355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ГИ) » Текст книги (страница 14)
Большая Советская Энциклопедия (ГИ)
  • Текст добавлен: 10 октября 2016, 00:30

Текст книги "Большая Советская Энциклопедия (ГИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 14 (всего у книги 45 страниц)

Гидроиды

Гидро'иды (Hydroidea), подкласс водных беспозвоночных животных класса гидроидных типа кишечнополостных. Ряд учёных не разделяет класс гидроидных на подклассы, а делит его непосредственно на 7 отрядов.

Гидроизогипсы

Гидроизоги'псы (от гидро..., греч. ísos – равный и hýpsos – высота), линии на карте, соединяющие точки с одинаковой высотой поверхности грунтовых вод над условной нулевой поверхностью.

Гидроизоляционные материалы

Гидроизоляцио'нные материа'лы, материалы для защиты строительных конструкций, зданий и сооружений от вредного воздействия воды и химически агрессивных жидкостей (кислот, щелочей и пр.). По назначению Г. м. подразделяют на антифильтрационные, антикоррозионные и герметизирующие; по виду основного материала – на асфальтовые, минеральные, пластмассовые и металлические.

  Асфальтовые Г. м. применяют в виде нефтяных битумов с минеральным порошком, песком и щебнем (асфальтовые мастики, растворы и бетоны), получаемых при нагревании (горячие уплотняемые и литые асфальты), разжижением битумов летучими растворителями (битумные лаки и эмали) или эмульгированием их в воде (битумные эмульсии, пасты, холодные асфальты). Битумы и асфальты применяют для окраски и штукатурки поверхностей сооружений (асфальтовые гидроизоляции), для уплотнения деформационных швов (асфальтовые шпонки), для пропитки строительных элементов и при изготовлении штучных Г. м., в основном рулонных (гидроизол, бризол, изол, стеклорубероид, маты). Всё большее распространение получают битумно-полимерные Г. м., обладающие повышенной эластичностью и трещиностойкостью. В СССР применяются Г. м. на основе битумов, эмульгированных в воде (холодные асфальтовые мастики, эмульбит, битумно-латексные композиции, эластим), позволяющие использовать местные материалы, упростить и удешевить гидроизоляционные работы.

  Минеральные Г. м. приготавливают на основе цементов, глины и др. минеральных вяжущих; их применяют для окрасочных (цементные и силикатные краски) и штукатурных покрытий (цементные торкрет и штукатурка), для массивных гидроизоляционных конструкций (гидрофобные засыпки, глинобетонные замки, гидратон) при антифильтрационной защите. Совершенствование минеральных Г. м. связано с применением поверхностно-активных и др. специальных добавок, высокого диспергирования смесей.

  Пластмассовые Г. м. применяют для окрасочной (эпоксидные, полиэфирные, поливиниловые, этинолевые лаки и краски), штукатурной (полимеррастворы и бетоны, фаизол) и оклеечной (полиэтиленовая, поливинилхлоридная плёнки, оппаноль) гидроизоляции поверхностей и для уплотнения деформационных швов сооружений (каучуковые герметики, резиновые и поливинилхлоридные профильные ленты, стеклоэластики). Номенклатура и объём производства этих материалов постоянно увеличиваются; наибольшее развитие получают тиоколовые герметики, эпоксидные краски, полиэфирные стеклопластики и полиэтиленовые экраны.

  Металлические Г. м. – листы из латуни, меди, свинца, обычной и нержавеющей стали, применяемые для поверхностной гидроизоляции и уплотнения деформационных швов в наиболее ответственных случаях (резервуары, плотины, диафрагмы). Алюминиевая и медная фольга применяется для усиления покрытий и рулонных Г. м. (металлоизол, фольгоизол, сисалкрафт). Металлические Г. м. постепенно заменяются пластмассовыми, стеклопластиками.

  Лит.: Рыбьев И. А., Технология гидроизоляционных материалов, М., 1964; Химически стойкие мастики, замазки и бетоны на основе термореактивных смол, М., 1968; Попченко С. Н., Холодная асфальтовая гидроизоляция. 2 изд., Л. – М., 1966; Строительные нормы и правила, ч. 1, раздел В, гл. 25. Кровельные, гидроизоляционные и пароизоляционные материалы на органических вяжущих, М., 1967; Строительные нормы и правила, ч. 1, раздел В, гл. 27. Защита строительных конструкций от коррозии, М., 1964.

  С. Н. Попченко.

