Текст книги "Большая Советская Энциклопедия (ГИ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 39 (всего у книги 45 страниц)
Гиришк
Гири'шк, город на Ю.-З. Афганистана. Около 30 тыс. жителей. Расположен на р. Гильменд и шоссе Герат – Кандагар. Узел автодорог. Центр орошаемых земель по р. Гильменд. Торговля фруктами, изюмом, шерстью и кожевенным сырьём, доставляемыми из соседних оазисов и скотоводческих хозяйств прилегающих пустынь и горных степей.
Гирке Отто фон
Ги'рке (Gierke) Отто фон (11.1.1841, Штеттин, – 10.10.1921, Берлин), немецкий правовед. Профессор Бреславльского (с 1872), Гейдельбергского (с 1884), Берлинского (с 1887) университетов. Последователь исторической школы права, представитель националистического направления «германистов». Исходный пункт воззрений Г. – понятие германского товарищества или общины, которое он противопоставлял индивидууму – основе буржуазного либерализма 19 в. Истинно германское право, органически рождающееся в недрах товариществ и характеризующееся духом общности, подчинением личности целому и т.п., Г. считал более высокой ступенью по сравнению с буржуазными правовыми системами, основанными на римском праве и принципах естественного права. Собранный Г. большой фактический материал по истории германского государства и права в значительной мере обесценивается его реакционно-националистической концепцией, воспринятой впоследствии фашистской идеологией.
Соч.: Das deutsche Genossenschaftsrecht, Bd 1—4, В., 1868—1913; Deutsches Privatrecht, Bd 1—3, Lpz. – Münch., 1895—1917.
В. А. Туманов.
Гирландайо Доменико
Гирланда'йо (Ghirlandaio, собственно ди Томмазо Бигорди, di Tommaso Bigordi) Доменико (1449, Флоренция, – 11.1.1494, там же), итальянский живописец Раннего Возрождения, представитель флорентийской школы. Сын ювелира. Учился у
А. Бальдовинетти. В ранний период творчества (росписи церкви в Сан-Джиминьяно, около 1475, и др.) воспринял воздействие ряда флорентинских и нидерландских мастеров 15 в. В 1481—82 совершил поездку в Рим, где выполнил в Сикстинской капелле Ватикана фреску «Призвание апостолов Петра и Андрея». Изучение памятников античного искусства повлияло на формирование зрелого стиля Г. Для работ Г. середины 1480—90-х гг. (циклы росписей на темы жизни св. Франциска, Марии и Иоанна Крестителя в капелле Сассетти церкви Санта-Тринита, 1483—86, и церкви Санта-Мария Новелла, 1485—90, во Флоренции) характерны архитектоническая ясность композиции, спокойная торжественность сюжетного рассказа. Чёткие по пространственному построению, нарядные и сдержанно-мягкие по колориту фрески Г., в которых действие разворачивается на фоне площадей и зданий Флоренции, изобилуют жанровыми деталями и дают богатую картину флорентийского быта. Г. широко включает в них портреты современников (Лоренцо Великолепного, А. Полициано, М. Фичино и др.). Г. принадлежит ряд станковых композиций («Поклонение волхвов», 1485, церковь Санта-Тринита, Флоренция) и портретов, в которых непосредственность наблюдений сочетается с обобщенностью и глубокой человечностью образов («Дедушка и внук», Лувр, Париж).
Лит.: Lauts J., Domenico Ghirlandajo, W., 1943.
В. Э. Маркова.
«Встреча Марии с Елизаветой». Фреска. 1485—90. Церковь Санта-Мария Новелла. Флоренция.
Гирландайо. «Дедушка и внук». Лувр. Париж.
«Рождение Иоанна Крестителя». Фреска. 1485—90. Церковь Санта-Мария Новелла. Флоренция.
