355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ГИ) » Текст книги (страница 12)
Большая Советская Энциклопедия (ГИ)
  • Текст добавлен: 10 октября 2016, 00:30

Текст книги "Большая Советская Энциклопедия (ГИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 12 (всего у книги 45 страниц)

Гидрогенизация

Гидрогениза'ция (от лат. hydrogenium – водород), гидрирование, каталитическая реакция присоединения водорода к простым веществам (элементам) или химическим соединениям. Обратная реакция – отщепление водорода от химических соединений – называется дегидрогенизацией (дегидрированием). Г. и дегидрогенизация – важные методы каталитического синтеза различных органических веществ, основанные на реакциях окислительно-восстановительного типа, связанных подвижным равновесием (см. Равновесие химическое). Примером может служить обратимое каталитическое превращение этилового спирта в ацетальдегид:

 

  Повышение температуры и понижение давления H2 способствуют образованию ацетальдегида, а понижение температуры и повышение давления H2 – образованию этилового спирта; такое влияние условий типично для всех реакций Г. и дегидрогенизации. Катализаторами Г. и дегидрогенизации являются многие металлы (Fe, Ni, Со, Pt, Pd, Os и др.), окислы (NiO, CoO, Cr2O3, MoO2 и др.), а также сульфиды (WS2, MoS2, CrnSm).

  Г. и дегидрогенизация широко используются в промышленности. Например, синтез такого важного продукта, как метиловый спирт, служащий сырьём для многих химических производств и растворителем, осуществляют Г. окиси углерода (CO + 2H2 ® CH3OH) на окисных цинк-хромовых катализаторах при 300—400°С и давлении водорода 20—30 Мн/м2 (200—300 кгс/см2). При другом составе катализаторов этим методом можно получать и высшие спирты. Г. жиров лежит в основе производства маргарина (см. Жиров гидрогенизация). В связи с возникновением производства таких материалов, как капрон, найлон и пр. (см. Полиамидные волокна), метод Г. стал широко применяться для получения промежуточных продуктов – циклогексанола из фенола, циклогексана из бензола, гексаметилендиамина из динитрила адипиновой кислоты (на никелевых катализаторах) и циклогексиламина из анилина (на кобальтсодержащих катализаторах).

  Для облагораживания топлив, получаемых из сернистых нефтей, большое значение имеет гидроочистка (см. Очистка нефти) – Г. на алюмо-кобальт-молибденовом или вольфрамо-никелевом катализаторах, приводящая к разрушению органических сернистых соединений и удалению серы в виде H2S. Другой процесс облагораживания нефтепродуктов – гидрогенизация деструктивная (на вольфрамсульфидных и некоторых др. катализаторах) – приводит к увеличению выхода светлых и лёгких продуктов при переработке нефти. При Г. CO на различных катализаторах можно получать бензин, твёрдые парафины или кислородсодержащие органические соединения. Синтез неорганического вещества аммиака взаимодействием азота и водорода под высоким давлением также относится к Г. и является примером Г. простого вещества.

  Один из простейших примеров дегидрогенизации – дегидрирование спиртов. Значительное количество ацетальдегида производится дегидрогенизацией гидролизного (получаемого из древесины) этилового спирта. Дегидрогенизация углеводородов является одной из основных реакций, протекающих на смешанных катализаторах в сложном процессе риформинга, который приводит к существенному улучшению качеств моторных топлив; эта реакция позволяет получать также различные ароматические углеводороды из нафтеновых и парафиновых (см. также Ароматизация нефтепродуктов).

  Широкое применение дегидрогенизация нашла в производстве мономеров для синтеза каучуков и смол. Так, парафиновые углеводороды бутан и изопентан дегидрируются при 500—600°С на катализаторах, содержащих окись хрома, соответственно в бутилены и изопентен (изоамилен), которые, в свою очередь, дегидрируются на сложных катализаторах в диолефины – бутадиен и изопрен. В производстве полимеров стирола и его производных большое значение приобрела дегидрогенизация алкилароматических углеводородов – этилбензола в стирол, изопропилбензола в метилстирол и т.п.

