Текст книги "Большая Советская Энциклопедия (МИ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 14 (всего у книги 59 страниц)
Микроскоп (созвездие)
Микроско'п (лат. Microscopium), созвездие Южного полушария неба; не содержит звёзд ярче 4,0 визуальной звёздной величины . Наилучшие условия для наблюдений в июле – августе, видно в южных районах СССР. См. Звёздное небо .
Микроскоп электронный
Микроско'п электро'нный, см. Электронный микроскоп .
Микроскопическая техника
Микроскопи'ческая те'хника в биологии, совокупность методов и приёмов для изучения с помощью оптического и электронного микроскопов строения, жизнедеятельности, развития, химического состава и физических свойств клеток, тканей и органов. М. т. включает: подготовку живых объектов к микроскопическому исследованию и его проведение, изготовление постоянных (неживых) препаратов; микро-, гисто– и цитохимические исследования; особые методы подготовки препаратов для электронной микроскопии.
Прижизненные наблюдения в проходящем свете осуществляются на простейших, мелких яйцах, культивируемых клетках и тканях, прозрачных участках тела многоклеточных (например, на кровеносных сосудах в плавательной перепонке лягушки). В отражённом свете под микроскопом можно изучать поверхностные структуры клетки, ткани, органа. Для цитофизиологических наблюдений пользуются прижизненным окрашиванием , дающим представление о pH клетки и её органоидов, а также о физиологическом состоянии живого объекта. Для прижизненных наблюдений требуются: нагревательный столик (рис. 1 ) особый термостат, перестраиваемый на заданную температуру в широком температурном диапазоне; стеклянные, пластмассовые, кварцевые, металлические или другие камеры (рис. 2 ) с постоянной или проточной средой требуемого состава. Наблюдаемые объекты (чаще клетки однослойных культур) могут длительное время оставаться нормальными при достаточном снабжении их питательными веществами и кислородом. Одна из задач М. т. для живых объектов – повышение контрастности изображения, для чего используется, например, фазово-контрастное устройство. Интерференционная микроскопия дополнительно даёт сведения о толщине объекта, концентрации в нём сухого вещества, содержании воды и показателе преломления. Прижизненные наблюдения проводятся также в тёмном поле (ультрамикроскопия) с использованием специального конденсора; при этом объект освещается сбоку, а фон остаётся тёмным. Темнопольное устройство позволяет увидеть чрезвычайно мелкие (например, коллоидные) частицы. С помощью поляризационного микроскопа можно изучать объекты (или их элементы), обладающие оптической анизотропией . Для исследования как живых, так и неживых биологических объектов применяется люминесцентная микроскопия, особенно для изучения вторичной флуоресценции, возникающей при окраске клеток и тканей слабыми концентрациями флуорохромов (акридиновый оранжевый, эритрозин, родамин и др.). Различия во флуоресценции отдельных химических веществ (нуклеиновых кислот, липидов) позволяют изучать их локализацию, динамику изменений и даже количество изучаемого вещества. Соединение белка с флуорохромом (изоцианат флуоресцеина) и связывание этого вещества с антителами (см. Иммунофлуоресценция ) даёт возможность выяснить локализацию антигенов, судьбу антител и др. вопросы иммунологии . Недавно получил распространение метод микроскопии живых и неживых объектов в ультрафиолетовых лучах с использованием специальной кварцевой оптики. Наблюдения над живыми объектами документируются микрокиносъёмкой, особенно замедленной.
Для получения постоянных препаратов объект фиксируют, т. е. убивают так, чтобы он сохранил по возможности неизменной структуру. Наиболее распространённые фиксаторы – формалин, спирт, четырёхокись осмия, а также комбинированные фиксаторы – смеси веществ. Фиксация (особенно для электронной микроскопии) осуществляется также методом лиофилизации , высушиванием мазков (например, крови) или отпечатков. При работе с клеточными культурами используются пластинки из стекла или слюды, на которых клетки располагаются в один слой. В других случаях для микроскопии пользуются срезами, получаемыми на микротоме , объект при этом обезвоживают и заливают в парафин, целлоидин, желатину или замораживают. Для электронной микроскопии материал обычно фиксируют четырёхокисью осмия, а заливку производят в акриловые мономеры, которые полимеризуют соответствующим катализатором, или в эпоксидные смолы.
