, что от неё остаётся после вакуумной обработки), в связи с чем она крайне не желательна в помещении, где производятся сборочные операции.
У каждого прибора есть свои особенности. Иногда некоторыми требованиями технологии можно пренебречь, иногда возникают новые обязательные требования. Мы опишем изготовление конкретных приборов, не очень опасаясь повторов сведений из других глав.
Глава 21. Изготовление высокочастотных ламп-«шариков».
Такие лампы широко применяются в спектральных приборах для анализа методом пламенной фотометрии. Они подробно описаны в работе Курейчика К.П. и др. «Газоразрядные источники света для спектральных измерений». Лампа для получения спектров состоит из стеклянного баллона диаметром 10–30 мм, наполненного инертным газом (чаще всего ксеноном) и небольшим, порядка одного-двух миллиграммов, количеством металла-наполнителя.
Баллон (собственно говоря, лампа) часто помещается в вакуумную рубашку из того же (или другого) стекла. Делается это с целью теплоизоляции баллона, улучшения распределения температуры по его поверхности и уменьшения флуктуаций излучения от конвекционных потоков внешнего воздуха.
Для получения линий данного элемента его следует иметь в газовой фазе при рабочей температуре лампы. Легколетучие металлы вводят в свободном виде, а трудно летучие – в виде солеи, чаще всего – иодидов.
Их синтез часто представляет собой непростую задачу и производится либо из элементов, либо одновременным введением в лампу нужного металла вместе с йодидом серебра.
Изготовление таких ламп имеет ряд особенностей. Поскольку эти лампы безэлектродные, то применить обычный геттер в них невозможно.
Газоотделение от стенок должно быть минимальным, поэтому к качеству их обезгаживания предъявляются весьма высокие требования. Металлы могут быть агрессивны к стеклу лампы, а йодиды могут создать некоторые затруднения при обезгаживании.
Делают такие лампы – кто во что горазд. Одни моют баллон внутри хромовой смесью – другие нет. Одни промывают газом – другие не промывают, и так далее.
Мы разработали следующие технологии: для ртутных и прочих ламп с чистыми металлами, не реагирующими с титаном, для чистых металлов, реагирующих с титаном (например, мышьяк) и для галогенных соединений. Два последних случая схожи между собой и различаются лишь стойкостью галогенидов в контакте с комнатным воздухом.
Наиболее просто делать «шарики» в первом случае. Выдув баллончик из кварца или (если можно) из стекла, его через перетяжку спаиваем со стеклянной ампулой. В ампулу помещаем на ножке из проволоки кольцо из титана, которое затем будет нагреваться Т.В.Ч. и будет служить геттером.
В стеклянной лампе можно впаять титановый электрод в виде полоски (или два электрода. Если электрод один, то подключив его к повышающей обмотке ВЧ-генератора, его можно разогреть током высокой частоты в разряде, а если их два, то можно зажечь обычный разряд между ними.
Наиболее просто осуществляется геттер в кварцевом баллоне. Полоска (стружка) из титана делается такой ширины, чтобы она могла свободно передвигаться через отверстие перетяжки между баллоном и ампулой. При этом она должна быть достаточно длинной, чтобы один её конец находился в баллоне, а другой – в ампуле.
Готовая сборка «свечка» подсоединяется к вакуумному посту. Навеска металла (Hg, Cd, Zn, Тl) пере двигается в баллон и вся сборка прогревается на пламени горелки. К прогреву следует подходить творчески. Сначала следует прогреть ампулу.
Если она кварцевая, то прогреть докрасна. Саму лампу следует также прогревать, но только слабее, тщательно наблюдая за перегонкой металла в штенгель. Как только появятся самые малые признаки такой перегонки, следует нагрев прекратить, чтобы металл не «улетел» весь. Затем следует, наклонив лампу, переместить геттер в ампулу и нагреть его тоже докрасна.
Остудить ампулу до температуры конденсации в ней металла и перегнать в неё металл. После перегонки и охлаждения металла в ампулу следует охладить лампу до комнатной температуры и наполнить её ксеноном или аргоном до одного-двух миллиметров ртутного столба. Отпаять лампу от поста.
Для полной очистки и обезгаживания лампы её надо в кварцевой пробирке положить в печь и нагреть в течении часа до температуры 700°-800°.
Геттер при этом должен находится в обеих частях сборки.
Охладив лампу вместе с печью, её следует осмотреть, и, аккуратно нагревая на горелке или в печке с градиентом температуры, перегнать металл в баллон лампы.
