355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ГИ) » Текст книги (страница 13)
Большая Советская Энциклопедия (ГИ)
  • Текст добавлен: 10 октября 2016, 00:30

Текст книги "Большая Советская Энциклопедия (ГИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 13 (всего у книги 45 страниц)

Гидрограф

Гидро'граф (от гидро... и ...граф), график изменения во времени расходов воды в реке за год или часть года (сезон, половодье или паводок и др.). Г. строится на основании данных о ежедневных расходах воды в месте наблюдения за речным стоком. На оси ординат откладывается величина расхода воды, на оси абсцисс – отрезок времени.

Гидрографическая сеть

Гидрографи'ческая сеть, совокупность водоёмов и водотоков суши (рек, озёр, болот и водохранилищ). Когда рассматривается только система водотоков, применяется термин «речная сеть». Однако нередко понятия Г. с. и речная сеть отождествляются. Г. с. характеризуется коэффициентами густоты речной сети, озёрности и заболоченности (отношение площади зеркала озера или поверхности болот к площади территории, выраженной в процентах). Строение Г. с. – её густота, озёрность, заболоченность – обусловлено всем комплексом физико-географических условий и прежде всего климатом (суммой годовых осадков, величиной испарения), рельефом, геологическим строением местности. В процессе эрозии происходит присоединение к речному водосбору новых площадей, ранее не имевших стока в речную систему, ликвидация бессточных участков, западин и т.д. Уменьшение стока ведёт к обособлению отдельных частей Г с.

Гидрографическая служба

Гидрографи'ческая слу'жба, служба по обеспечению безопасности судоходства в океанах, на морях, озёрах, водохранилищах, реках. Организована во всех странах мира, которые имеют морской или речной флот. Основные задачи Г. с. – составление и издание специальных и общих руководств и пособий для плавания (навигационных карт, лоций, таблиц приливов, гидрометрических и батиметрических карт и атласов и др.); установка навигационного оборудования (маяков, сигнальных огней, оградительных знаков на каналах и фарватерах); организация оповещения мореплавателей об изменениях навигационной обстановки и режима плавания; разработка судовых средств навигации и обеспечение ими судов.

  В СССР морской Г. с. руководят: Гидрографическое управление министерства обороны СССР (образовано в 1924); на морях – гидрографические управления и отделы флотов (флотилий). На реках, озёрах и водохранилищах гидрографические работы для обеспечения плавания судов выполняют бассейновые управления водных путей (Главводпуть) министерства речного флота РСФСР и соответствующие органы др. союзных республик.

  Ю. А. Пантелеев, С. Н. Торопов.

Гидрографические карты

Гидрографи'ческие ка'рты, см. Морские навигационные карты.

Гидрографическое судно

Гидрографи'ческое су'дно, предназначено для выполнения морских, озёрных и речных промерных и лоцмейстерских работ. Промерное Г. с. приспособлено для исследований рельефа дна и условий плавания (течений, ориентиров и пр.), картографических и радиолокационных съёмки берегов с целью составления навигационных карт и пособий. Оборудование промерного Г. с. состоит из приборов для изучения рельефа дна (эхолотов, гидролокаторов); аппаратуры для определения координат; гидрологических, геологических, геофизических лабораторий для обработки проб воды, грунта и пр. Лоцмейстерское Г. с. производит установку и обслуживание береговых и плавучих средств навигационного оборудования (СНО) – маяков, радиомаяков, светящихся знаков, радиолокационных отражателей, буев и пр. Оборудование лоцмейстерского Г. с. включает устройства для спуска и подъёма СНО, перезарядки источников питания, помещение для газобаллонов, площадку для вертолёта, аппаратуру контроля работы СНО. Водоизмещение Г. с., в зависимости от назначения и района работ, 1,5—2 тыс. т. Г. с. имеют катера для работы на мелководье.

  В. Л. Ондзуль.