Микро-, гисто– и цитохимические исследования. Для повышения контрастности препаратов, наблюдаемых в оптический микроскоп, применяют красители, избирательно окрашивающие разные клеточные структуры. Особенно широко используются красители в гистохимии . Гистохимические реакции основаны на образовании некоторыми веществами нерастворимых и иногда окрашенных осадков, обнаруживаемых микроскопически. Ферменты обнаруживаются в клетках по активности при их воздействии на определённые субстраты, находящиеся в ткани или добавленные извне. Интенсивность гистохимических реакций часто изучают и оценивают визуально. Более совершенны количественные методы оценки, например подсчёт числа клеток с определённой интенсивностью окраски, числа зёрен осадка, а также авторадиография , цитофотометрия .
При электронной микроскопии вирусов, микроорганизмов, ультратонких срезов более крупных объектов их контрастность усиливают напылением частиц металла. Для негативного контраста объект помещают в раствор более плотного вещества (например, фосфорно-вольфрамовой кислоты), заполняющего промежутки между изучаемыми частицами, которые выглядят светлыми на тёмном фоне. Контраст усиливают также, применяя «электронные красители» (четырёхокись осмия, уранил и др.), избирательно связывающиеся с некоторыми участками объекта. При использовании ферритина зёрна его, содержащие молекулы железа, обнаруживаются в составе клеточных структур. См. также Микроскоп .
Лит.: Мейсель М. Н., Люминесцентная микроскопия, «Вестник АН СССР», 1953, № 10, с. 3—10; Ромейс Б., Микроскопическая техника, пер. с нем., М., 1954; Брумберг Е. М., О флуоресцентных микроскопах, «Журнал общей биологии», 1955, т. 16, № 3, с. 222—37; Современные методы и техника морфологических исследований. [Сб. ст.], под. ред. Д. А. Жданова, Л., 1955; Роскин Г. И., Левинсон Л. Б., Микроскопическая техника, 3 изд., М., 1957; Аппельт Г., Введение в методы микроскопического исследования, пер. с нем., М., 1959; Зубжицкий Ю. Н., Метод люминесцентной микроскопии в микробиологии, вирусологии и иммунологии, Л., 1964.
С. Я. Залкинд.
Рис. 2. Камера для культивирования клеток и прижизненных наблюдений за их ростом и развитием: 1 – камера в собранном виде; 2 – камера в разобранном виде: а – верхняя стальная пластина; б – резиновая прокладка; в – покровное стекло; г – средняя секция; д – нижняя стальная пластина; 3 – часть средней секции снизу: е – каналы; ж – резервуары.
Рис. 1. Нагревательный столик на микроскопе.
Микроскопия
Микроскопи'я, общее название методов наблюдения в микроскоп (и применяемых при этом специальных методов освещения) мелких и мельчайших объектов и неразличимых человеческим глазом деталей строения таких объектов. Подробно см. ст. Микроскоп , раздел Методы освещения и наблюдения (микроскопия).
Микросомы
Микросо'мы (от микро... и греч. sōma – тело), фрагменты эндоплазматической сети (пузырьки диаметром около 1000 ), образующиеся при разрушении клеток в процессе гомогенизации тканей животных и растений. Из гомогената фракцию М. выделяют с помощью дифференциального центрифугирования. Различают 2 типа М.: с гладкой поверхностью и с шероховатой поверхностью (вследствие расположения на последних рибосом ). До усовершенствования техники разделения клеточных гомогенатов во фракцию М. входили и митохондрии .
Микросоциология
Микросоциоло'гия, одно из названий направления в буржуазной социологии, возникшего в 20-х гг. 20 в. и ориентирующего на изучение отношений в малых группах в качестве основной модели социальных отношений. М. обычно включает теорию Г. Гурвича и Я. Морено . Более распространённое название – социометрия .
