355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ГИ) » Текст книги (страница 19)
Большая Советская Энциклопедия (ГИ)
  • Текст добавлен: 10 октября 2016, 00:30

Текст книги "Большая Советская Энциклопедия (ГИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 19 (всего у книги 45 страниц)

Гидропроект

Гидропрое'кт, Всесоюзный проектно-изыскательский и научно-исследовательский институт им. С. Я. Жука, находится в ведении Министерства энергетики и электрификации СССР. Разрабатывает водноэнергетические схемы, определяющие пути комплексного использования и охраны водных ресурсов СССР, проекты гидроэлектростанций, судоходных сооружении, каналов промышленного водоснабжения и т.п. В его составе: проектные и изыскательские отделы в Москве, отделения и филиалы в Ленинграде, Харькове, Ташкенте, Тбилиси, Баку, Ереване, Красноярске, Куйбышеве, Алма-Ате, научно-исследовательский сектор, экспериментальная база и др. подразделения. Г. изучено свыше 500 основных водотоков СССР, составлены проекты крупнейших гидроэлектростанций (Братская, Красноярская, Саяно-Шушенская и др.), судоходных соединений и водопромышленных каналов. По проектам Г. построены и сооружаются гидроузлы в ряде социалистических и развивающихся стран. С 1958 Г. публикует «Труды», посвященные актуальным вопросам проектирования, изысканий и исследований гидроэнергетических и гидротехнических сооружений. Награжден орденом Ленина (1961).

Гидроразбиватель

Гидроразбива'тель, аппарат для размельчения сухих волокнистых полуфабрикатов, макулатуры и оборотного брака и превращения их в водную суспензию при производстве бумаги и картона. Г. состоит из цилиндрической ванны с ножами и плоского ротора с такими же ножами, при вращении которых создаётся интенсивная циркуляция суспензии. Г. бывают периодического и непрерывного действия. В последнем случае в днище ванны устанавливается перфорированное сито (экстрактор) для непрерывного отвода волокнистой суспензии. Диаметр ванны до 6 м, производительность до 180 т в сутки.

Гидросальпинкс

Гидроса'льпинкс (от гидро... и греч. sálpinx – труба), скопление в маточной трубе женщин прозрачной жидкости бледно-жёлтого цвета (транссудата) вследствие нарушения в трубе крово– и лимфообращения при её воспалении – сальпингите (см. Сальпингоофорит).

Гидросамолёт

Гидросамолёт, самолёт, способный базироваться, производить взлёт и посадку на водной поверхности. Общие принципы аэродинамической и конструктивной компоновки Г. такие же, как и у сухопутного самолёта, но дополнительно Г. удовлетворяет специфическим требованиям эксплуатации (остойчивость на плаву, устойчивость пробега и разбега, способность маневрирования на водной поверхности и др.). При нахождении на плаву вес Г. полностью воспринимается гидростатической подъёмной силой (водоизмещением его корпуса), в процессе разбега – подъёмной силой глиссирующей поверхности днища его корпуса и аэродинамической подъёмной силой крыла, которая при достижении взлётной скорости обеспечивает отрыв Г. от водной поверхности. Профилированные обводы днища корпуса Г. создают гидродинамическую подъёмную силу, обусловливают устойчивость бега, достижение минимальных перегрузки и брызгообразования (при разбеге и пробеге Г.). Наличие на днище корпуса Г. поперечного уступа – редана способствует отрыву Г. от водной поверхности на предвзлётных скоростях. Опыт применения подводных крыльев (сов. Г. Бе-8) в качестве взлётно-посадочных устройств Г. показал значительное упрощение пилотирования при взлёте и посадке.

  Г. обычно строят по двум конструктивным схемам: в виде летающей лодки, в корпусе которой располагаются экипаж, пассажиры и установлено необходимое навигационно-пилотажное оборудование, и в виде обычного сухопутного самолёта, имеющего шасси с поплавками. Боковую остойчивость летающей лодки на плаву обеспечивают подкрыльные поплавки или «жабры» (обтекаемые водоизмещающие ёмкости), прикрепленные по бокам корпуса лодки. Г. с взлётно-посадочным устройством в виде сочетания колёсного шасси и лодки или поплавков (самолёт-амфибия) может базироваться как на акваториях, так и на сухопутных аэродромах.