«Гирни камгар», «Гирни камгар лал бавта»
«Ги'рни ка'мгар», «Гирни камгар лал бавта» («Фабричный рабочий красного флага»), старейший профсоюз текстильщиков Бомбея. Образован в 1928 под руководством коммунистов. В 1929 колониальные власти арестовали многих деятелей «Г. к.» (см. Мирутский процесс). Репрессии колонизаторов несколько ослабили «Г. к.», но уже в 30-х гг. он занял важное место в организованном рабочем движении. После достижения Индией независимости (1947) «Г. к.» в 1951 объединился с левосоциалистическим профсоюзом «Милл маздур сабха» в один союз «Милл маздур юнион» (Союз фабричных рабочих), который в 1958 вошел во вновь созданный объединённый союз текстильщиков Бомбея «Бумбай гирни камгар юнион» (Бомбейский союз фабричных рабочих); последний входит во Всеиндийский конгресс профсоюзов.
Гиро...
Гиро... (от греч. gyros – круг, gyreuo – кружусь, вращаюсь), часть сложных слов, указывающая на отношение их к вращательному движению, например, гироскоп.
Гироазимут
Гироа'зимут, то же, что гироскоп направления.
Гировертикаль
Гировертика'ль, гирогоризонт, гироскопическое устройство для определения направления истинной вертикали или плоскости горизонта, а также углов наклона объекта относительно этой плоскости. Простейшим негироскопическим прибором такого рода служит физический маятник (отвес). Однако он не пригоден для движущегося объекта, т.к. не будет устанавливаться вдоль истинной вертикали при вращательном или ускоренном поступательном движении объекта (он будет несколько отклоняться от вертикали и при равномерном поступательном движении объекта вследствие вращения Земли); кроме того, при качке у него могут возникнуть вынужденные колебания с большими размахами. Г. в значительной мере свободна от этих недостатков и поэтому широко применяется на самолётах, кораблях и др. движущихся объектах.
В качестве простейшей Г. может служить трёхстепенной астатический гироскоп, ось которого стремится сохранять своё направление в мировом пространстве. Однако по отношению к вращающейся Земле эта ось будет со временем изменять своё направление. Поэтому без корректирующих устройств такой прибор может служить лишь кратковременным указателем направления (в частности, вертикали). Подобные приборы, называют гирогоризонтом и гировертикантом, применяются в баллистической ракете для определения углов её отклонения в вертикальной и горизонтальной плоскостях (углы тангажа, рыскания и крена). Для длительного удержания оси астатического гироскопа в вертикальном положении используют те или иные системы коррекции.
Г. с маятниковой системой коррекции (рис. 1) – трёхстепенной астатический гироскоп, в котором система коррекции состоит из маятников-корректоров 4, 5, фиксирующих углы отклонения оси гироскопа от вертикали места, и датчиков моментов 6, 7, прикладывающих к гироскопу соответствующие корректирующие моменты, вызывающие прецессию оси гироскопа к вертикали места. Потенциометры 8 и 9 служат для определения углов наклона объекта относительно плоскости горизонта. Погрешности Г. этого типа, определяемые отклонениями оси гироскопа от вертикали места, могут составлять от долей градуса до единиц угловых минут. В прецизионных Г. для повышения их точности учитываются поправки на вращение Земли и собственное движение объекта.
При установке на корабле Г. с маятниковой коррекцией определяют углы бортовой и килевой качки, а на летательном аппарате – углы крена и тангажа. Применяются в системах автоматической стабилизации различных подвижных объектов, в успокоителях качки корабля, для стабилизации летательного аппарата и др., а также для определения искривления буровых скважин, шахт и т.п.