Гидроизоляция

Гидроизоля'ция (от гидро... и изоляция), защита строительных конструкций, зданий и сооружений от проникновения воды (антифильтрационная Г.) или материала сооружений от вредного воздействия омывающей или фильтрующей воды или др. агрессивной жидкости (антикоррозийная Г.). Работы по устройству Г. называются гидроизоляционными работами. Г. обеспечивает нормальную эксплуатацию зданий, сооружений и оборудования, повышает их надёжность и долговечность.

  Антифильтрационная Г. применяется для защиты от проникновения воды в подземные и подводные сооружения (подвалы и заглубленные помещения зданий, транспортные туннели, шахты, опускные колодцы и кессоны), через подпорные гидротехнические сооружения (плотины, их экраны, понуры, диафрагмы), а также для защиты от утечки эксплуатационно-технических или сбросных вод (каналы, туннели и др. водоводы, бассейны, отстойники, резервуары и др.).

  Антикоррозионная Г. предназначена для защиты материала сооружений от химически агрессивных жидкостей и вод (минерализованные грунтовые воды, морская вода, сточные воды промышленных предприятий), от агрессивного воздействия атмосферы (надземные металлические конструкции, гидротехнические сооружения в зоне переменного уровня воды) и от электрокоррозии, вызываемой блуждающими токами (опоры линий электропередач, трубопроводы и др. подземные металлические конструкции).

  По виду основного материала различают Г. асфальтовую, минеральную, пластмассовую и металлическую (см. Гидроизоляционные материалы); по способу устройства (рис. 1) – окрасочную, штукатурную, оклеечную, литую, пропиточную, инъекционную, засыпную, монтируемую; по основному назначению и конструктивным особенностям – поверхностную, шпоночную, работающую «на прижим» и «на отрыв», уплотняющую швы и сопряжения, комплексного назначения (теплогидроизоляция, пластичные компенсаторы). Важнейшие виды Г. характеризуются следующими особенностями.

  Окрасочная Г. (горячая и холодная) выполняется в виде тонкого (до 2 мм) многослойного покрытия, обычно из битумных и полимерных лаков и красок, для противокапиллярной и антикоррозионной защиты железобетонных и металлических конструкций. Наиболее надёжны горячие битумно-полимерные и холодные эпоксидно-каучуковые покрытия. Всё большее применение получают новые полимерные материалы холодного отверждения.

  Штукатурная Г. (горячая и холодная) представляет собой многослойное (до 2 см) покрытие; наиболее распространены для железобетонных сооружений цементный торкрет (см. Торкретирование), холодные и горячие асфальтовые штукатурные растворы и мастики, не требующие защитного ограждения и позволяющие механизировать процесс их нанесения. Расширяется применение полимербетонных и полимерцементных покрытий, коллоидного цементного раствора.

  Оклеечная Г. производится наклейкой рулонных материалов в виде многослойного (обычно в 3—4 слоя) покрытия с обязательной защитой поверхностными стяжками и стенками. Несмотря на большое распространение, оклеечная Г. в ряде случаев заменяется окрасочной и штукатурной Г. Отличается повышенной трещиностойкостью; совершенствование её идёт по пути применения полимерных плёнок, стеклопластиков.

  Литая Г. – наиболее надёжный вид Г.; выполняется, как правило, из горячих асфальтовых мастик и растворов разливкой их по горизонтальному основанию (в 2—3 слоя общей толщиной 20—25 мм) и заливкой за стенку или опалубку на стенах (толщиной 30—50 мм); вследствие сложности и дороговизны выполняется в особо ответственных случаях. Развитие её идёт по пути применения асфальтокерамзитобетона, битумоперлита, пеноэпоксидов и др. пенопластов.

  Засыпная Г. устраивается засыпкой сыпучих гидроизоляционных материалов в водонепроницаемые слои и полости, например, огражденные опалубкой. Аналогична по конструкции и назначению литой Г., но имеет большую толщину (до 50 см) и комплексное теплогидроизоляционное назначение (гидрофобные пески и порошки, асфальтоизол) при небольшой водонепроницаемости.

  Пропиточная Г. выполняется пропиткой строительных изделий из пористых материалов (бетонные плиты и блоки, асбестоцементные листы и трубы, блоки из известняка и туфа) в органическом вяжущем (битум, каменноугольный пек, петролатум, полимерные лаки). Пропиточная Г. наиболее надёжна для сборных элементов, подвергающихся интенсивным механическим воздействиям (сваи, трубы, тюбинги, фундаментные блоки).