  В России первый Г. поплавкового типа был создан в 1911 Я. М. Гаккелем. Этот Г. был отмечен на Международной авиационной выставке в 1911 большой серебряной медалью. Приоритет в создании летающей лодки (1911) принадлежит О. С. Костовичу. Первые летающие лодки в России (М-1, М-4, М-9) были построены в 1913—1915 под рук. Д. П. Григоровича. После Великой Октябрьской социалистической революции над созданием Г. для авиации военно-морского флота и гражданской авиации СССР работали авиаконструкторы Д. П. Григорович, А. Н. Туполев (МК-1, установленные на поплавки самолёты ТБ-1 и Р-6), Г. М. Бериев (морской ближний разведчик МБР-2, морской пассажирский Г. МП-1; корабельные катапультные Г. Бе-2 и Бе-4; патрульная летающая лодка Бе-6; реактивный Г. Бе-10 и турбовинтовой самолёт-амфибия М-12), И. В. Четвериков (Че-2), В. Б. Шавров (самолёт-амфибия Ш-2) и др. За рубежом строительством Г. занимались авиационные фирмы во Франции, США, Великобритании, Германии, Италии и Японии. На Г. Бе-10 в 1961 советскими лётчиками Н. И. Андриевским и Г. И. Бурьяновым установлено 12 международных рекордов, в том числе скорости полёта (912 км/ч), высоты полёта, (14962 м) и грузоподъёмности (15206 кг). Дальнейшее развитие идёт по пути создания Г. различного назначения: для грузопассажирских перевозок в районах, изобилующих акваториями, для разведки рыбы, спасательных работ на море, тушения лесных пожаров и др.

  Лит.: Самсонов П. Д., Проектирование и конструкции гидросамолётов, М. – Л., 1936; Косоуров К. Ф., Теоретические основы гидроавиации, М., 1961; Шавров В. Б., История конструкции самолётов в СССР, М., 1969.

  Г. М. Бериев.

Отечественный гидросамолёт Бе-4.

Отечественный гидросамолёт Бе-6.

Отечественный гидросамолёт Бе-10.

Отечественный гидросамолёт Бе-8 (на подводных крыльях).

Отечественный гидросамолёт М-4.

Отечественный гидросамолёт МБР-2.

Отечественный гидросамолёт М-12 (самолёт-амфибия).

Отечественный гидросамолёт АНТ-22 (МК-1).

Гидрослюды

Гидрослю'ды, слюдоподобные минералы из группы алюмосиликатов слоистой структуры, содержащие добавочную воду и, возможно, оксоний (H3O+). Г. обычно являются промежуточными продуктами стадийного перехода различных слюд в каолин, монтмориллонит, вермикулит и хлориты. Наиболее распространённые Г.: гидромусковит (иллит) (K, H2O) Al2[(Al, Si) Si3O10](OH)2 · nH2O, ректорит (H2O, K) Al2[AlxSi4-xO10](OH)2 · 3H2O, глауконит (K, H2O)(Fe, Mg, Al)2[(Al, Si), Si3O10](OH)2, гидробиотит (К, Н2О)(Mg, Fe3+)3[AlSi3O10](OH)2 · nH2O. Переход слюд в Г. сопровождается выносом щелочей с заменой их в межслоевых промежутках молекулярной водой, вероятно оксонием, а также вхождением воды, связанной с катионами, в особые дополнительные слои. При нагревании Г. сильно увеличиваются в объёме в результате раздвигания межпакетных промежутков вскипающей и удаляющейся водой. Образование Г. преимущественно связано с выветриванием и изменением слюдяных минералов в гранитах, пегматитах и др. горных породах. Образуются также в виде продуктов разложения алюмосиликатных осадков морей при диагенезе. Реже образуются в низкотемпературных гидротермальных ассоциациях за счёт изменения вмещающих рудные жилы горных пород.

  Г. П. Барсанов.