Другим типом Г., не требующим применения системы коррекции, является гиромаятник, т. с. гироскоп с 3 степенями свободы, центр тяжести G которого лежит на оси ротора на некотором расстоянии l от точки опоры О (рис. 2). При отклонении оси Oz гироскопа от вертикали Oz, ось Oz под действием силы тяжести Р начинает прецессировать вокруг Oz, описывая конус с вершиной в точке О. Т. к. собственный кинетический момент гироскопа Н очень велик, то период прецессии
T = 2pH/lP (1)
(где l = OG) также велик, что делает прибор практически нечувствительным к колебаниям объекта. В реальном приборе прецессионные колебания оси Oz погашаются специальным демпфером и ось Oz гироскопа приходит в положение, близкое к вертикали. Однако чтобы прибор обладал необходимой точностью при ускоренном движении (маневрировании) объекта, период Т должен удовлетворять условию М. Шулера (быть равным периоду колебаний математического маятника, длина которого равна радиусу Земли), т. е. составлять 84,4 мин, что до сих пор практически осуществить не удалось. В реализованных конструкциях Т обычно ~ 10—20 мин, вследствие чего подобные Г. при маневрировании объекта имеют значительные погрешности. Гиромаятники применяют в секстанте для стабилизации относительно плоскости горизонта его оптические системы и в некоторых корабельных системах стабилизации, используемых преимущественно при постоянных значениях скорости и курса корабля.
Прибором, позволяющим определять с высокой степенью точности направление вертикали при ускоренном движении объекта, на котором установлен прибор, является гироинерциальная вертикаль (рис. 3). В ней, кроме гироскопов, используются акселерометры и вычислительные устройства (интеграторы), при этом осуществляется искусственное моделирование маятника с периодом, равным периоду М. Шулера. Гироинерциальная вертикаль состоит из астатического трёхстепенного гироскопа, на гирокамере 1 которого расположены акселерометры 3, 4 (в реальных схемах акселерометры устанавливают на гиростабилизированной платформе). Измеряемые акселерометрами кажущиеся ускорения ax и ay объекта вдоль горизонтальных осей Ох и Оу поступают в интеграторы 5, 6; их выходные сигналы (скорости vE и vN вдоль осей Ох и Оу) вводятся на датчики моментов 7, 8, прикладывающие к гироскопу моменты коррекции, которые вызывают прецессию оси гироскопа Oz к вертикали. При соответствующем выборе коэффициенты пропорциональности между сигналом с интегратора и величиной момента коррекции период прецессии оказывается равным периоду Шулера. Благодаря этому устройство обладает высокой точностью при маневрировании объекта и его погрешности не превосходят несколько угловых минут. Гироинерциальные вертикали широко используются в инерциальных навигационных системах, устанавливаемых на кораблях и летательных аппаратах.
А. Ю. Ишлинский, С. С. Ривкин.
Рис. 3. Принципиальная схема гироинерциальной вертикали: 1 – гирокамера с ротором; 2 – наружное карданово кольцо; 3, 4 – акселерометры; 5, 6 – интеграторы; 7, 8 – датчики моментов.
Рис. 1. Принципиальная схема гировертикали с маятниковой коррекцией: 1 – ротор; 2, 3 – внутреннее и наружное кардановы кольца: 4, 5 – маятники-корректоры; 6, 7 – датчики моментов; 8, 9 – потенциометры.
Рис. 2. Принципиальная схема гиромаятника: 1 – гирокамера с ротором; 2 – наружное карданово кольцо.
Гировоз
Гирово'з, рудничный локомотив с механическим аккумулятором энергии, предназначенный для перемещения вагонеток в шахтах. Г. начали применять в Европе в 40-х гг. 20 в., после освоения их серийного производства швейцарской фирмой «Эрликон»; в СССР выпуск Г. осуществляется с 50-х гг. Для движения поезда в Г. используется энергия, накопленная вращающимся маховиком, раскручивание которого (до 2—3 тыс. об/ мин) осуществляется электрическим или пневматическим двигателем установленным на Г. или на стационарном зарядном пункте. В конструкции Г. предусмотрено ступенчатое или бесступенчатое (например, с помощью гидропередачи) регулирование скорости движения. Длина пробега Г. после однократной зарядки не превышает обычно 3—5 км. В основном Г. используются для транспортирования небольших составов по вентиляционным выработкам и при строительстве шахт, а также в качестве вспомогательного транспорта в гидрошахтах и шахтах сплошной конвейеризации.