  Инъекционная Г. осуществляется нагнетанием вяжущего материала в швы и трещины строительных конструкций или в примыкающий к ним грунт методами, аналогичными устройству противофильтрационных завес; используется, как правило, при ремонте Г. Для её устройства всё шире применяются новые полимеры (карбамидные, фурановые смолы).

  Монтируемая Г. выполняется из специально изготовленных элементов (металлические и пластмассовые листы, профильные ленты), прикрепляемых к основному сооружению монтажными связями. Применяется в особо сложных случаях. Совершенствование её идёт по пути использования стеклопластиков, жёсткого поливинилхлорида, индустриального изготовления сборных железобетонных изделий, покрытых в заводских условиях окрасочной или штукатурной Г.

  Наиболее распространённый конструктивный вид Г. – поверхностные покрытия в сочетании с уплотнением деформационных или конструктивных швов и устройством сопряжений, обеспечивающих непрерывность всего напорного фронта сооружения. Поверхностные Г. конструируются таким образом, чтобы они прижимались напором воды к изолируемой несущей конструкции (рис. 2); разработаны также новые виды конструктивной Г., работающей «на отрыв».

  Существенное значение в Г. сооружений имеют уплотнения деформационных швов (рис. 3); они устраиваются для придания швам водонепроницаемости и защиты их от засорения грунтом, льдом, плавающими телами. Помимо водонепроницаемости, уплотнения должны также обладать высокой деформативной способностью, гибкостью, с тем чтобы они могли свободно следовать за деформациями сопрягаемых элементов или секций сооружения. Наиболее распространённые типы уплотнений – асфальтовые шпонки и прокладки, металлические диафрагмы и компенсаторы, резиновые и пластмассовые диафрагмы, прокладки и погонажные герметики. Предусматривается также широкое применение битумно-полимерных герметиков, стеклопластиков и стеклоэластиков, позволяющих создавать более простые и надёжные уплотнения.

  Г., работающая «на отрыв», выполняется в виде покрытий, наносимых на защищаемую конструкцию со стороны, обратной напору воды (рис. 4). Применяется главным образом при ремонте и восстановлении Г. сооружений (например, путём оштукатуривания изнутри затопляемых подвалов зданий) и для Г. подземных сооружений, несущие конструкции которых бетонируются впритык к окружающему грунту или скальному основанию – туннели, опускные колодцы, подземные помещения большого заглубления (при антифильтрационной их защите). Для устройства Г. этого типа применяются гидроизоляционные покрытия, допускающие анкеровку за основную конструкцию (литая и монтируемая Г.) либо обладающие высокой адгезией к бетону при длительном воздействии воды (цементный торкрет, холодная асфальтовая и эпоксидная окрасочная Г.).

  Комплекс работ по устройству Г. включает: подготовку основания, устройство гидроизоляционного покрова и защитного ограждения, уплотнение деформационных швов и сопряжений Г. При выборе типа Г. отдают предпочтение таким покрытиям, которые, при равной надёжности и стоимости, позволяют комплексно механизировать гидроизоляционные работы, ликвидировать их сезонность. В СССР разработаны новые типы гидроизоляционных устройств, успешно разрешающие эти проблемы: асфальтовые штукатурные и полимерные окрасочные, пропиточные и монтируемые Г.

  Лит.: Попченко С. Н., Старицкий М. Г., Асфальтовые гидроизоляции бетонных и железобетонных сооружений, М. – Л., 1962; Носков С. К., Устройство гидроизоляции в промышленном строительстве, М., 1963; Строительные нормы и правила, ч. 3, раздел В, гл. 9. Гидроизоляция и пароизоляция, М., 1964; Нечаев Г. А., Федотов Е. Д., Применение пластических масс для гидроизоляции зданий, Л. – М., 1965; Указания по проектированию гидроизоляции подземных частей зданий и сооружений. СН 301—65, М., 1965; Бовин Г. П., Возведение водонепроницаемых сооружений из бетона и железобетона, М., 1969.

  Г. П. Бовин, С. Н. Попченко.

Рис. 1. Типы поверхностных гидроизоляционных покрытий: а – окрасочная; б – штукатурная; в – оклеечная; г – литая; д – засыпная; е – пропиточная; ж – инъекционная; з – монтируемая; 1 – изолируемая конструкция; 2 – грунтовка поверхности; 3 – гидроизоляционный покров; 4 – защитное ограждение.