Лампу следует испытать в генераторе. Она должна легко зажигаться и давать чистый спектр. Проверив лампу, её следует отпаять от ампулы. При этом отпайку следует делать на пламени угольной дуги или плазмотрона. Гремучим газом лучше не пользоваться, так как из него в лампу сквозь горячий кварц может попасть водород, который выведет лампу из строя.
Перетяжку штенгеля пережигать не следует. Её надо сделать толщиной 4-5мм и позаботится о том, чтобы в месте её перехода в баллон в последнем осталась выемка глубиной два-три миллиметра.
В ней будет конденсироваться избыток металла из лампы, так как это будет наиболее холодная точка баллона.
Отрезав на алмазном круге ампулу в месте её перехода от цилиндрической части к сужению, получим «тарелочку», по краям которой надо сделать два-три надреза.
Вакуумная рубашка делается из заранее изготовленной кварцевой пробирки.
Вместо дна в ней надо изготовить штенгель, положить туда лампу и спаять тарелочку с внешней стенкой, не перекрывая прорези в тарелочке. При спаивании лампу следует зафиксировать относительно баллона специальным хватком из алюминия (см. рис. 34).

Зазор между лампой и рубашкой в один миллиметр вполне достаточен для надёжной теплоизоляции (вообще говоря, его размер роли не играет). После сварки тарелочки с рубашкой следует на трубке оттянуть державу и выше лампы изготовить круглое дно. Если лампа рассчитана на выход излучения с торца, то можно трубку обрезать по размеру и прошлифовать её торец заранее, а затем припаять плоское дно. Откачку рубашки через штенгель следует вести при прогреве лампы в печи или (кварцевой) горелкой. Нагрев следует вести до нижней температуры отжига стекла или докрасна (кварц). Отпаивают лампу после достижения вакуума 10-(5–6) мм рт. столба. В хорошо откачанной лампе не должен зажигаться разряд во внешней рубашке. Готовую лампу следует установить в генератор, плавно увеличивая мощность, добиться свечения металла и, слегка корректируя при необходимость режим, потренировать в течении одного часа для стабилизации параметров.
Техника безопасности: в лампу не следует вводить слишком много ртути. Капли размером 1 мм вполне достаточно. Если ртути много, то при прогреве в печи баллон может разорвать внутренним давлением. Остальные металлы в этом отношении безопасны.
При работе таких ламп в штатном режиме создаётся сильное ультрафиолетовое излучение у ламп со всеми металлами, а особенно – у ртутных и кадмиевых. Оно опасно для глаз и кожи. Надо работать в стеклянных очках, а лампу прикрывать стеклянным экраном. Это касается даже ламп со стеклянным баллоном. Тонкое стекло пропускает ультрафиолет.
Изготовление стеклянных ламп с кольцевым или разрядным геттером подобно изготовлению кварцевой лампы. После предварительного обезгаживания и заполнения лампу отпаивают от поста и, накаливая или распыляя геттер, прогревают баллон лампы до жёлтого свечения пламени. Греть надо до тех пор, пока не прекратится газоотделение. Ртутные лампы с люминофором при этом иногда дают на баллоне осадок какого-то соединения ртути, которое трудно разрушить даже при нагреве горелкой. Оно возникает при наличии большого количества «грязи». Состав не установлен, но это может быть какой-то окисел ртути. Для того, чтобы он не возникал, не следует зажигать разряд в «грязной» лампе. Надо до зажигания разряда тщательно почистить её геттером.
Глава 22. Изготовление трубок Гейслера.
Трубки Гейслера содержат разрядный капилляр и, в своей классической конструкции, имеют вид «гантельки». Они могут быть нескольких других типов. Самый простой – два баллончика из стеклянной трубки диаметром около двадцати миллиметров и длиной около сорока, в которых находятся катод и анод (если трубка предназначена для переменного тока, то оба электрода одинаковые) и разрядного капилляра между ними.
Могут быть трубки с баллончиками, отогнутыми под прямым углом, трубки «неклассической конструкции» с разрядным капилляром внутри основного баллона и торцевым выходом излучения. В такой конструкции трубки катод окружает разрядный капилляр, а анод находится внутри припаянного через внутренний спай дополнительного баллончика. Такая конструкция позволяет сделать лампу более компактной и жёсткой, увеличить поверхностную яркость «тела накала» за счёт увеличения толщины светящейся плазмы при просмотре её с торца капилляра. В одной из таких конструкций (журнал ОМП) с помощью электрофореза удалось сконцентрировать в прикатодной области лампы ксенон из криптон-ксеноновой смеси и устранить самопоглощение в резонансной линии Хе.