Гидрография

Гидрогра'фия (от гидро... и ...графия), раздел гидрологии, посвященный описанию водных объектов и их отдельных частей. 1) Раздел гидрологии суши, основными задачей которого является изучение и описание отдельных водных объектов: рек, озёр, водохранилищ (и их совокупности на конкретной территории), их положения и физико-географических условий, размеров и режима. Изучение отдельных водных объектов позволяет выявить закономерности в распространении вод суши, понять особенности их режима. Г. опирается на закономерности, устанавливаемые общей гидрологией и физической географией. К задачам Г. относится также изучение изменений режима водных объектов, вызываемых деятельностью человека. Наиболее полные сведения о Г. суши Советского Союза содержатся в справочниках «Ресурсы поверхностных вод СССР». 2) Раздел океанологии, занимающийся описанием подразделения Мирового океана. К задачам морской Г. также относят комплекс научных дисциплин, изучающих гидрометеорологический режим, геодезические поля в Мировом океане, характер грунтов и берегов океанов и морей и динамику рельефа морского дна.

  В России организационное оформление Гидрографической службы было осуществлено в 1718 учреждением Адмиралтейств-коллегий, которой было поручено ведать и этой стороной морского дела. В 1827 учреждено Управление Генерал – Гидрографа, преобразованное в 1885 в Главное гидрографическое управление.

  За рубежом развитие Г. начинается с первой половины 18 в. —во Франции (1720), Великобритании и Голландии (1737); в США с 1830. Развитие научной Г. в России и СССР связано с именами А, А. Тилло, А И, Вилькицкого, Ю. М. Шокальского, В. М. Родевича, Е. В. Близняка, И. Ф. Молодых и др. См. также Гидрографическая служба.

  Лит.: Близняк Е. В., Овчинников К. М., Быков В. Д., Гидрография рек СССР, М., 1945; Максимов Г. С., Гидрография как наука, в кн.: Ученые записки высшего Арктического морского училища, в 1, Л. – М., 1949; его же, Гидрографическая опись, М. – Л., 1949; Шейкин П. А., Гидрографические работы на реках, Л., 1949; Наставление по рекогносцировочным гидрографическим исследованиям рек, Л., 1949; Давыдов Л. К. Гидрография СССР, т. 1—2, Л., 1953—55; Глушков В. Г., Вопросы теории и методы гидрологических исследований, М., 1961; Белобров А. П., Гидрография моря, М., 1964; Соколов А. А., Гидрография СССР, Л., 1964.

  А. И. Чеботарев, К. Г. Тихоцкий.

Гидродикцион

Гидродикцио'н, род пресноводных зелёных водорослей; то же, что водяная сеточка.

Гидродинамика

Гидродина'мика (от гидро... и динамика), раздел гидромеханики, в котором изучаются движение несжимаемых жидкостей и взаимодействие их с твёрдыми телами. Методами Г. можно исследовать также движение газов, если скорость этого движения значительно меньше скорости звука в рассматриваемом газе. При скорости движения газа, близкой к скорости звука или превышающей её, начинает играть заметную роль сжимаемость газа и методы Г. уже неприменимы. Такое движение газа исследуется в газовой динамике.

  При решении той или иной задачи в Г. применяют основные законы и методы механики и, учитывая общие свойства жидкостей, получают решение, позволяющее определить скорость, давление и касательную напряжения в любой точке занятого жидкостью пространства. Это даёт возможность рассчитать, в частности, и силы взаимодействия между жидкостью и твёрдым телом. Главными свойствами жидкости, с точки зрения Г., являются её лёгкая подвижность, или текучесть, выражающаяся в малом сопротивлении жидкости деформациям сдвига, и сплошность (в Г. жидкость считается непрерывной однородной средой); кроме того, в Г. принимается, что жидкости не сопротивляются растяжению.

  Основные уравнения Г. получаются путём применения общих законов физики к элементарной массе, выделенной в жидкости, с последующим переходом к пределу при стремлении к нулю объёма, занимаемого этой массой. Одно из уравнений, называемое неразрывности уравнением, получается путём применения к элементу, выделенному в жидкости, закона сохранения массы: другое уравнение (или в проекциях на оси координат – три уравнения) получается в результате применения к элементу жидкости закона о количестве движения, согласно которому изменение количества движения элемента должно совпадать по величине и направлению с импульсом силы, приложенной к нему. Решение общих уравнений Г. исключительно сложно и может быть доведено до конца не всегда, а только в небольшом числе частных случаев. Поэтому приходится упрощать задачи путём отбрасывания в уравнениях членов, которые в данных условиях имеют менее существенные значение для определения характера течения. Например, в ряде случаев можно с достаточной для практики точностью описать реально наблюдаемое течение, пренебрегая вязкостью жидкости; т. о., приходят к теории идеальной жидкости, которую можно применять для решения многих гидродинамических задач. В случае движения жидкостей с весьма большой вязкостью (густые масла и т.п.) величина скорости течения изменяется незначительно и можно пренебречь ускорением. Это приводит к др. приближённому решению задач Г.