Гидросмесь

Гидросме'сь, механическая смесь частиц сыпучих или искусственно размельченных твёрдых материалов различной крупности с водой. В нефтяной промышленности и строительстве Г. называют растворами, добавляя характеристику твёрдого компонента: глинистый раствор, цементный, меловой и т.д. В горной промышленности смеси дроблёных руд, концентратов и шламов с водой называют пульпами.

Гидростат

Гидроста'т (от гидро... и греч. statós – стоящий, неподвижный), подводный аппарат, опускаемый на тросе с судна-базы, для выполнения подводных исследований и работ. Г. представляет собой камеру из прочных материалов (алюминиево-магниевые сплавы, стеклопластики и др.) шарообразной или цилиндрической формы. в которой размещается 1—3 оператора. Г. с цилиндрической формой камеры впервые был построен Гартманом (США) в 1911. Современной Г. оборудуются системой регенерации воздуха, устройствами для наблюдения под водой, светильниками, научно-исследовательскими приборами, кинофотоаппаратурой. Подача электроэнергии и телефонная связь осуществляются по кабелю. Г., предназначенные для подводных работ (по подъёму затонувших судов и др.), имеют устройства для закрепления на объекте работ и управляемые изнутри Г. манипуляторы [напр., рабочие камеры РК-680 (СССР) (рис.) и «Дискаверер» (США)]. Иногда Г. оборудуются гребными винтами, обеспечивающими возможность ограниченных перемещений под водой. Для выполнения глубоководных исследований служат, например, гидростат ГГ-57 и наблюдательная камера НК-300 (СССР), наблюдательные камеры «Галеацци» (Италия) и др. Глубина погружения современных Г. до 300 м. Г. для глубин более 300 м широкого развития в будущем не получат, поскольку спуск на тросе с надводного судна ограничивает возможности их использования. Г. повсеместно заменяются автономными глубоководными аппаратами и снарядами. См. также Батискаф и Батисфера.

  Лит.: Диомидов М. Н., Дмитриев А. Н., Покорение глубин, Л., 1964.

  Н. П. Чикер.

Рабочая камера РК-680.

Гидростатика

Гидроста'тика (от гидро... и статика), раздел гидромеханики, в котором изучаются равновесие жидкости и воздействие покоящейся жидкости на погруженные в неё тела. Одна из основных задач Г.– изучение распределения давления в жидкости. Зная распределение давления, можно на основании законов Г. рассчитать силы, действующие со стороны покоящейся жидкости на погруженные в неё тела, например на подводную лодку, на стенки и дно сосуда, на стену плотины и т.д. В частности, можно вывести условия плавания тел на поверхности или внутри жидкости, а также выяснить, при каких условиях плавающие тела будут обладать устойчивостью, что особенно важно в кораблестроении. На законах Г., в частности на Паскаля законе, основано действие гидравлического пресса, гидравлического аккумулятора, жидкостного манометра, сифона и многих др. машин и приборов.

  Если покоящаяся тяжёлая жидкость имеет свободную поверхность, во всех точках которой внешнее давление равно р, то давление жидкости на глубине h равно:

  p=p+rgh,

  т. е. давление на глубине h равно внешнему давлению, сложенному с весом столба жидкости, высота которого равна h, а площадь основания равна единице (r – плотность жидкости, g – ускорение свободного падения). Свойства давления, выражаемые этой формулой, используются в гидростатических машинах (в гидравлическом прессе, гидравлическом аккумуляторе и др.). Один из основных законов Г. – Архимеда закон определяет величину подъёмной силы, действующей на тело, погруженное в жидкость или газ. Часто встречаются случаи, когда жидкость движется вместе с сосудом так, что по отношению к сосуду она покоится. На основе законов Г. можно определить форму поверхности жидкости в таком сосуде, например во вращающемся. Поскольку поверхность жидкости всегда устанавливается таким образом, чтобы сумма всех сил, действующих на частицы жидкости, кроме сил давления, была нормальна к поверхности, в цилиндрическом сосуде, равномерно вращающемся вокруг вертикальной оси, поверхность жидкости принимает форму параболоида вращения. Так же обстоит дело в океанах – поверхность воды не является в точности шаровой, а несколько сплюснута к полюсам. Этим же в какой-то степени объясняется сплюснутая к полюсам форма самого земного шара. Т. о., законы Г., позволяющие определить форму поверхности равномерно вращающейся жидкости, важны в космогонии.