Диаметр и длинна капилляра могут быть разными. С повышением длинны и уменьшением диаметра растёт рабочее напряжение. Если трубка заполнена инертным газом, то рост его давления слабо отражается на напряжении горения, но влияет на напряжение зажигания.
Электроды трубок тлеющего разряда лучше всего делать из не содержащих углерода сплавов железа, никеля. Они должны иметь достаточную площадь, чтобы при давлении газа порядка нескольких миллиметров токосъём составлял менее двух миллиампер с квадратного сантиметра (сноска на Рохлина). При повышенном давлении катодное распыление резко снижается и плотность тока можно увеличить пропорционально давлению. Резко снижают распыление пары ртути и примеси легко адсорбирующихся молекулярных газов. При больших рабочих токах следует применять полые многоячеистые катоды, например, из листа пермаллоя, свёрнутого в виде буквы «Z» или «сотовые» (рис. 35).

При рабочих токах больших чем сто миллиампер лучше применять дуговые катоды. Однако, они плохо работают в режиме частых включений.
Молекулярные газы, даже в виде следов, гасят свечение инертных, а также паров ртути и других металлов. Они также крайне неблагоприятно сказываются на рабочем напряжении (оно сильно растёт) и нагреве разрядного капилляра. Поэтому удалению молекулярных примесей (если трубка не предназначена специально для получения их спектра) следует уделить пристальное внимание. Наиболее радикальным средством их удаления является тщательная откачка (обязательно с прогревом), тренировка электродов разрядом со сменой газа (обязательно при рабочем давлении, чтобы не распылялись электроды) и применение геттера.
Очень выгоден предварительный прогрев всей трубки при температуре отжига стекла в печи с воздушной атмосферой (общий отжиг). Его делают так:
Изготовленную трубку следует откачать для удаления из неё паров воды с помощью роторного насоса, завернуть в чистую, без заметных следов органики, алюминиевую фольгу и, нагрев в печи до температуры отжига её стекла, медленно охладить. При этом выгорят следы органики на внутренней поверхности трубки и значительно поубавятся аппетиты центров адсорбции на поверхности стекла, что облегчит последующее удаление при откачке следов воды и СО2.
Для трубок, содержащих не покрытые ничем детали из молибдена, такая обработка мало подходит, так как молибден окисляется и его летучая окись загрязняет трубку изнутри. Можно снизить температуру обработки до 400°, но тогда следует позаботится о предварительном отжиге стекла на горелке.
Трубки с молибденовыми (и отчасти вольфрамовыми) деталями можно отжигать в водородной печи или в обычной, запаяв их во внешнюю ампулу с водородом, но это неприемлемо, если в трубке есть детали из материалов, например, титана или тантала, которые взаимодействуют с ним. Автор подобный отжиг в водороде не применял никогда. А отжиг в воздушной среде он применяет часто.
Если при изготовлении произошло загрязнение внутренней поверхности трубки окислами молибдена или вольфрама, то их можно смыть раствором аммиака (работать в очках!), разрезав трубку по подходящему сечению или залив раствор через штенгель.
Окончательную промывку следует делать дистиллятом с малой (2–3 %) добавкой спирта для лучшего стекания воды. Промытую трубку следует немедленно просушить, откачивая пары воды газобалластным насосом, чтобы не произошло окисление электродов.
В трубке обязательно следует установить геттер. Им может быть титановый анод, если он достаточно большой, чтобы не перегреваться в рабочих режимах. Для токов до двадцати миллиампер достаточно свернуть титановую полоску (стружку) шириной 3 мм в виде вопросительного знака размером 10–15 мм.
Геттирующий электрод можно выполнить и на отдельном вводе. Это позволит выжигать молекулярные примеси, не пропуская разряд через капилляр, который будет сильно нагреваться, пока газ не очистится. Перегрев капилляра может создать затруднения с нагревом геттера до температуры эффективного газопоглощения.
Очень полезно зажать в сгибе титановой полоски несколько квадратных миллиметров магниевой стружки. Магний, распылясь при слабом нагреве, поглотит основную часть примесей кислорода и паров воды, облегчая очистку поверхности титана.