  В Г. идеальной жидкости особенно важное значение имеет Бернулли уравнение, согласно которому вдоль струйки жидкости имеет место следующее соотношение между давлением р, скоростью v течения жидкости (с плотностью r) и высотой z над плоскостью отсчёта p + 1/2rv2 + rgz = const. (g – ускорение свободного падения). Это уравнение является основным в гидравлике.

  Анализ уравнений движения вязкой жидкости показал, что для геометрически и механически подобных течений (см. Подобия теория) величина rvl/m= Re должна быть постоянной (l – характерный для задачи линейный размер, например радиус обтекаемого тела или сечения трубы и т.п., r, v и m – соответственно плотность, скорость, коэффициент вязкости жидкости). Эта величина называется Рейнольдса числом и определяет режим движения вязкой жидкости: при малых значениях Re (для трубопроводов при Re = vcpd/n £ 2300, где d – диаметр трубопровода, n = m/r) имеет место слоистое, или ламинарное течение, при больших значениях Re струйки размываются и в жидкости происходит хаотическое перемешивание отдельных масс; это т. н. турбулентное течение.

  Решение основных уравнений Г. вязкой жидкости оказалось возможным найти только для крайних случаев – для Re очень малых, что соответствует (при обычных размерах) большой вязкости, и для Re очень больших, что соответствует течениям жидкостей с малой вязкостью. В ряде технических вопросов особо важны задачи о течениях жидкостей с малой вязкостью (вода, воздух). В этом случае уравнения Г. можно значительно упростить, выделив слой жидкости, непосредственно прилегающий к поверхности обтекаемого тела, в котором вязкостью пренебречь нельзя; этот слой называется пограничным слоем. За пределами пограничного слоя жидкость может рассматриваться как идеальная. Для характеристики движений жидкости, в которых основную роль играет сила тяжести (например, волны, образующиеся на поверхности воды при ветре, прохождении корабля и т.д.), в Г. вводится др. безразмерная величина v2/gl = Fr, называемая числом Фруда.

  Практические применения Г. чрезвычайно разнообразны. Г. пользуются при проектировании кораблей и самолётов, расчёте трубопроводов, насосов, гидротурбин и водосливных плотин, при исследовании морских течений и речных наносов, изучении фильтрации грунтовых вод и нефти в подземных месторождениях и т.п. Об истории Г. см. в ст. Гидроаэромеханика.

  Лит.: Прандтль Л.. Гидроаэромеханика, пер. с нем., М., 1949.

Гидродинамическая передача

Гидродинами'ческая переда'ча, механизм для бесступенчатого изменения передаваемого от двигателя крутящего момента или частоты вращения вала машины-орудия; рабочий процесс Г. п. осуществляется за счёт работы лопастных насоса и турбины. Г. п. была предложена в начале 20 в. в виде соосно расположенных центробежного насоса и турбины, сближенных т. о., что их колёса образуют горообразную полость, заполненную рабочей жидкостью – маловязким маслом или водой. Побудителем движения жидкости является насос, колесо которого соединено с двигателем; энергия, полученная жидкостью от насоса, передаётся турбиной приводимой машине.

  Г. п. только с двумя колёсами – насосным и турбинным (рис.), имеет равные на обоих валах крутящие моменты и называют гидродинамической муфтой (гидромуфтой). В номинальном режиме частота вращения турбинного вала гидромуфты на 1,5—4% меньше частоты вращения вала насоса; кпд гидромуфты составляет 95—98%.

