Текст книги "Живой кристалл"
Автор книги: Яков Гегузин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 6 (всего у книги 12 страниц)
Яков Ильич основывался на почти самоочевидной, практически единственно разумной по тому времени модели процесса: для того чтобы сдвинуть часть кристалла относительно другой, нужно в плоскости сдвига одновременно перемещать все атомы сдвигаемой части относительно той, которая остается неподвижной. Попросту говоря, для того чтобы сдвинуть, надо сдвинуть! Очень естественное предположение!
Следуя за Френкелем, оценим напряжение, необходимое для этого. Френкель предположил, что по мере перемещения одной части кристалла относительно другой надо преодолевать сопротивление, величина которого со смещением изменяется периодически, повторяясь после каждого смещения на межатомное расстояние. Предположение абсолютно естественное, если только модель, положенная в основу расчета, справедлива. И еще: Френкель предположил, что взаимное смещение частей кристалла сопровождается их упругой деформацией. В этих предположениях он получил оценку того максимального сдвигового напряжения сгт, которое необходимо приложить, чтобы сдвиг начался. А начавшись, он будет продолжаться: в начале процесса, когда атомы сдвигающихся частей кристалла расположены друг над другом, сопротивление сдвигу максимально, а следовательно, лиха беда начало!
Вот френкелевская оценка:
где G – модуль сдвига. Так как G ≈ 1012 дин/см2, то στ= 1011 дин/см2. В действительности оказывается, что для осуществления сдвига, скажем, кристалла меди достаточно приложить напряжение около 108 дин/см2, т. е. в тысячу раз меньшее, чем предсказывает теория, основанная на представлении о сдвиге, который происходит одновременно по всей «плоскости сдвига».
После Френкеля многие теоретики уточняли эту оценку, но их уточнения лишь незначительно изменяли главный результат. Предположение о том, что сдвиг происходит одновременно вдоль всей плоскости, приводит к непомерно большим напряжениям, в тысячи раз превосходящим те, которые обнаруживаются в эксперименте. Френкель оказал огромную услугу проблеме прочности кристалла, вскрыв кричащее противоречие между теорией процесса скольжения и результатами эксперимента.
Теоретик, как правило, более подозреваем в ошибках, чем экспериментатор, который, в отличие от теоретика, свою правоту аргументирует фактами, а не такой зыбкой материей, как рассуждения. Рассуждения обычно считают вещью менее упрямой, чем факт. В случае френкелевской оценки дело обстоит особенно сложно, потому что, казалось бы, невозможно поставить такой опыт, в котором принятая им модель сдвига осуществлялась бы и сделанная оценка была бы экспериментально подтверждена или опровергнута. Действительно, экспериментировать с обычными реальными кристаллами и данном случае нельзя, так как в них практически всегда имеются различные дефекты, а и модель, и расчет Френкеля предполагают кристалл бездефектным, идеальным. И все же возможность осуществить такой эксперимент отыскалась. Он был поставлен почти через 20 лет после френкелевского расчета. В этом опыте экспериментировали не с кристаллами, а с моделью кристалла, построенной из мыльных пузырей.
С пузырьковой моделью БНЛ кристалла мы уже знакомы. Здесь немного скажем только о том, как ею воспользовались для проверки расчета Френкеля. В данном случае модель хороша тем, что она может быть бездефектной, а именно это главным образом и необходимо для проверки правильности расчета.
Моделируя сдвиг в совокупности идеально упорядоченных мыльных пузырьков, экспериментаторы измерили две величины: во-первых, по данным о деформации на самом раннем этапе, когда взаимное соскальзывание пузырьков еще не произошло, они определили модуль сдвига двумерного плота из пузырьков и, во-вторых, по этим же данным определили величину максимального усилия, необходимого для начала собственно сдвига. Оказалось: στ = G/20. В знаменателе формулы Френкеля стоит 2π, а у экспериментаторов получилось 20. Расхождению в 3 раза можно не придавать особого значения, тогда как теория с результатами опытов над реальными кристаллами не согласуется в тысячи раз.
Следует обратить внимание на то, что в рассказанной истории модельный опыт сыграл не совсем свойственную ему роль. Он оказался источником информации, которую в опытах с кристаллами ранее получить не смогли. Оказывается, хорошая модель может и это.
Подведем итог. Модельный эксперимент подтверждает справедливость теории, в основе которой лежит представление о том, что сдвиг осуществляется одновременно по всей плоскости. Теория кричаще не согласуется с результатами опытов над реальными кристаллами. Естественно прийти к заключению, что представления, положенные в основу теории, не соответствуют процессам, происходящим в кристаллах, где скольжение происходит как-то не так, как это представлял себе Френкель в 1924 г. Теория явно нуждается в учете реальной структуры кристалла, т. е. факта наличия в кристаллах дефектов. Каких? В каком количестве?