А. А. Пархоменко.
Илл. к ст. Гировоз.
Гирогоризонт
Гирогоризо'нт, то же, что гировертикаль.
Гироинерциальная вертикаль
Гироинерциа'льная вертика'ль, один из типов гировертикали.
Гирокастра
Гирока'стра, Гьинокастер, Гьирокастра (Gjirokastra), город на Ю. Албании, в долине р. Дрино. 15,6 тыс. жителей (1967). Узел шоссейных дорог. Пищевые, табачные, кожевенные, металлообрабатывающие предприятия. Основан в 4 в. В 14 в.. вероятно, принадлежал Венеции, с 1460 до начала 20 в. – Турции. Архитектурные памятники: венецианская крепость (известна с 14 в.), средневековая жилая застройка по склонам холмов – 2—3-этажные каменные дома-крепости (кула) с глухими нижними этажами, нависающими крышами и окнами, снабженными решётками. Собор 18 в. Мечети начала 18 в. Близ Г. – церковь Лабове-э-Крюки (10—11 вв.).
Гирокомпас
Гироко'мпас, механический указатель направления истинного (географического) меридиана, предназначенный для определения курса объекта, а также азимута (пеленга) ориентируемого направления. Преимущества Г. по сравнению с магнитным компасом состоят в том, что он указывает направление географического (а не магнитного) меридиана, что на его показания существенно меньше, чем на магнитный компас, влияют перемещающиеся металлические массы (железо, сталь) и электромагнитные поля и что его точность в условиях маневрирования и колебаний объекта значительно выше. Принцип действия Г. основан на использовании свойств гироскопа и суточного вращения Земли; его идея была предложена французским учёным Л. Фуко.
Гирокомпас Фуко представляет собой двухстепенной астатический гироскоп, ось которого перемещается в плоскости горизонта и благодаря возникающему из-за вращения Земли гироскопическому моменту стремится совместиться с плоскостью меридиана. Г. Фуко не нашёл применения на подвижных объектах, подверженных колебаниям, но его идея была использована при разработке некоторых образцов наземных Г.
На подвижных объектах широко применяются одно– и двухроторные Г., основанные на использовании трёхстепенных гироскопов.
В однороторном мореходном Г. используется трёхстепенной гироскоп, центр тяжести которого смещен в его экваториальной плоскости ниже точки подвеса, т. е. позиционный гироскоп. В зависимости от способа создания маятникового эффекта различают Г. с маятником, Г. с ртутными сосудами, Г. с косвенной коррекцией. В Г. с маятником (рис. 1) ротор 1 заключён в гирокамеру 2, к нижней части которой подвешен груз 3. Гирокамера установлена в наружном кардановом кольце (на рис. не показано), ось вращения которого расположена вертикально. Когда ось АВ ротора не находится в плоскости меридиана (отклонена на Восток или на Запад), она, стремясь в соответствии со свойствами трёхстепенного гироскопа сохранять своё направление по отношению к звёздам, будет вследствие вращения Земли отклоняться от плоскости горизонта (например, её конец В, если он отклонен к Востоку, будет приподниматься, как бы следя за восхождением звёзд). Вместе с осью AB будет отклоняться и гирокамера 2 с грузом 3 относительно плоскости горизонта. В результате относительно точки подвеса возникнет момент силы тяжести, который вызовет прецессионное движение оси АВ к плоскости меридиана. В своём движении ось АВ «проскочит» плоскость меридиана и тогда под действием момента силы тяжести она начнёт прецессировать в обратном направлении и т.д. После погашения этих А колебаний специальным демпфером ось АВ устанавливается в плоскости меридиана.