  Лит.: Элементарный учебник физики, под ред. Г. С. Ландсберга, 6 изд., т. 1, М., 1968; Хайкин С. Э., Физические основы механики, М., 1962, гл. 15.

Гидростатический парадокс

Гидростати'ческий парадо'кс, заключается в том, что вес жидкости, налитой в сосуд, может отличаться от силы давления, оказываемой ею на дно сосуда. Так, в расширяющихся кверху сосудах (рис.) сила давления на дно меньше веса жидкости, а в суживающихся – больше. В цилиндрическом сосуде обе силы одинаковы.

Если одна и та же жидкость налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на различный вес налитой жидкости, сила давления на дно одинакова для всех сосудов и равна весу жидкости в цилиндрическом сосуде. Это следует из того, что давление покоящейся жидкости зависит только от глубины под свободной поверхностью и от плотности жидкости. Объясняется Г. п. тем, что поскольку гидростатическое давление р всегда нормально к стенкам сосуда, сила давления на наклонные стенки имеет вертикальную составляющую p1, которая компенсирует вес излишнего против цилиндра 1 объёма жидкости в сосуде 3 и вес недостающего против цилиндра 1 объёма жидкости в сосуде 2. Г. п. обнаружен французским физиком Б. Паскалем.

Рис. к ст. Гидростатический парадокс.

Гидростатический подшипник

Гидростати'ческий подши'пник, подшипник скольжения, в котором масляный слой между трущимися поверхностями создаётся путём подвода масла под давлением. Коэффициент трения у Г. п. при трогании с места близок к нулю, износ практически отсутствует. В Г. п устанавливают ответственные медленно вращающиеся валы и роторы большого диаметра.

Гидростатическое взвешивание

Гидростати'ческое взве'шивание, метод измерения плотности жидкостей и твёрдых тел, основанный на законе Архимеда (см. Архимеда закон). Плотность твёрдого тела определяют его двукратным взвешиванием – сначала в воздухе, а затем в жидкости, плотность которой известна (обычно в дистиллированной воде); при первом взвешивании определяется масса тела, по разности результатов обоих взвешиваний – его объём. При измерении плотности жидкости производят взвешивание в ней какого-нибудь тела (обычно стеклянного поплавка), масса и объём которого известны. Г. в. в зависимости от требуемой точности производят на технических, аналитических или образцовых весах. При массовых измерениях широко применяют менее точные, но обеспечивающие более быстрые измерения специальные гидростатические весы, например Мора весы.

  Лит.: Кивилис С. С., Техника измерения плотности жидкостей и твердых тел, М., 1959, гл. 4.

  С. С. Кивилис.

Гидросульфаты

Гидросульфа'ты, бисульфаты, кислые соли серной кислоты H2SO4, например NaHSO4. Известны только Г. щелочных металлов. Их получают умеренным нагреванием сульфатов с серной кислотой: K2SO4+H2SO4=2KHSO4. Г. калия и натрия при плавлении теряют воду, превращаясь в пиросульфаты, например: 2KHSO4=K2S2O7+H2O; последние при дальнейшем нагревании разлагаются: K2S2O7=K2SO4+SO3. Этим пользуются для перевода в растворимые нерастворимых в кислотах сильно прокалённых окисей алюминия, хрома и железа, которые при сплавлении с Г. (или пиросульфатами) превращаются в сульфаты, например: Al2O3+3K2S2O7=Al2(SO4)3+3K2SO4.

Гидросульфиды

Гидросульфи'ды, кислые соли сероводородной кислоты H2S, например KHS.