С какими свойствами? До получения ответов на эти вопросы после работы Френкеля прошло 6 лет, в нашей книге все разъяснится в следующем очерке.
МОДЕЛИ: ДВИЖЕНИЕ ГУСЕНИЦЫ, ПЕРЕДВИЖЕНИЕ КОВРА
В этом очерке должно разъясниться то, что оставалось загадочным в предыдущем. Начнем издалека, с рас-суждений, которые покажутся очень удаленными от интересующего нас кристалла. И для рассуждений изберем модель, к кристаллу не имеющую пи малейшего отношения. Стараясь понять, как происходит скольжение в кристалле, мы будем обсуждать режим движения... гусеницы.
Для начала сделаем с этой «моделью» недобрый эксперимент: попытаемся протащить гусеницу по земле. Сделать это, оказывается, не просто, для этого нужны значительные усилия. Они обусловлены тем, что мы пытаемся одновременно оторвать от земли все пары лапок гусеницы. Вообще говоря, гусеница могла бы перемещаться в таком режиме: одновременно всеми лапками отталкиваться от земли и при этом «проскользнуть» на некоторое расстояние. Каждый такой шаг-скачок требовал бы от гусеницы усилий. На такие усилия она, заведомо, не способна и поэтому пользуется иным режимом движения: от поверхности земли отрывает только пару лапок, переносит их по воздуху, опускает на землю, затем то же повторяет со следующей парой лапок и т. д., и т. д. После того, как каждая пара лапок будет один раз перенесена по воздуху и опущена в новое положение, вся гусеница переместится на расстояние, на которое поочередно смещалась каждая из пар лапок. Это прозвучит курьезно, но гусеничный шаг – это когда гусеница, перемещаясь вдоль земли, в действительности летит по воздуху. Именно так: летит по воздуху! Впрочем, и мы, шагая по земле, летим. Для очередного перемещения ноги мы отрываем ее от земли и с легкостью переносим по воздуху. Ни одну из пар лапок гусеница не волочит по земле. Именно поэтому и ползет легко.
О гусеничном шаге можно рассказать и по-иному, словами, приближающими наш пример к кристаллу. В системе «гусеница – земля» имеется подвижный «дефект» – пара лапок, не соприкасающихся с землей.
Гусеница сместится на один шаг лишь после того, когда такой дефект переместится вдоль всего тела гусеницы. Очень прошу читателя последний абзац прочесть два-три раза и внимательно вдуматься в его содержание. Он очень важен для всего дальнейшего.
Цель, которую мы преследуем в этом очерке, важна, и, пожалуй, на пути к ней имеет смысл потратить немного времени и обсудить еще одну модель: ковер, лежащий на гладком полу. Перемещать такой ковер по полу, если он к полу прилегает плотно, – дело нелегкое: площадь соприкосновения ковра с полом велика, ковер добротный, тяжелый, и усилия для его смещения понадобятся немалые. А вот если поперек ковра имеется узкая складка (дефект!), вдоль которой ковер отделен от пола, переместить ковер можно существенно меньшими усилиями. Они нужны лишь для того, чтобы разгладить складку. Когда складка пройдет через весь ковер, он сместится на ширину складки. Складка – легкоподвижный дефект в системе «ковер – пол» (аналог поднятых лапок в системе «гусеница – земля»), так как в области складки ковер не соприкасается с полом. И в одной, и в другой модели перемещение оказывается следствием движения не тела гусеницы или ковра, а соответствующего подвижного дефекта.
Вот теперь можно обратиться и к кристаллу. И в нем скольжение оказывается облегченным в связи с наличием подвижного дефекта, подобного приподнятым лапкам гусеницы или отставшей от пола складки ковра.
Представим себе, что одна из тех атомных плоскостей кристалла, которые ориентированы перпендикулярно плоскости скольжения, обрывается на этой плоскости, не имеет за ней продолжения. Очевидно, оборванная плоскость должна перемещаться легче прочих. Когда она сместится на межатомное расстояние, се положение займет следующая плоскость и т. д., и т. д. Последняя фраза означает, что движется не данная оборванная плоскость, атомы которой можно было бы пометить, а дефект структуры – незавершенная, оборванная плоскость. Она – поднятые лапки гусеницы, она – складка на ковре. Такой дефект структуры называют краевой дислокацией, а линию, которая ограничивает незавершенную плоскость, – линией краевой дислокации.