В Г. с ртутными сосудами (рис. 2) ротор 1 и гирокамера 2 отбалансированы так, что их общий центр тяжести совмещен с точкой подвеса. С гирокамерой связана система сообщающихся сосудов 3, частично заполненных ртутью. К правому сосуду прикреплена т. н. лапа 5, связывающая сосуды с гирокамерой. При отклонении оси гироскопа от плоскости горизонта избыток ртути в одном из сосудов обусловливает приложение к гироскопу момента силы тяжести, аналогичного соответствующему моменту в Г. с маятником.
В Г. с косвенной коррекцией используется трёхстепенной астатический гироскоп, на гирокамере которого установлен маятник (акселерометр), фиксирующий угол отклонения оси гироскопа от плоскости горизонта. На основании информации об этом угле в приборе формируются сигналы моментов коррекции, которые прикладываются к гироскопу с помощью соответствующих датчиков моментов, установленных на осях карданова подвеса гироскопа. Подобные приборы могут также работать в режиме гироскопа направления.
Из однороторных Г. применяются в основном Г. с ртутными сосудами.
Двухроторный Г. Чувствительный элемент этого Г. (рис. 3) – гиросфера, или поплавок, представляет собой полую сферу 1. В гиросфере помещены гироскопы 2 и 3, гидравлический успокоитель для погашения собственных колебаний и др. элементы. Оси собственного вращения гироскопов 2 и 3 расположены горизонтально, а оси прецессии – вертикально и связаны с шарнирным механизмом спарником 4, который соединён пружинами 5 с корпусом гиросферы. В исходном положении (при невращающихся роторах) оси гироскопов составляют с направлением NS гиросферы равные углы Е=45°. Центр тяжести гиросферы находится на её вертикальной оси ниже её геометрического центра, что обеспечивает, как и в однороторном Г., необходимый маятниковый момент. Гиросфера помещена в жидкость и поэтому в подвесе имеет место лишь вязкое трение. Для обеспечения невозмущаемости Г. ускорениями объекта параметры системы подбирают так, чтобы период прецессионных колебаний гиросферы при отсутствии затухания составлял 84,4 мин. Наличие в Г. двух гироскопов существенно снижает погрешности прибора при качке корабля. Погрешности Г. при прямом курсе и постоянной скорости хода корабля не превышают нескольких десятых долей градуса. Г. весьма широко распространены на кораблях морского флота.
Разновидность Г. – гирогоризонт-компас, предназначенный для определения курса корабля и углов отклонения его относительно плоскости горизонта.
А. Ю. Ишлинский, С. С. Ривкин.
Рис. 2. Принципиальная схема чувствительного элемента однороторного гирокомпаса с ртутными сосудами: 1 – ротор; 2 – гирокамера; 3 – сосуды с ртутью; 4 – соединительная трубка; 5 – лапа.
Рис. 1. Принципиальная схема чувствительного элемента однороторного гирокомпаса с маятником: 1 – ротор; 2 – гирокамера; 3 – груз.
Рис. 3. Принципиальная схема чувствительного элемента двухроторного гирокомпаса. NS и WE – направления север – юг и восток – запад; H1, H2 – кинетические моменты гироскопов; 1 – гиросфера; 2, 3 – гироскопы; 4 – спарник; 5 – пружины.
Гирокотилиды
Гирокотили'ды (Gyrocotyloidea), класс плоских паразитических червей, занимающий промежуточное положение между ленточными червями и моногенетическими сосальщиками. Длина тела обычно 2—3 см, реже до 10 см. 5 видов (самостоятельность некоторых видов оспаривается); обитают в спиральном клапане (в кишечнике) глубоководных рыб – химер; встречаются в различных районах Мирового океана. Для Г. характерны: отсутствие кишечника и наличие сложно устроенного розетковидного органа прикрепления на заднем конце тела. Из овального яйца, снабженного ножкой, развивается личинка —т. н. люкофора, с десятью одинаковыми крючками на заднем конце. Цикл развития, по-видимому, прямой. Многие относят Г. к подклассу цестодарий класса ленточных червей; некоторые считают их сильно видоизменившимися моногенетические сосальщиками.