  Гидротрансформаторы имеют три лопаточных колеса (насосное, направляющего аппарата и турбинное) или более. Они бывают с одно– или многоступенчатой турбиной. В последнем случае удаётся расширить область изменения частоты вращения вторичного вала и получить большее увеличение крутящего момента на турбинном колесе по отношению к моменту на валу насоса в режиме страгивания, т. е. когда турбинный вал полностью остановлен (у трёхступенчатых турбин до 12:1). Г. п. допускают регулирование крутящего момента за счёт изменения заполнения их рабочей полости. Этот способ широко применяется для регулирования гидромуфт. Чтобы уменьшить падение кпд в гидротрансформаторах, регулирование ведут поворотом лопастей рабочих колёс. В некоторых конструкциях гидротрансформаторов предусматривается отключение направляющего аппарата, что обращает механизм в гидромуфту – это т. н. комплексная передача. Г. п. строятся с передаточным отношением от 0,6 до 6 и кпд 0,86—0,92. Раздельная Г. п., т. е. отдельно расположенные насос и турбина, соединённые трубами, позволяет произвольно размещать турбину относительно двигателя, дробить мощность двигателя между несколькими потребителями и, наоборот, суммировать мощность нескольких двигателей для привода одной машины. Несмотря на то, что кпд раздельных Г. п. составляет 65—70%, они находят всё большее применение в тех случаях, когда приводимая машина должна размещаться в месте, где невозможно или затруднено обслуживание: приводы буровых установок, насосы топливных систем летательных аппаратов, насосы химических установок и др.

  Наибольшее применение Г. п., как автоматически действующие бесступенчатые передачи, нашли в трансмиссиях автомобилей, на тепловозах, в судовых силовых установках, приводах питательных насосов и дымососов ТЭЦ. Мощность приводимых через гидромуфты насосов ТЭЦ доходит до 25000 квт.

  Лит.: Гавриленко Б. А., Минин В. А., Рождественский С. Н., Гидравлический привод, М., 1968.

  В. А. Минин.

Гидродинамические передачи: а – гидротрансформатор; б – гидромуфта; 1 – рабочее колесо насоса, установленное на ведущем валу; 2 – рабочее колесо гидротурбины, установленное на ведомом валу; 3 – неподвижный направляющий аппарат – реактор. Стрелками показано направление потока рабочей жидкости.

Гидродинамическое сопротивление

Гидродинами'ческое сопротивле'ние, сопротивление движению тела со стороны обтекающей его жидкости или сопротивление движению жидкости, вызванное влиянием стенок труб, каналов и т.д. При обтекании неподвижного. тела потоком жидкости (газа) или, наоборот, когда тело движется в неподвижной среде, Г. с. представляет собой проекцию главного вектора всех действующих на тело сил на направление движения. Г. с.

 

  где r – плотность среды, v – скорость, S – характерная для данного тела площадь. Безразмерный коэффициент Г. с. сх зависит от формы тела, его положения относительно направления движения и чисел подобия (см. Подобия критерии). Силу, с которой жидкость действует на каждый элемент поверхности движущегося тела, можно разложить на нормальную и касательную составляющие, т. е. на силу давления и силу трения. Проекция результирующей всех сил давления на направление движения даёт Г. с. давления, а проекция результирующей всех сил трения на направление движения – Г. с. трения. Тела, у которых сопротивление от сил давления мало по сравнению с сопротивлением от сил трения, считаются хорошо обтекаемыми. Г. с. плохо обтекаемых тел определяется почти полностью сопротивлением давления. При движении тел вблизи поверхности воды образуются волны, в результате чего возникает волновое сопротивление.

  При протекании жидкости по трубам, каналам и т.д. в гидравлике различают два вида Г. с.: сопротивление по длине, прямо пропорциональное длине участка потока, и местные сопротивления, связанные с изменением структуры потока на коротком участке при обтекании различных препятствий (в виде клапанов, задвижек и др.), а также при внезапном расширении или сужении потока или при изменении направления его течения. В гидравлических расчётах Г. с. оценивается величиной «потерянного» напора hv, представляющего собой ту часть удельной энергии потока, которая необратимо расходуется на работу сил сопротивления.

  Значение hv по длине трубы при напорном движении вычисляется по формуле Дарси

 

  где l – коэффициент сопротивления; l и d – длина и диаметр трубы; v — средняя скорость; g – ускорение свободного падения. Коэфф. l определяется характером течения. При ламинарном течении он зависит только от Рейнольдса числа Re (линейный закон сопротивления), а при турбулентном течении – ещё и от шероховатости стенок трубы. При очень больших Re (порядка 10 и более) l зависит только от шероховатости (квадратичный закон сопротивления). Местные Г. с. оцениваются общей формулой hv = zv2/2g, где z, – коэффициент местного сопротивления, различный для разных препятствий; зависит от числа Re.