Здесь, пожалуй, уместно нарисовать две простые картинки и прокомментировать их. На одной из них изображен участок здорового кристалла. В этом участке избран один произвольный атом, от которого мысленно начат маршрут, состоящий из некоторого числа шагов – периодов решетки – влево, вниз, вправо и вверх. Направление маршрута на рисунке обозначено тонкой стрелкой. Этот маршрут называется «контур Бюргерса». Свидетельством здоровья кристалла является то, что при равном числе шагов вниз и вверх, а также влево и вправо маршрут замыкается. На второй картинке изображен участок кристалла, содержащий дефект – краевую дислокацию. Маршрут, подобный предыдущему, совершенный вокруг дислокации, не замкнется, что свидетельствует о нездоровье кристалла, о наличии в области, ограниченной маршрутом, дислокации. Линию машрута можно замкнуть стрелочкой-вектором так, как это сделано на рисунке. Этот вектор называется вектором Бюргерса. Легко понять, что он может принимать лишь значения, кратные значениям межатомных расстояний.
Итак, все как будто становится на свои места: есть идея, которая, во всяком случае качественно, устраняет противоречие между идеализированной теорией Френкеля и экспериментом; есть модели, свидетельствующие о том, что в природе осуществляются и иные ситуации, подобные той, которая возникает в кристалле при скольжении.
Все то, о чем я сейчас пишу с уверенностью, на заре развития учения о дислокациях выглядело правдоподобной догадкой теоретиков. Особой почтительности и доверия эта догадка тогда не вызывала. Многими она воспринималась как свидетельство гибкости ума теоретиков, которые способны придумать еще и не такое! Но, когда появились первые экспериментальные доказательства реальности режима «гусеничного» движения в кристалле, идея дислокации обрела мощь и определила развитие огромной главы физики твердого тела – физики пластической деформации.
В этом очерке нам, пожалуй, следует сделать еще три дела: поглядеть на дислокацию в модели БНЛ, убедиться в том, что скольжение происходит в области кристалла, богатой дислокациями, и попытаться построить простейшую теорию пластического деформирования кристалла вследствие движения дислокаций.
Первая из задач решается совсем просто. Для этого достаточно взглянуть на приводимые фотографии ансамбля пузырьков с дислокацией. Чтобы лучше увидеть дислокацию, смотреть на фотографию надо не обычно сверху вниз, а почти параллельно плоскости листа, повернув при этом лист так, чтобы направление взгляда (оно обозначено стрелками) совпадало с диагональными рядами пузырьков.
На одной из фотографий представлена модель краевой дислокации, – ее мы узнаем легко. На другой – модель дислокационной петли. Собственно не всей петли, а ее сечения плоскостью фотографии. Образовалась эта петля так: из кристалла была удалена часть атомной плоскости в форме круглого диска, возникшая при этом полость «схлопнулась», при этом оставшаяся незавершенная плоскость (удален диск!) оказалась ограниченной замкнутой линией. Она и является дислокационной петлей.
Модель БНЛ дает возможность не только увидеть дислокации невооруженным глазом, но и проследить за тем, как расположены атомы вблизи конца незавершенной плоскости, или, как часто говорят, вблизи ядра дислокации. Для этого надо сделать простое построение. В той области фотографии, где расположена дислокация, проведем линии через центры пузырьков в рядах. Читатель это легко сделает самостоятельно и увидит, что о наличии дислокации осведомлены атомы (пузырьки!), которые отстоят от ядра дислокации на расстоянии трех-четырех периодов. В данном случае модель БНЛ дает качественную информацию о том, что имеет место в реальном кристалле вблизи дислокации.
Как и первая, вторая задача решается взглядом на фотографию. На фотографии представлена область скольжения в монокристалле. Видны выходы дислокаций на поверхность, тех самых, которые, перемещаясь, обусловливают взаимное скольжение частей кристалла. Строго говоря, видны, разумеется, не выходы дислокаций на поверхность, а результат растравливания специальным травителем тех мест, где линии дислокаций пересекают поверхность кристалла. В тех местах, которые растравливаются активнее, чем соседние, образуются «ямки травления». Вот они и видны.
Обратимся теперь к третьей задаче. Попробуем ее решить для очень упрощенного случая, а затем, когда получим конечную формулу, полагаю, с удовольствием заметим, что она справедлива и для любого другого случая, отличающегося от упрощенного.