Микроспора
Микроспо'ра (от микро... и греч. sporá – семя), мелкие споры разноспоровых папоротникообразных (селагинелл, полушников, сальвинии и других водных папоротников) и семенных растений. Образуются обычно в большом количестве в особых органах – микроспорангиях – в результате мейоза археспориальных клеток; следовательно, М. гаплоидны. М. одета внутренней тонкой оболочкой (эндоспорий, интина) и более толстой – наружной (экзоспорий, экзина). М. папоротникообразных, прорастая (обычно в микроспорангии), образует сильно редуцированный мужской заросток с половыми органами – антеридиями. Проросшие М. (заростки) водой, ветром или другими агентами доставляются к женским заросткам (см. Мегаспора ), где освобождающиеся из антеридия сперматозоиды, проникая внутрь архегониев, осуществляют оплодотворение . У семенных растений мужскому заростку гомологично пыльцевое зерно, которое возникает из М. в микроспорангии. У голосеменных пыльцевое зерно состоит из нескольких вегетативных и 1 антеридиальной клеток и образует мужские гаметы (у саговников и гинкго – сперматозоиды со жгутиками, у остальных голосеменных – неподвижные спермии). Наиболее редуцированы мужские заростки у покрытосеменных; они состоят из 1 вегетативной и 1 генеративной клеток. После попадания пыльцы на рыльце пестика вегетативная клетка вытягивается в пыльцевую трубку, генеративная делится, образуя 2 спермия, из которых один сливается с яйцеклеткой, другой – со вторичным ядром зародышевого мешка (см. Двойное оплодотворение ).
Лит.: Комарницкий Н. А., Кудряшов Л. В., Уранов А. А., Систематика растений, М., 1962.
Л. В. Кудряшов.
Микроспорангий
Микроспора'нгий (от микро... и спорангий ), многоклеточный орган, в котором у разноспоровых папоротникообразных и у семенных растений развиваются микроспоры . У селагинелл и сигиллярий М. расположены или по одному в пазухах особых листьев – микроспорофиллов , или сидят по одному на их верхней стороне (у лепидендронов, плевромеи и изоэтесов); у плевромей и изоэтесов они погружены в специальные полости. У некоторых вымерших папоротников М. сидели на нижней стороне спорофиллов. У водяных папоротников М. образуется в спорокарпиях; в М. у сальвинии созревает по 64 микроспоры, у марсилии – по 32 или 64. У голосеменных М. развиваются на микроспорофиллах по одному (некоторые гнетумы), чаще по нескольку и сидят одиночно (хвойные), сорусами (многие саговники, гинкго) или образуя синангии (кейтониевые, многие беннеттитовые, эфедры, вельвичия). У покрытосеменных микроспорангию гомологично гнездо пыльника.
А. Н. Сладков.
Микроспоридии
Микроспори'дии (Microsporidia), отряд простейших класса книдоспоридий . Свыше 20 родов, объединяющих более 300 видов. Внутриклеточные паразиты животных, преимущественно членистоногих и рыб. В цитоплазме клетки животного-хозяина амёбоиды М. размножаются бесполым путём (простое деление и шизогония ). После полового процесса (автогамия ) начинается образование спор (спорогония). Споры чаще овальные (длиной 2—10 мкм ), имеют спирально свёрнутую полярную нить, служащую для внедрения паразита в ткани нового хозяина. Представители М. вызывают заболевания различных животных – микроспоридиозы (например, М. рода нозема – возбудители нозематозов ; Nosema cuniculi, возможно, является причиной заболевания человека рассеянным склерозом). Многие виды М. – паразиты рыб и промысловых членистоногих. Свыше 100 видов полезны как паразиты вредных членистоногих, вызывающие их массовую гибель; исследуется возможность применения этих видов М. в биологической борьбе с вредителями.
Лит.: Жизнь животных, т. 1, М., 1968; Weiser J., Die Mikrosporidien als Parasiten der Insekten, Hamb. – B., 1961.
И. В. Исси.
Жизненный цикл микроспоридий (схема); в центре – строение споры (в разрезе): 1 – выход спороплазмы; 2—9 – шизогония: 10 – диплокарион; 11—15 – автогамия; 16—19 спорогония; 20 – зрелая спора; 21 – полярная нить (видны её витки в разрезе); 22 – спороплазма с 2 ядрами.