Рис. 2. Конструкция гидроизоляции подземных сооружений: а – при одностороннем напоре воды (подвал здания); б – при двустороннем напоре воды (подземный канал); 1 – несущая конструкция; 2 – поверхностная гидроизоляция; 3 – бетонное основание; 4 – уплотнение деформационного шва; 5 – напорный фронт воды.

Рис. 3. Уплотнение деформационного шва здания ГЭС (поперечный разрез по зданию станции): 1 – вертикальная асфальтовая шпонка с электрообогревом; 2 – смотровой колодец; 3 – горизонтальная асфальтовая шпонка; 4 – заполнение шва холодной асфальтовой штукатуркой; 5 – полный шов; 6 – уплотнение железобетонным брусом; 7 – труба для подлива асфальтовой мастики.

Рис. 4. Поверхностная гидроизоляция, работающая «на отрыв»: а – асфальтовая гидроизоляция; б – металлическая гидроизоляция; 1 – несущая конструкция; 2 – поверхностная гидроизоляция; 3 – защитное ограждение; 4 – стальные анкеры; 5 – напорный фронт воды; 6 – стальная обшивка.

Гидроизопьезы

Гидроизопье'зы (от гидро... и греч. ísos – равный, piezo – давлю), изопьезы, пьезоизогипсы, линии на карте, соединяющие точки с одинаковой величиной напоров подземных вод.

Гидрокарбонат натрия

Гидрокарбона'т на'трия, бикарбонат натрия, питьевая сода, NaHCO3, применяется в порошках, таблетках и растворах при повышенной кислотности желудочного сока, язвенной болезни желудка и двенадцатиперстной кишки, а также при заболеваниях, сопровождающихся ацидозом (сахарный диабет, инфекции и др.). Г. н. используется также в кулинарии.

Гидрокарбонаты

Гидрокарбона'ты, бикарбонаты, двууглекислые соли, кислые соли угольной кислоты H2CO3, например NaHCO3 (гидрокарбонат натрия). Г. получают действием CO2 на карбонаты или гидроокиси в присутствии воды. При нагревании они превращаются в средние соли – карбонаты, например 2NaHCO3 = Na2Co3 + H2O + CO2. В противоположность большинству карбонатов все Г. в воде растворимы. Г. кальция Са (НСО3)2 обусловливает временную жёсткость воды. В организме Г. выполняют важную физиологическую роль, являясь буферными веществами, регулирующими постоянство реакции крови (см. Буферные системы).

Гидрокодон

Гидрокодо'н, лекарственный препарат, успокаивающий кашель. Получают из кодеина, с которым Г. сходен по действию, но более активен. Применяют в таблетках при различных заболеваниях лёгких и верхних дыхательных путей.

Гидрокомбинезон

Гидрокомбинезо'н, гидрокостюм, часть водолазного снаряжения, предохраняющая водолаза от переохлаждения и травм. Различают: Г. водонепроницаемые, изготовляемые из прорезиненной ткани в виде склеенных в одно целое или раздельных шлема, рубахи с перчатками (или без них) и штанов с ботами; к шлему присоединяются дыхательные трубки от водолазного аппарата, и Г. водопроницаемые («мокрые»), выполняемые из губчатой резины в виде плотно облегающих тело водолаза рубахи со шлемом и отдельно штанов с чулками. Г. выпускаются различных размеров и конструкций в зависимости от типов используемых водолазных аппаратов. См. также Водолазное дело.

Гидрокортизон

Гидрокортизо'н, 17-оксикортикостерон, кортизол, один из глюкокортикоидов; гормон, образующийся в коре надпочечников и регулирующий преимущественно углеводный обмен. Надпочечники человека секретируют за сутки от 5 до 30 мг Г. При состояниях напряжения (см. Адаптационный синдром) и при введении адренокортикотропного гормона образование Г. может увеличиваться в 5 раз.

  В медицинской практике применяют Г. как препарат из группы гормональных препаратов, оказывающий противовоспалительное и антиаллергическое действие. Г. (и Г.-ацетат в виде суспензий) назначают при лечении ревматизма, бронхиальной астмы, лейкемии, эндокринных и др. заболеваний; местно (чаще в виде мази) при экземе, нейродермитах, глазных заболеваниях и др.

Гидрокрекинг

Гидрокре'кинг, каталитический процесс переработки низкосортных топлив; см. Гидрогенизация деструктивная.