Гидросульфиты

Гидросульфи'ты, бисульфиты, кислые соли сернистой кислоты H2SO3, например KHSO3. Г. получают по реакции: K2CO3 + 2SO2 + H2O = KHSO3 + CO2. В противоположность большинству средних солей H2SO3сульфитов, все Г. хорошо растворимы в воде. В растворах Г. постепенно окисляются кислородом воздуха до солей серной кислоты. При нагревании Г. натрия или калия образуются пиросульфиты: 2KHSO3 = K2S2O5 + H2O, часто называются метабисульфитами. Г. натрия NaHSO3 применяется в фотографии и для отбелки различных материалов; Г. кальция Ca (HSO3)2 используется при получении целлюлозы из древесины.

Гидросфера

Гидросфе'ра (от гидро... и сфера), прерывистая водная оболочка Земли, располагающаяся между атмосферой и твёрдой земной корой (литосферой) и представляющая собой совокупность океанов, морей и поверхностных вод суши. В более широком смысле в состав Г. включают также подземные воды, лёд и снег Арктики и Антарктики, а также атмосферную воду и воду, содержащуюся в живых организмах. Основная масса воды Г. сосредоточена в морях и океанах, второе место по объёму водных масс занимают подземные воды, третье – лёд и снег арктических и антарктических областей. Поверхностные воды суши, атмосферные и биологически связанные воды составляют доли процента от общего объёма воды Г. (см. табл.). Химический состав Г. приближается к среднему составу морской воды.

  Поверхностные воды, занимая сравнительно малую долю в общей массе Г., тем не менее играют важнейшую роль в жизни нашей планеты, являясь основным источником водоснабжения, орошения и обводнения. Воды Г. находятся в постоянном взаимодействии с атмосферой, земной корой и биосферой. Взаимодействие этих вод и взаимные переходы из одних видов вод в другие составляют сложный круговорот воды на земном шаре. В Г. впервые зародилась жизнь на Земле. Лишь в начале палеозойской эры началось постепенное переселение животных и растительных организмов на сушу.

  Виды вод гидросферы


Виды вод Название Объём, млн. км3Количество по отношению к общему объёму гидросферы, %
Морские воды Морская 1370 94
Подземные (за исключением почвенной) воды Грунтовая 61,4 4
Лёд и снег (Арктика, Антарктика, Гренландия, горные ледниковые области) Лёд 24,0 2
Поверхностные воды суши: озёра, водохранилища, реки, болота, почвенные воды Пресная 0,5 0,4
Атмосферные воды Атмосферная 0,015 0,01
Воды, содержащиеся в живых организмах Биологическая 0,00005 0,0003

  А. А. Соколов.

Гидротаксис

Гидрота'ксис (от гидро... и греч. táxis – расположение, порядок), движение свободно передвигающихся одноклеточных и колониальных растений и некоторых животных в сторону большей влажности (положительный Г.) или меньшей влажности (отрицательный Г.). Г., как и др. таксисы, определяется потребностями организма. Так, личинки некоторых насекомых (проволочные черви и др.) при высыхании верхних слоев почвы передвигаются в более глубокие, влажные её слои.

Гидротерапия

Гидротерапи'я (от гидро... и терапия), наружное применение воды с лечебными и профилактическими целями; то же, что водолечение.