  Начало широкого изучения Г. было положено в 1897—1900 научными школами П. Сабатье во Франции и Н. Д. Зелинского в России. Основные закономерности Г. смесей органических соединений установил С. В. Лебедев. В области практического применения Г. крупные успехи были достигнуты уже в 1-й четверти 20 в. Ф. Габером (синтез аммиака), Ф. Бергиусом (Г. угля) и Г. Патаром (Франция; синтез метанола). Дегидрогенизацию спиртов открыл в 1886 М. Бертло. В 1901 Сабатье наблюдал наряду с др. превращениями углеводородов и их дегидрогенизацию. В чистом виде дегидрогенизацию углеводородов впервые удалось осуществить Н. Д. Зелинскому, разработавшему ряд избирательно действующих катализаторов. Большой вклад в развитие теории и практики Г. и дегидрогенизации внесли Б. А. Казанский, А. А. Баландин и их научной школы.

  Лит.: Лебедеве. В., Жизнь и труды, Л., 1938; Зелинский Н. Д., Собр. трудов, т. 3 – Катализ, М., 1955; Долгов Б. Н., Катализ в органической химии, 2 изд., Л., 1959; Баландин А. А., Мультиплетная теория катализа, ч. 1—2, М., 1963—64; Юкельсон И. И., Технология основного органического синтеза, М., 1968; Bond G. С., Catalysis by metals, L. – N. Y., 1962; Ридил Э., Развитие представлений в области катализа, пер. с англ., М., 1971, гл. 6 и 7.

  А. М. Рубинштейн.

Гидрогенизация деструктивная

Гидрогениза'ция деструкти'вная, переработка бедных водородом низкосортных топлив (каменных углей, сланцев, каменноугольной смолы, мазутов) с целью превращения их в обогащенные водородом топлива и масла или в сырьё, пригодное для дальнейшей переработки. Г. д. проводят при 400—560°С и давлении H2 20—70 Мн/м2 (200—700 кгс/см2) в присутствии катализаторов, содержащих железо, молибден, никель или вольфрам, в две или три стадии в зависимости от характера перерабатываемого сырья. При этом основными реакциями являются гидрирование (см. Гидрогенизация) – присоединение водорода к ароматическим и непредельным углеводородам и гетероциклическим соединениям, и деструктивное гидрирование, т. е. реакция расщепления молекул сырья с присоединением к ним водорода. В результате образуются продукты более лёгкие, чем исходное сырьё, и с большим содержанием водорода. Г. д. в такой форме впервые была применена в начале 20 в. в Германии (Ф. Бергиус) для переработки угля. Ввиду большого расхода водорода, сложного технологического оформления процесса Г. д. в таком варианте в послевоенный период развития не получила. В настоящее время широко применяют др. вариант Г. д., т. н. гидрокрекинг, при давлении H2 3—10 Мн/м2 (30—100 кгс/см2) в присутствии катализаторов, приводящий к достаточно глубокому превращению сырья при меньшем расходе водорода (1—3% на сырьё). Значение Г. д. возросло в связи с вовлечением в переработку тяжёлых смолистых нефтей с высоким содержанием серы.

  Разновидностью процесса Г. д. является гидрогенолиз, применяемый для получения незамещённых ароматических углеводородов из алкилзамещённых, например бензола из толуола и т.п., проводимый при 800°С (без катализатора) или при 620—650°С (с катализатором) под давлением H2 6,5—10 Мн/м2 (65—100 кгс/см2). Промежуточным процессом между Г. д. и недеструктивным гидрированием является гидрогенизационная очистка топлив – гидроочистка.

  Лит.: Технология переработки нефти н газа, ч. 2, М., 1968.

  В. В. Щекин.

Гидрогеологическая съёмка

Гидрогеологи'ческая съёмка, комплекс полевых исследований, производимых с целью составления гидрогеологических карт и оценки общих гидрогеологических условий территории. В процессе Г. с. изучаются породы, слагающие водоносные горизонты, комплексы и зоны, их фильтрационные свойства, выдержанность по площади, мощность водовмещающих и водоупорных пород, величина напора, типы, качество и режим подземных вод; характеризуются значения основных гидрогеологических параметров; оцениваются геологические, геоморфологические, гидрологические, климатические и др. факторы, влияющие на питание и формирование подземных вод. Задачи Г. с. меняются в зависимости от её масштаба и назначения. Мелкомасштабная Г. с. (1: 1000000—1:500000) проводится для составления обзорных гидрогеологических карт в слабо изученных в гидрогеологическом отношении районах с целью общей оценки водоносности пород и качества подземных вод. При среднемасштабных Г. с. (1:200000—1:100000), проводимых для составления государственных (общих) гидрогеологических карт, ведётся картирование водоносных комплексов, горизонтов или зон, изучаются водоносность пород, качество и режим подземных вод, геологические явления, связанные с деятельностью подземных и поверхностных вод. Крупномасштабная (1:50000 и крупнее) Г. с. проводится для решения специальных задач на стадиях технического и рабочего проектирования (для выбора участков водозабора, разведки запасов подземных вод, изучения обводнённости месторождений и т.п.). При Г. с. крупного масштаба картируются водоносные горизонты, зоны, пласты, линзы. Съёмка средних и крупных масштабов сопровождается буровыми работами, измерением дебита родников, наблюдениями за уровнем и химическим составом подземных вод, применяются геофизические методы, аэровизуальные наблюдения и дешифрирование аэрофотоснимков.