Трубки со встроенным геттером можно откачивать почти любым вакуумным насосом. Вначале её прогревают горелкой для обезгаживания стекла (нагрев до появления свечения натрия). При этом следует беречь от перегрева впаи, которые менее термостойки и могут треснуть. Затем заполняют трубку рабочим газом до выбранного давления и зажигают в ней разряд. Этим разрядом стараются электроды (кроме геттирующих, которые тоже греют, но аккуратнее) нагреть докрасна. При обильном выделении "грязи" газ меняют, если необходимо, то и несколько раз. Иногда выгоднее греть электроды в вакууме токами высокой частоты. При нагреве трубки и электродов разрядом следует помнить вот о чём: при низких давлениях сильнее греются электроды, а при высоком – капилляр. Молекулярные примеси в газе резко увеличивают градиент напряжения в разряде и приводят к сильному разогреву стекла, но несколько снижают разогрев электродов. Этот эффект широко применяют вакуумщики при откачке и обезгаживании рекламных «неоновых» трубок.
В ртутных трубках следует вначале прогреть штенгель и, охладив его, использовать как ловушку для ртути, перегоняющейся из трубки при прогреве, с тем, чтобы после охлаждения вернуть ртуть обратно в трубку. (Для обычной трубки вполне достаточно ртути в количестве шарика размером в миллиметр).
После очистки трубку охлаждают до комнатной температуры и заполняют газом до выбранного давления. Если хотят получить линии заполняющего инертного газа, то он не должен содержать заметных примесей более тяжёлых инертных газов или ртути! Примеси аргона в неоне в количестве всего один процент достаточно, чтобы при малых плотностях тока светился только аргон! Так же действуют и пары ртути в количестве тысячных долей процента.
Заполненную трубку отпаивают от поста, затягивают ввод, если предусмотрено в конструкции, и затем тренируют. При затяжке ввода на трубках с ртутью, её часть, содержащаяся в штенгеле, может попасть в помещение. Поэтому сразу после отпайки трубки от поста, пока место отпая ещё не остыло, следует аккуратно перегнать ртуть в баллон, следя, чтобы она сконденсировалась подальше от места затяжки. Обогревая остатки штенгеля мягким пламенем, добиваются испарения ртути с его стенок и с находящегося в нём ввода (при затяжке ввода в штенгель).
Место отпая обычно имеет неблагоприятную (в смысле термоустойчивости) форму. Разогревать его после охлаждения опасно. Однако трещины, которые возникают при этой операции, иногда удается уничтожить, аккуратно прогревая место их появления мягким пламенем.
Глава 23. Тренировка гейслеровой трубки.
Тренировка состоит в том, что с помощью геттера вначале поглощаются попавшие вместе с газом внутрь лампы примеси, а затем и грязь со стенок и электродов. Для этого подключают геттер катодом и нагревают его (если это титан или цирконий) до белого каления. В комбинированном геттере вначале распыляют часть магния, а затем, прогревая горелкой стекло и разрядом электроды, выжигают большую часть грязи остатками магния.
Магний хорошо геттирует только при осаждении в разряде, поэтому пылить его следует медленно, не спеша. Появление характерного зелёного свечения указывает на достаточную скорость распыления.
Прогревая поочерёдно электроды, добиваются того, чтобы при нагреве катода докрасна светился только инертный газ (ртуть). Белесое свечение, которое не удаётся устранить, может быть связанно с тем, что титановый анод, нагретый разрядом нештатной мощности, выделяет водород обратно.
Это явление не опасное. Если при снижении тока разряда до рабочего восстанавливается голубовато-зелёное свечение паров ртути, значит дело в водороде. После минутного охлаждения водород вновь поглощается титаном.
Не следует перегревать капилляр. Жёлтое свечение натрия в разряде указывает на начинающееся размягчение стекла. В этом случае следует убирать молекулярные примеси в более мягком режиме.
Относительно простое изготовление и последующая работа трубок с инертным газом и ртутью описана выше. Сложнее обстоит дело, если нужно получить свечение кадмия. Его пары имеют достаточную упругость лишь при температуре выше двухсот градусов и в трубке не должно быть даже самого малого участка, разогретого ниже этой температуры. Поэтому трубку приходится делать как можно более компактной и помещать в воздушную баню с соответствующей температурой или во внешний, тщательно вакуумированый баллон… Повышенная температура стекла благоприятствует выделению из него газов и затрудняет их обратную адсорбцию. Поэтому саму трубку следует делать из тугоплавкого стекла, тщательно дегазировать при откачке с длительным прогревом до 400°– 450°. Титановый геттер следует применять большей массы и позаботится о том, чтобы он не насытился водородом при изготовлении лампы. Более подходящим следует считать геттер из циркония. Пары кадмия должны сильно разрушать геттерное зеркало из всех щёлочноземельных металлов, поэтому не следует применять их в такой трубке (в ртутных трубках их также не следует применять, за исключением магния).