Гидрокс

Гидро'кс, способ беспламенного взрывания, основанный на использовании энергии паров воды, азота и углекислого газа, образующихся с выделением тепла в результате практически мгновенного протекания внутри патрона (также называется Г.) химической реакции специальной порошкообразной смеси.

Гидроксилазы

Гидроксила'зы, группа ферментов, относящихся к классу оксидоредуктаз; катализируют включение в молекулу субстрата атома кислорода из О2. Реакция протекает при участии окисляющегося при этом восстановленного никотинамидадениндинуклеотид-фосфата. Г. играют важную роль в обмене ряда циклических соединений, в том числе стероидов.

Гидроксиламин

Гидроксилами'н, H2NOH, продукт замещения группой OH одного атома водорода в молекуле аммиака NH3: бесцветные кристаллы игольчатой формы. Плотность 1204,4 кг/м3 (при 23,5°С), tпл 33—34 °С, tkип 58 °С при 2,933 кн/м2 (22 мм pm. ст.). При 0°С Г. устойчив, при 20 °С медленно разлагается: повышение температуры усиливает разложение, при 130 °С Г. взрывается. Г. гигроскопичен, хорошо растворяется в воде с образованием гидрата Г., являющегося слабым основанием: NH2OH·H2O # NHзОН+ +ОН-. При взаимодействии с кислотами гидрат Г. образует соли гидроксиламмония, например NH3OHCl, (NH3OH)2SO4, обладающие сильными восстановительными свойствами. Г. хорошо растворяется в метиловом и этиловом спиртах, нерастворим в ацетоне, бензоле, петролейном эфире. Кислородом воздуха Г. окисляется до HNO2. Сульфат Г. в промышленности получают восстановлением нитрита натрия сернистым газом в присутствии соды. Свободный Г. получают отгонкой из щелочных растворов солей. Г. и его производные ядовиты. Соли Г. широко применяются в фармацевтической промышленности, в производстве капрона и др. и в аналитической химии.

  Лит.: Брикун И. К., Козловский М. Т., Никитина Л. В., Гидразин и гидроксиламин и их применение в аналитической химии, А.-А., 1967.

  В. С. Лапик.

Гидроксильная группа

Гидрокси'льная гру'ппа, гидроксил, одновалентная группа OH, входящая в молекулы многих химических соединений, например воды (HOH), щелочей (NaOH), спиртов (C2H5OH) и др.

Гидроксоний

Гидроксо'ний, гидратированный ион водорода H3O+: см. Гидроний и Оксониевые соединения.

Гидрол

Гидро'л, отход крахмалопаточного производства; сиропообразная однородная жидкость тёмно-коричневого цвета, получающаяся при вторичной кристаллизации гидратной глюкозы из растворов осахаренного крахмала. В Г. содержится 65—66% сухих веществ. В их составе: 68—72% редуцирующих веществ и 5—6% золы (в т. ч. 2—3% хлористого натрия). Сбраживается около 70% редуцирующих веществ (главным образом глюкоза). Применяется в производстве питательных сред, этанола и комбинированных кормов, при дублении кож.

  Лит.: Химия и технология крахмала, под ред. Р. В. Керра, пер. с англ., 2 изд., М., 1956; Производство кристаллической глюкозы из крахмала, М., 1967.

Гидролазы

Гидрола'зы, класс ферментов, катализирующих реакции гидролитического (с участием воды) расщепления внутримолекулярных связей (гидролиза). Г. широко распространены в клетках растений и животных. Участвуют в процессах обмена белков, нуклеиновых кислот, углеводов, липидов и др. биологически важных соединений. По типу гидролизуемой связи класс Г. делят на ряд подклассов: действующие на сложноэфирные связи (например, липаза); на гликозильные связи (например, амилаза); на пептидные связи (например, пепсин); на кислотноангидридные связи (например, аденозинтрифосфатаза) и т.д.

  По химической природе большинство Г. – простые белки; для проявления их каталитической активности необходимо наличие неизмененных сульфгидрильных (SH—) групп, занимающих определенное положение в полипептидной цепи. Ряд Г. получен в кристаллическом виде (уреаза, пепсин, трипсин, химотрипсин и др.). Механизм каталитического действия некоторых исследованных Г. включает соединение фермента с расщепляемым веществом с последующим отщеплением продуктов реакции и освобождением фермента. Показано, что в механизмах ферментативного гидролиза много общего с механизмом действия трансфераз и что некоторые Г. могут переносить отщепляемые группы не только на воду, но и на др. молекулы.

  Е. И. Королев.


    Ваша оценка произведения:

Популярные книги за неделю