Микроспория
Микроспори'я (от микро... и греч. sporá – семя, посев), грибковое заболевание человека и животных; относится к группе трихомикозов (см. Дерматомикозы ), вызывается высококонтагиозными возбудителями: ржавым микроспороном, паразитирующим только на человеке, и пушистым микроспороном, носителем которого являются кошки (реже собаки). У человека заражение происходит при контакте с больным М. (человеком или животным), а также через предметы, бывшие в употреблении у больных М. (головные уборы, расчёски, бритвы, полотенца и т. п.). Болеют в основном дети. Поражается волосистая часть головы в виде очагов, брови, усы, борода; зараженные волосы обламываются над кожей, и выступает гладкая кожа в виде круглых бледно-красных шелушащихся пятен с приподнятым краем. Течение М. длительное, самоизлечение наступает, как правило, к периоду половой зрелости. У детей, а также взрослых нередко поражается гладкая кожа – на ней появляются красные пятна с ярким воспалительным ободком и шелушением. Лечение: антибиотик – гризеофульвин; поражения гладкой кожи лечат препаратами, содержащими йод, серу и дёготь; удаление волос.
Л. Л. Машкиллейсон.
М. у животных. Болеют: кошки, собаки, пушные и хищные звери, лошади, свиньи, обезьяны, грызуны. В возникновении М. животных большое значение имеют стёртые, или атипичные, формы заболевания. Основной источник возбудителя – больное животное. В организм последнего возбудитель проникает через повреждения кожи. Клинически М. проявляется выпадением волос и шелушением на большей части тела или воспалительной реакцией кожи с последующим образованием корок, часто под шерстью. Поражения локализуются обычно на голове, особенно около ушей, выше глаз, на нижней губе, а также на шее, внутренней поверхности передних лап, на туловище, у основания хвоста. Круглые или овальные пятна покрываются чешуйками, а иногда и корочками, кожа утолщается, волосы обламываются и легко выдёргиваются. Нижний конец волоса утолщён и окутан серовато-белой «муфтой», состоящей из спор гриба. При глубокой фолликулярной форме резко выражена воспалительная реакция. Стёртые, или атипичные, формы характеризуются образованием потёртостей, ссадин и т. п. Попадая с чешуйками и корочками во внешнюю среду (в почву, на пол, стены, окружающие предметы), гриб долгое время сохраняет жизнеспособность.
Меры борьбы: раннее выявление больных животных (люминесцентным анализом), их изоляция, лечение, проведение строгих ветеринарных мероприятий, обязательное и повсеместное уничтожение бродячих кошек, собак.
Н. А. Спесивцева.
Микроспорофилл
Микроспорофи'лл (от микро... и спорофилл ), лист папоротникообразных и семенных растений, на котором (или в пазухе которого) возникают только микроспорангии (или 1 микроспорангий) – вместилища микроспор. М. образуются у разноспоровых плауновидных (например, селагинелл и др.), у голосеменных. У покрытосеменных микроспорофиллу гомологична тычинка. См. также Спорофилл .
Микроструктура металла
Микрострукту'ра металла (от микро... и лат. structura – строение), строение металла, выявляемое с помощью микроскопа (оптического или электронного). Микроскоп для исследования металла впервые применил П. П. Аносов (1831) при изучении булатной стали (см. Булат ). Металлы и сплавы состоят из большого числа кристаллов неправильной формы (зёрен), чаще всего неразличимых невооружённым глазом (см. рис. 2 и 3 к ст. Металлография ). Зёрна имеют округлую или вытянутую форму, могут быть крупными либо мелкими и располагаться друг относительно друга в определённом порядке или случайно. Форма, размеры и взаимное расположение, а также ориентировка зёрен зависят от условий их образования. Часть М., имеющая однообразное строение, называемое структурной составляющей (например, избыточные кристаллы, эвтектика , эвтектоид , в частности для железоуглеродистых сплавов аустенит , феррит , цементит , перлит , ледебурит , мартенсит ). Количественное соотношение структурных составляющих сплава определяется его химическим составом и условиями нагрева и охлаждения. М. характеризуется также расположением и количеством некоторых дефектов кристаллической решётки (см. Дефекты в кристаллах ). От М. зависят многие механические и физические свойства материала.
В. Ю. Новиков.