Гидротермальные месторождения

Гидротерма'льные месторожде'ния (от гидро... и греч. therme – теплота, жар), большая группа месторождений полезных ископаемых, образующихся из осадков циркулирующих в недрах Земли горячих водных растворов, Выделяются 4 группы источников воды гидротермальных растворов: 1) магматическая вода, отделяющаяся из магматических расплавов в процессе их застывания и формирования изверженных пород; 2) метаморфическая вода, высвобождающаяся в глубоких зонах земной коры из водосодержащих минералов при их перекристаллизации; 3) захороненная вода в порах морских осадочных пород, приходящая в движение вследствие смещений в земной коре или под воздействием внутриземного тепла; 4) метеорная вода, проникающая по водопроницаемым пластам в глубины Земли. Минеральное вещество, находящееся в растворе, при отложении которого формируются Г. м., может быть выделено остывающей магмой или мобилизовано из пород, сквозь которые фильтруются подземные воды. Г. м. формировались в широком интервале от поверхности Земли до глубины свыше 10 км; оптимальные условия для их образования определяются глубиной от нескольких сот м до 5 км. Начальная температура этого процесса могла соответствовать 700—600 °С и, постепенно снижаясь, достигать 50—25 °С; наиболее обильное гидротермальное рудообразование происходит в интервале 400—100 °С. На раннем этапе вода существовала как пар, который при постепенном охлаждении конденсировался и переходил в жидкое состояние. Это был истинный ионный раствор комплексных соединений различных элементов, выпадающих при изменении давления, температуры, кислотно-щелочной и окислительно-восстановительной характеристик. Их отложение могло происходить в открытых полостях и вследствие замещения пород, по которым протекали гидротермальные растворы: в первом случае возникали жильные, а во втором – метасоматические тела полезных ископаемых. Наиболее распространённой формой гидротермальных тел являются жилы, штокверки, пластообразные и неправильные по очертаниям залежи. Они достигают длины несколько км при ширине от несколько см до десятков м. Гидротермальные тела окаймлены ореолом рассеяния составляющих их элементов (первичные ореолы рассеяния), а прилегающие к ним породы бывают гидротермально преобразованы. Среди процессов гидротермального изменения пород наиболее распространено их окварцевание, а также щелочное преобразование, при привносе калия приводящее к развитию мусковита, серицита и глинистых минералов, а под воздействием натрия – к образованию альбита. По составу преобладающей части минералов выделяются следующие главнейшие типы гидротермальных руд: 1) сульфидные, формирующие месторождения меди, цинка, свинца, молибдена, висмута, никеля, кобальта, сурьмы, ртути; 2) окисные, типичные для месторождений железа, вольфрама, тантала, ниобия, олова, урана; 3) карбонатные, свойственные некоторым месторождениям железа и марганца; 4) самородные, известные для золота и серебра; 5) силикатные, создающие месторождения неметаллических полезных ископаемых (асбест, слюды) и некоторые месторождения редких металлов (бериллий, литий, торий, редкоземельные элементы). Гидротермальные руды отличаются большим количеством входящих в их состав минералов. Обычно они неравномерно распределены в контурах рудных тел, образуя чередующиеся зоны повышенной и пониженной их концентрации, определяющие первичную минеральную и геохимическую зональность гидротермальных месторождений. Существует несколько вариантов генетических классификаций. Американский геолог В. Линдгрен (1907) предложил выделять среди них 3 класса, учитывающих глубину и температуру образования (гипотермальный, мезотермальный и эпитермальный). Другой американский геолог А. Бэтман (1940) намечал 2 класса месторождений – отложенных в пустотах и образовавшихся путём замещения. Швейцарский геолог П. Ниггли (1941) разделял эти месторождения по признакам их отношения к магматическим породам и температуре формирования. Советский геолог М. А. Усов (1931) и немецкий геолог П. Шнейдерхён (1950) расчленяли Г. м. по уровню застывания рудоносных магм. Советские геологи С. С. Смирнов (1937) и Ю. А. Билибин (1950) группировали Г. м. по их связи с тектономагматическими комплексами изверженных горных пород. В. И. Смирнов (1965) предложил группировать Г. м. по естественным ассоциациям слагающих их минеральных комплексов, отражающим их генезис. Г. м. имеют огромное значение для добычи многих важнейших полезных ископаемых. Особенно они существенны для получения цветных, редких, благородных и радиоактивных металлов. Г. м., кроме того, служат источником добычи асбеста, магнезита, плавикового шпата, барита, горного хрусталя, исландского шпата, графита и некоторых драгоценных камней (турмалин, топаз, берилл).

  Лит.: Смирнов С. С., О современном состояния теории образования магматогенных рудных месторождений, «Записки Всероссийского минералогического общества», 1947, ч. 76, в. 1; Бетехтин А. Г., Гидротермальные растворы, их природа и процессы рудообразования, в сборнике: Основные проблемы в учении о магматогенных рудных месторождениях, 2 изд., М., 1955; Николаев В. А., К вопросу о генезисе гидротермальных растворов и этапах глубинного магматического процесса, там же; Смирнов В. И. Геология полезных ископаемых, М., 1969; Генезис эндогенных рудных месторождений, М., 1968.

  В. И. Смирнов.

 


    Ваша оценка произведения:

Популярные книги за неделю