  Лит.: Каменский Г. Н., Поиски и разведка подземных вод, М. – Л., 1947; Методическое руководство по гидрогеологической съёмке масштабов 1:1000000 1:500000 и 1:200000—1:100000, М., 1961; Методическое руководство по производству гидрогеологической съёмки в масштабах 1:50000 и 1:25000, М., 1962; Методические указания по гидрогеологической съёмке на закрытых территориях в масштабах 1:500000, 1:200000 и 1:50000, М., 1968.

  А. М. Овчинников.

Гидрогеологические карты

Гидрогеологи'ческие ка'рты, карты, отображающие условия залегания и распространения подземных вод. Содержат данные о качестве и производительности водоносных горизонтов, размерах, форме, положении древнего фундамента водонапорных систем, о взаимоотношении геологической структуры, рельефа и подземных вод. Составляются по результатам гидрогеологической съёмки с учётом геологических и тектонических карт. На Г. к. отражается распространение различных водоносных горизонтов и их комплексов, источники и их дебит, колодцы, буровые скважины, карстовые воронки, кровля или подошва водоносной толщи, глубина залегания подземных вод и их химический состав. Г. к. сопровождаются разрезами, на которых отражается геологическое строение района – литологический состав водоносных горизонтов, фациальные изменения, водоупорные толщи, глубины залегания и величина напоров водоносных горизонтов, положение свободной и пьезометрической поверхности подземных вод, их минерализация и дебит.

  На мелкомасштабных Г. к. (мельче 1:500000) изображаются наиболее важные особенности гидрогеологического строения территории, границы гидрогеологических бассейнов, области питания, напора и разгрузки подземных вод; выделяются районы с преимущественным развитием различных типов подземных вод. Мелкомасштабные Г. к. иногда составляют по литературным и архивным данным, без проведения гидрогеологической съёмки. На среднемасштабных Г. к. (1:200000—1:100000) дополнительно даются количественные показатели, характеризующие состояние подземных вод в определенный промежуток времени. Крупномасштабные Г. к. (крупнее 1:50000) применяются для решения специальных задач на стадиях технического и рабочего проектирования – для выбора участков водозабора, выявления запасов подземных вод, изучения обводнённости месторождения, установления условий осушения или орошения участка и т.п. Среди Г. п. различают: 1) общие, 2) основных водоносных горизонтов и 3) специального целевого назначения.

  На общих картах отражаются водоносные комплексы и горизонты и их характеристика, возраст и петрографический состав водовмещающих пород, водообильность, опорные гидрогеологические скважины, характерные колодцы, крупные источники, данные об уровне воды и её химическом составе.

  На картах основных водоносных горизонтов наносятся площади распространения водоносных горизонтов, перспективных для центрального водоснабжения, состав слагающих их пород и глубину залегания, свободный или напорный уровень воды, водообильность горизонтов и степень минерализации воды. Карты специального назначения составляются для решения вопросов водоснабжения и оценки запасов подземных вод, обводнённости месторождений полезных ископаемых, оконтуривания месторождений минеральных вод и т.п. К Г. к. обычно прилагается пояснительный текст с характеристикой гидрогеологических условий района. Особый тип составляют карты гидрогеологического районирования, гидрохимические, карты ресурсов подземных вод и др.