Микросъёмка
Микросъёмка, фото– или киносъёмка деталей или объектов, выполняемая с увеличением от 20 до 3500 раз при помощи оптического микроскопа и до 100 000 раз при помощи электронного микроскопа . М. пользуются для исследования внешнего вида объектов, их структуры и протекающих в них процессов. Поэтому она широко применяется в науке, технике и сельском хозяйстве как метод объективной документации. При М. оптическая система микроскопа регулируется особым образом (см. Микропроекция ). В создании изображения на светочувствительном материале участвует или только оптическая система микроскопа, или система «микроскоп + объектив» фото– или киноаппарата. М. часто производят с помощью микрофотонасадок (например, типа МФН); большие исследовательские микроскопы дмеют встроенные фотокамеры. Простейшая микрокиноустановка представляет собой сочетание микроскопа с 16– или 35-мм киносъёмочным аппаратом. Для научных исследований выпускаются сложные микрокиноустановки (например, типа МКУ). Применение при М. разнообразного ассортимента светочувствительных материалов, светофильтров , специальных методов освещения и съёмки, особенно замедленной киносъёмки , позволяет получить изображения деталей объектов, невидимых при визуальных наблюдениях посредством микроскопа, а также «убыстрить» в ходе воспроизведения медленно протекающие в них процессы. При М. с помощью электронного микроскопа увеличенное изображение проецируется электронным пучком непосредственно на фотопластинку, находящуюся в вакууме, либо на флуоресцирующий экран, с которого производится съёмка на фото– или киноплёнку.
Лит.: Кудряшов Н. Н., Гончаров Б. А., Специальные виды фотосъёмки, М., 1959; Кудряшов Н. Н., Киносъёмка в науке и технике, М., 1960; Кравченко А. Т., Милютин В. Н., Гудима О. С., Микрокиносъёмка в биологии, М., 1963 (лит.): федин Л. А., Барский И. Я., Микрофотография, М., 1971 (лит.).
И. Б. Миненков.
Микротвёрдость
Микротвёрдость,твёрдость отдельных участков микроструктуры материала. Измеряется вдавливанием алмазной пирамиды под нагрузкой менее 2 н (200 гс ). Размеры отпечатка определяют под микроскопом, а затем по специальным таблицам пересчитывают на т. н. число твёрдости – отношение нагрузки к площади поверхности отпечатка. Прибор для определения М. обеспечивает возможность выбора участка микроструктуры, где будет произведено вдавливание; благодаря этому, а также вследствие малых размеров отпечатка можно измерять М. кристаллов отдельных фаз или различных участков зерна. Данные о М. используют для изучения неоднородности распределения растворимых примесей по зерну, исследования пластической деформации, построения диаграмм фазового равновесия и т. д.
Микротелефонная трубка
Микротелефо'нная тру'бка, узел телефонного аппарата , объединяющий для удобства пользования микрофон и телефон и обычно называемый телефонной трубкой.
Микротом
Микрото'м (от микро... и греч. tomē – рассечение, отрезок), инструмент для получения исследуемых под микроскопом тонких срезов с кусочков органов и тканей, залитых в парафин, целлоидин или замороженных (см. Микроскопическая техника ). Первый М. был сконструирован в 1-й половине 19 в. нем. биологом А. Ошацем – сотрудником Я.Пуркине . Существует 2 основных типа М.: объект укреплен в держателе и поднимается с помощью микрометрического винта, микротомный нож движется в горизонтальной плоскости (санный М., рис. 1 ); объект движется, нож неподвижен (рис. 2 ). Для получения срезов нефиксированных тканей, которые исследуются немедленно (например, при хирургических операциях в случае необходимости срочного гистологического анализа), пользуются замораживающим М., при этом кусочки ткани в водном или солевом растворе замораживают при помощи жидкой двуокиси углерода. Толщина получаемых с помощью М. срезов при заливке в парафин составляет 1—2 мкм, в целлоидин – 10 12 мкм, на замораживающем М. – не тоньше 10 мкм. Для получения очень тонких срезов (минимум до 200 ), исследуемых в электронном микроскопе, существует особая модификация М. – ультрамикротом .
Лит.: Ромейс Б., Микроскопическая техника, пер. с нем., М., 1954; Borrmann Н., Mikrotome in Wissenschaft und Forschung, в кн.: Medizintechnik, В., 1958, S. 102—12.
С. Я. Залкинд.
Рис. 2. Микротом с неподвижным ножом.
Рис. 1. Санный микротом.