Лит.: Быховский Б. Е., Онтогенез и филогенетические взаимоотношения плоских паразитических червей, «Изв. АН СССР. Серия биологическая», 1937, т. 4, с. 1353—82; Шульц О. С., Гвоздев Е. В., Основы общей гельминтологии, М., 1970.
Б. Е. Быховский.
Гиромагнитная частота
Гиромагни'тная частота', частота обращения свободного электрона (или иона) в ионизированном газе (плазме) вокруг силовых линий постоянного магнитного поля. На заряженную частицу, движущуюся с постоянной скоростью V, направленной перпендикулярно магнитному полю Н, действует Лоренца сила:
где е – заряд электрона, с – скорость света. Под действием силы F ^ V (центростремительная сила) частица движется по окружности, причём частота обращения не зависит от её скорости, а определяется массой частицы m и величиной магнитного поля Н:
Г. ч. для земной ионосферы ~ 1,4 Мгц, для солнечной короны ~ 104Мгц.
Г. ч. играет существенную роль в вопросах распространения электромагнитных волн в плазме, находящейся в постоянном магнитном поле, в частности при распространении радиоволн в ионосфере (см. также Циклотронная частота).
М. Б. Виноградова.
Гиромагнитное отношение
Гиромагни'тное отноше'ние, отношение магнитного момента атомных частиц (электронов, протонов, нейтронов, атомных ядер и т.д.) к их моменту количества движения. Подробнее см. Магнитомеханическое отношение.
Гиромагнитные явления
Гиромагни'тные явле'ния, эффекты, в которых проявляется связь между магнитными моментами и моментами количества движения частиц вещества. Подробнее см. Магнитомеханические явления.
Гиромагнитный компас
Гиромагни'тный ко'мпас, гироскопическое устройство, применяемое на движущихся объектах и предназначенное для определения курса объекта по отношению к плоскости магнитного меридиана. Г. к. представляет собой трёхстепенной астатический гироскоп, снабженный азимутальной и горизонтальной системами коррекции; азимутальная коррекция, чувствительным элементом которой является магнитная стрелка, удерживает ось гироскопа 1 в плоскости магнитного меридиана; горизонтальная коррекция удерживает внутреннее карданово кольцо 2 в положении, перпендикулярном наружному 3. Горизонтальная система коррекции состоит из потенциометра 5 (рис.) и датчика моментов 8. Азимутальная система коррекции состоит из магнитной стрелки 6, потенциометра 4 и датчика моментов 7. Принцип работы систем коррекции Г. к. аналогичен таковому в гировертикали с маятниковой коррекцией. Погрешность Г. к. может достигать нескольких градусов. Прибор широко распространён в авиации, применяется также в морском флоте.
Если магнитная система установлена вдали от гироскопа, то связь между ними осуществляется с помощью следящей системы (дистанционный Г. к.). Существуют приборы, у которых вместо магнитной системы применяется индукционный чувствительный элемент. Это т. н. гироиндукционный компас. У него, в отличие от Г. к., отсутствует азимутальный гироскоп и показания магнитного курса определяются с помощью индукционного чувствительного элемента, состоящего из пермаллоевого сердечника с обмоткой, ось которого устанавливается в плоскости магнитного меридиана. Для повышения точности прибора индукционный элемент стабилизируется относительно плоскости горизонта установкой его на гирокамере гировертикали.
А. Ю. Ишлинский, С. С. Ривкин.
Принципиальная схема гиромагнитного компаса: 1 – ротор; 2, 3 – внутреннее и наружное кардановы кольца; 4, 5 – потенциометры; 6 – магнитная стрелка; 7, 8 – датчики моментов.