  Лит.: Терлецкий Б. К., Основные принципы гидрогеологического картирования, в сборнике: Водные богатства недр Земли на службу социалистическому строительству, сб. 8, Л., 1933; Методические указания по составлению гидрогеологических карт масштаба 1:500000 и 1:200000—1:100000, сост. М. Е. Альтовский, М., 1960; Зайцев И. К., О методах составления обзорных гидрогеологических карт, в кн.: Тр. Всесоюзн. н.-и. геологического института, т. 61, Л., 1961; Гидрогеологическая карта СССР. Масштаб 1:2500000. Гл. ред. Н. А. Маринов, М., 1964; Гидрогеологическая карта СССР. Масштаб 1:2500000. Объяснительная записка, гл. ред. И. К. Зайцев, М., 1961; Овчинников А. М., Общая гидрогеология, 2 изд., М., 1954; его же. Гидрогеологическое районирование СССР, М., 1966; Никитин М. P., Об основных вопросах гидрогеологической картографии, в сборнике: Вопросы региональной гидрогеологии и методики гидрогеологического картирования, М., 1969.

  А. М. Овчинников.

Гидрогеология

Гидрогеоло'гия (от гидро... и геология), наука о подземных водах, изучающая их состав и свойства, происхождение, закономерности распространения и движения, а также взаимодействие с горными породами. Г. тесно связана с гидрологией, геологией (в т. ч. инженерной геологией), метеорологией, геохимией, геофизикой и др. науками о Земле; опирается на данные математики, физики, химии и широко использует их методы исследования.

  Историческая справка. Накопление практических знаний о подземных водах, начавшееся с древнейших времён, ускорилось с появлением городов и поливного земледелия. Искусство сооружения копаных колодцев глубиной в несколько десятков м известно за 2—3 тыс. лет до н. э. в Египте, Средней Азии, Индии, Китае и др. странах. Имеются сведения о лечении минеральными водами в этот же период. В 1-м тыс. до н. э. появились зачатки научных представлений о свойствах природных вод, их происхождении, условиях накопления и круговороте воды на Земле [в Древней Греции – Фалес (7—6 вв. до н. э.), Аристотель (4 в. до н. э.); в Древнем Риме – Лукреций, Витрувий (1 в. до н. э.) и др.]. Изучению подземных вод способствовало расширение работ, связанных с водоснабжением, строительством каптажных сооружений (например, кяризов у народов Кавказа и Средней Азии), добычей солёных вод для выпаривания соли путём копания колодцев, а затем бурения (территория России, 12—17 вв.). Возникли понятия о водах ненапорных, напорных (поднимающихся снизу вверх) и самоизливающихся. Последние получили в 12 в. название артезианских (от провинции Артуа во Франции). В эпоху Возрождения и позднее подземным водам и их роли в природных процессах были посвящены работы западноевропейских учёных Агриколы, Палисси, Стено и др. В России первые научные представления о подземных водах как о природных растворах, их образовании путём инфильтрации атмосферных осадков и геологической деятельности подземных вод были высказаны М. В. Ломоносовым в соч. «О слоях земных» (1763). В конце 19 – начале 20 вв. были выявлены закономерности распространения грунтовых вод (В. В. Докучаев, П. В. Отоцкий) и составлена карта зональности грунтовых вод Европейской части России. До середины 19 в. учение о подземных водах развивалось как составная часть геологии. Затем оно обособляется в отдельную дисциплину, которая в дальнейшем всё более дифференцируется. В формировании Г. большую роль сыграли французские инженеры Л. Дарси, Ж. Дюпюи, Шези, немецкие учёные Э. Принц, К. Кейльхак, Х. Хёфер и др., учёные США А. Хазен, Ч. Слихтер, О, Мейнцер, А. Лейн и др., русские геологи С. П. Никитин, И. В. Мушкетов и др. Большую роль в развитии Г. в России сыграла систематическая геологическая съёмка, производившаяся Геологическим комитетом. После Великой Октябрьской социалистической революции гидрогеологические исследования получили широкий размах. Изучение подземных вод приобрело систематический характер, была создана сеть гидрогеологических учреждений, организована подготовка специалистов-гидрогеологов. Индустриализация страны дала толчок к развитию гидрогеологических исследований для целей централизованного водоснабжения новых городов, крупных заводов, фабрик. За последующие годы сов. Г. превратилась в многогранную область геологических знаний, в которой начали развиваться многочисленные отрасли: общая Г.; динамика подземных вод; учение о режиме и балансе подземных вод; гидрогеохимия; учение о минеральных, промышленных и термальных водах; учение о поисках и разведке подземных вод; мелиоративная Г.; гидрогеология месторождений полезных ископаемых; региональная Г.