  Числовые значения коэффициента l и z распределяются по формулам, приводимым в справочниках. Определение величины hv для открытых потоков производится также по специальным формулам. Г. с. в открытых потоках и при движении в напорных трубопроводах обусловлены одними и теми же физическим причинами.

  Правильное определение величины Г. с. имеет большое значение при проектировании и постройке самых разнообразных сооружений, установок и аппаратов (гидротехнические сооружения, турбинные установки, воздухо– и газоочистительные аппараты, газо-, нефте– и водопроводные магистрали, двигатели, компрессоры, насосы и т.д.).

  Лит.: Агроскин И. И., Дмитриев Г. Т. и Пикалов Ф. И., Гидравлика, 4 изд., М. – Л., 1964; Идельчик И. Е., Справочник по гидравлическим сопротивлениям, М. – Л., 1960; Альтшуль А. Д., Гидравлические потери на трение в трубопроводах, М. – Л., 1963.

  П. Г. Киселев.

Гидрозолоудаление

Гидрозолоудале'ние, система удаления золы и шлака из топочной камеры и газоходов котельного агрегата водой. Одновременно осуществляется транспортирование золы и шлака на золовые поля или в отвалы. См. Золоудаление.

Гидроидные

Гидро'идные (Hydrozoa), класс водных беспозвоночных животных типа кишечнополостных (Coelenterata). Для большинства Г. характерно чередование поколений: полипы сменяются половым поколением – медузами. У большинства Г. бесполое поколение образует колонии, состоящие из громадного количества особей. Колония прикрепляется своим основанием к какому-либо твёрдому субстрату; вертикально поднимающийся стволик ветвится, и на его веточках сидят отдельные особи колонии – гидранты; ротовое отверстие каждой особи окружено длинными щупальцами. В оболочке некоторых Г. откладываются известковые соли: большие скопления таких Г. образуют известковые рифы. Формирование колонии происходит в результате почкования. В отличие от гидры, у колониальных форм Г. развивающиеся из почек новые особи не отрываются, а остаются на общем стволе. Из некоторых почек развиваются медузы, образующие половые продукты. У многих Г. медузы отрываются от колонии и ведут свободноплавающий образ жизни; они раздельнополы: из их оплодотворённого яйца развивается характерная для всех кишечнополостных личинка – планула. Среди Г. известно, однако, много видов. у которых медузы остаются недоразвитыми и не отрываются от колонии, но тем не менее образуют половые клетки. Вместе с тем у некоторых Г. имеются только медузы, их личинки развиваются непосредственно в новых медуз. Все Г. питаются животной пищей, захватывая щупальцами планктонных рачков, водных личинок насекомых и даже мальков рыб. Некоторые медузы могут быть опасны и для человека, причиняя довольно сильные ожоги (например, гонионемы).

  7 отрядов: гидры (Hydrida), лептолиды (Leptolida), лимномедузы (Limnomedusae), трахимедузы (Trachymedusae), наркомедузы (Narcomedusae). дискомедузы (Disconantae), сифонофоры (Siphonophora). Известно более 2500 видов. Г. в основном распространены в морях: исключение составляют гидра, обитающая в пресных водоёмах, и некоторые медузы, встречающиеся в озёрах Африки и реках Северной Америки, Европы и Азии, а также колониальный гидроид Moerisia pallasi, распространённый в Каспийском море и проникший в некоторые реки. В СССР встречается свыше 300 видов. Большинство Г. обитает в литоральной зоне, лишь немногие являются глубоководными формами (например, Branchiocerianthus из Тихого океана достигающий 1 м высоты). В ископаемом состоянии Г. известны с мелового периода, но есть указания на нахождение гидромедуз даже в нижнекембрийских отложениях.

  Лит.: Руководство по зоологии, т. 1, М. – Л., 1937; Наумов Д. В., Гидроиды и гидромедузы морских, солоноватоводных и пресноводных бассейнов СССР. М. – Л., 1960; Жизнь животных, под ред. Л. А. Зенкевича, т. 1, М., 1968.

  В. Н. Никитин.


    Ваша оценка произведения:

Популярные книги за неделю