  Общая Г. изучает происхождение подземных вод, их физические и химические свойства, взаимодействие с вмещающими горными породами. Творческий вклад в эту область Г. внесли советские учёные А. Ф. Лебедев, А. Н. Бунеев, В. И. Вернадский и др., австрийский геолог Э. Зюсс, учёный США А. Лейн, немецкий гидрогеолог X. Хёфер и др. Изучение подземных вод в связи с историей тектонических движений, процессов осадконакопления и диагенеза позволило подойти к выяснению истории их формирования и содействовало возникновению в 30—40-х гг. 20 в. новой отрасли общей Г.– палеогидрогеологии (учение о подземных водах прошлых геологических эпох).

  Динамика подземных вод изучает движение подземных вод под влиянием естественных и искусственных факторов, разрабатывает методы количественной оценки производительности эксплуатационных скважин и запасов подземных вод. Большую роль в развитии теории динамики подземных вод сыграли в СССР – Н. Е. Жуковский, Н. Н. Павловский, Г. Н. Каменский и др., за рубежом – Ж. Дюпюи и Л. Дарси (Франция), А. Тилль (Германия), Ф. Форхгеймер (Австрия), Ч. Слихтер, Ч. Хейс, М. Маскет, Р. де Уист (США).

  Учение о режиме и балансе подземных вод рассматривает те изменения в подземных водах (их уровне, температуре, химическом составе, условиях питания и движения), которые происходят под воздействием различных природных факторов (атмосферных осадков и условий их инфильтрации, испарения, температуры и влажности воздуха и почвенного слоя, влияния режима поверхностных водоёмов, рек) и деятельности человека (строительство плотин, водохранилищ и водозаборов, осушения или орошения и т.д.) (русские учёные А. В. Лебедев, А. А. Коноплянцев, М. М. Крылов, американский учёный О. Мейнцер и др.). Во 2-й половине 20 в. начали разрабатываться методы прогноза режима подземных вод, что имеет важное практическое значение при эксплуатации подземных вод, гидротехническом строительстве, орошаемом земледелии и решении др. вопросов.

  Гидрогеохимия изучает процессы формирования химического состава подземных вод и закономерности миграции в них химических элементов. Теоретические предпосылки строятся на современных представлениях о структуре природных вод, о распространённости химических элементов в земной коре и горных породах, на понятии о кларках, факторах миграции, накопления, осаждения и рассеивания различных элементов и их изотопов в природных водах, о газовом составе подземных вод и др. Основы гидрогеохимии заложены трудами В. И. Вернадского в 30-х гг. 20 в. Оформилась эта отрасль Г. в 40-х гг. 20 в. Большой вклад в её развитие внесли советские учёные А. Н. Бунеев, О. А. Алекин, В. А. Сулин и др.

  В 50-х гг. 20 в. значение самостоятельного направления получила радиогидрогеология – изучение миграции в подземных водах радиоактивных элементов (работы А. П. Виноградова, А. Н. Токарева, А. В. Щербакова).

  Учение о минеральных, промышленных и термальных водах. Учение о минеральных водах рассматривает вопросы химического состава и происхождения минеральных вод, их классификацию на основные генетические типы, создаёт представление о месторождениях и ресурсах минеральных вод и решает проблемы их практического использования (главным образом для курортно-санаторного лечения). Вопросы изучения и использования минеральных вод освещены в работах А. Н. Огильви, Н. Н. Славянова, Н. И. Толстихина, А. М. Овчинникова, В. В. Иванова и др. Воды с повышенным содержанием разных элементов (иода, брома, бора, стронция, лития, радия и др.), получившие название промышленных, исследуются для извлечения из них указанных элементов. Изучение, поиски и разведка месторождений термальных и перегретых вод проводятся в целях использования их для теплофикации городов и населённых пунктов.

  Учение о поисках и разведке подземных вод разрабатывает способы выявления месторождений подземных вод, пригодных для организации водоснабжения, орошения и др. практических целей; даёт их количественную и качественную оценку; решает задачи, возникающие при строительстве инженерных сооружений, при осушительных мероприятиях, ирригации. Вопросам методики гидрогеологических исследований в связи с поисками и разведкой подземных вод посвящены работы А. И. Силина-Бекчурина, С. К. Абрамова, М. Е. Альтовского, Н. А. Плотникова, Н. Н. Биндемана, Ф. М. Бочевера, французского учёного Ж. Кастани и др.

  Мелиоративная Г. разрабатывает методы улучшения гидрогеологических условий орошаемых и осушаемых территорий в целях их наиболее рационального с.-х. освоения. Вопросы мелиоративной Г. (определение норм полива, обеспечение водой с.-х. культур, прогноз режима подземных вод, борьба с засолением почв и др.) имеют важное значение для обширной территорий аридной зоны земного шара (работы М. М. Крылова, Н. Н. Ходжибаева и др.).

  Г. месторождений полезных ископаемых занимается изучением подземных вод применительно к задачам геологопромышленной оценки месторождений, их освоения и разработки. Развиваются 2 направления: Г. месторождений твёрдых полезных ископаемых и Г. нефтегазоносных месторождений, что объясняется спецификой разведки, освоения и добычи этих полезных ископаемых (работы С. В. Троянского, М. В. Сыроватко, Н. И. Плотникова, А. А. Саукова, П. П. Климентова и др.). Выделяется рудничная Г., разрабатывающая мероприятия по борьбе с подземными водами.

  Региональная Г. изучает закономерности распространения подземных вод в различных природных условиях в связи с геологическими структурами. Она развивается на основе гидрогеологического картирования различного масштаба—от 1:500000 до 1:10000, основанного на геологической съёмке. Наряду с картированием отдельных районов составляются сводные гидрогеологические карты территории СССР. Успехи в изучении Г. на территории СССР достигнуты в результате многолетней исследовательской работы русских и советских учёных – С. Н. Никитина, Н. Ф. Погребова, Ф. П. Саваренского, А. Н. Семихатова, О. К. Ланге, Н. И. Толстихина, И. К. Зайцева и др. В результате региональных исследований создаются многочисленные общие и специальные карты; так, в СССР изданы «Гидрогеологические карты СССР» в масштабе 1:2500000 (1959, 1964) и «Гидрохимическая карта СССР» в масштабе 1:5000000. С 1966 выходит «Гидрогеология СССР» (в 45 тт.). На основе региональной Г. получило развитие учение о горизонтальной и вертикальной зональности (П. В. Отоцкий, В. С. Ильин, Б. Л. Личков, Н. К. Игнатович, Н. И. Толстихин и др.).

  Большую роль в развитии Г. в СССР сыграла Лаборатория гидрогеологических проблем имени академика Ф. П. Саваренского АН СССР (1940—50); ныне ведущими гидрогеологическими организациями являются Всесоюзный институт гидрогеологии и инженерной геологии (ВСЕГИНГЕО), институт водных проблем АН СССР, институт гидрогеологии и инженерной геологии (г. Ташкент), гидрогеологическая секция Всесоюзного геологического института (ВСЕГЕИ), кафедры гидрогеологии вузов. За рубежом гидрогеологическими исследования производятся университетами, а также научно-исследовательскими организациями, геологической службой и крупными фирмами, специализирующимися в области водоснабжения и ирригации.

  Лит.: Саваренский Ф, П., Гидрогеология, 2 изд., М. – Л., 1935; Лебедев А. Ф., Почвенные и грунтовые воды, 4 изд., М. – Л., 1936; Овчинников А. М., Общая гидрогеология, 2 изд., М., 1954; Гордеев Д. И., Основные этапы истории отечественной гидрогеологии, М., 1954 (Труды лаборатории гидрогеологических проблем, т. 7); Токарев А. Н., Щербаков А. В., Радиогидрогеология, М., 1956; Каменский Г. Н., Толстихина М. М., Толстихин Н. И., Гидрогеология СССР, М., 1959: Личков Б. Л.. Природные воды Земли и литосфера, М. – Л., 1960; Овчинникова. М., Минеральные воды, 2 изд., М., 1963; Гордеев Д. И., Учение В. И. Вернадского о природных водах и его значение для гидрогеологии, «Вести. МГУ. Серия 4. Геология», 1963, №1; Брусиловский С. А., Ланге О. К., Пашковский И. С., Развитие гидрогеологии в СССР после 1917 года, «Бюл. Московского общества испытателей природы. Отдел геологический», 1967, т. 72, в. 5; Ланге O. К., Гидрогеология, М., 1969.

  А. М. Овчинников.

 


    Ваша оценка произведения:

Популярные книги за неделю