Допустим (и в этом смысл упрощения!), что мы хотим осуществить сдвиг вдоль некоторой плоскости в кристалле, имеющем форму куба с ребром l0, в котором все дислокационные линии лежат в плоскостях, параллельных плоскости сдвига. Допустим, что боковая поверхность кристалла, имеющая площадь l02, пересекается дислокационными линиями, при этом в плоскости скольжения расположено п дислокационных линий. Эти дислокации и будут нас далее интересовать, так как именно они и определяют процесс скольжения вдоль избранной плоскости сдвига. Допустим, что в нашем опыте по сдвигу каждая из дислокационных линий еще не успела пройти путь l0 , а прошла какой-то более короткий путь li . Подвижная часть кристалла относительно неподвижной сместится при этом на расстояние
Назовем эту величину плотностью подвижных дислокаций, обозначим ее ρ0 и запишем полученную формулу в окончательном виде:
ε = ρ0 bli
Удовлетворимся здесь приведенным формальным определением понятия «плотность дислокаций». Подробнее оно обсуждено немного дальше, в очерке о размножении и гибели дислокаций.
Чуть-чуть торжественно подведем итог: мы получили одну из фундаментальных формул теории дислокационного деформирования. Она фундаментальна потому, что входящие в нее величины уже потеряли связь с тем упрощенным примером, с которого мы начинали построение теории и в котором предполагалось, что дислокации движутся лишь в одной плоскости скольжения. Полученная формула этого уже не помнит, так как ρ0 – плотность всех дислокаций, движущихся в любой из возможных плоскостей скольжения.
Воспользуемся формулой для числовой оценки. Допустим, что среднее расстояние между дислокационными линиями ≈ 10-4 см. Это значит, что плотность подвижных дислокаций ρ0 ≈ 108 см-2. Если в опыте дислокации успели сместиться приблизительно на расстояние между ними, то при b ≈ 3.10-8 см величина ε ≈ 3.10-4 , т. е. пластическая деформация произойдет на 0,03%. Это ни мало и ни много, а ровно столько, сколько должно быть при такой плотности дислокаций и при таком их смещении.
Из нашей формулы следует еще одно важное соотношение. Если ее левую и правую части поделить на время, в течение которого происходил сдвиг, то мы получим связь между скоростью пластического деформирования и средней скоростью движения дислокаций υ, так как υ = li /t. Эта связь подсказала идею огромного количества стереотипных опытов, которые проводились с различными кристаллами: измеряли скорость пластического деформирования кристалла, плотность дислокаций и вычисляли по этим данным скорость их движения.
Начали мы с обсуждения режима движения гусеницы и ковра со складкой, а окончили фундаментальной формулой теории дислокаций. По дороге, от начала очерка к его концу, логическая цепочка как будто бы не рвалась.
ВОСХОЖДЕНИЕ ДИСЛОКАЦИЙ
О «восхождении» дислокаций теперь пишут в серьезных научных книгах. Видимо, тому ученому, который впервые исследовал перемещение дислокаций с одной плоскости скольжения на другую плоскость, движение дислокации представилось подобным восхождению по ступеням лестницы. Именно этот образ и помог ему понять закономерности «восхождения».
Дислокация умеет перемещаться двумя различными механизмами – «скользить» в плоскости скольжения и «восходить» в направлении, перпендикулярном этой плоскости. Одновременно «скользя» и «восходя», дислокация может двигаться и под произвольным углом к плоскости скольжения. Со скольжением мы знакомы: знаем и о гусенице, и о ковре, и о реальной скользящей дислокации. В этом очерке – о восхождении.
Что происходит, когда краевая дислокация перемещается с данной плоскости скольжения на параллельную? Происходит вот что: незавершенная плоскость, ограниченная дислокационной линией, становится короче на величину расстояния между плоскостями. Произойти это может лишь в случае, если освобождающиеся при этом атомы диффузионно уйдут от дислокационной линии в кристалл. Поэтому для того, чтобы дислокация «восходила», нужно создать условия, при которых атомы будут диффузионно течь по направлению от линии. Впрочем, они могут течь и к линии и пристраиваться к незавершенной плоскости, удлиняя ее. В этом случае дислокация будет восходить в противоположном направлении, скажем так: нисходить.
Итак, дело за малым, надо обеспечить направленный диффузионный поток атомов. Этого можно добиться, прилагая к кристаллу сжимающие или растягивающие напряжения. Если кристалл сжать в направлении, перпендикулярном незавершенной плоскости, – вблизи дислокационной линии, т. е. там, где обрывается незавершенная плоскость, величина напряжений окажется большей, чем вдали от нее. Это означает, что вблизи дислокационной линии концентрация вакансий будет более низкой, чем вдали от нее, и, следовательно, к линии потекут вакансии или, что то же, атомы диффузионно потекут от линии и плоскость будет укорачиваться. В случае растягивающих напряжений все рассуждения обратятся: от линии потекут вакансии, к линии – атомы, плоскость удлиняется. В предыдущих рассуждениях, специально этого не оговорив, мы воспользовались зависимостью концентрации вакансий сυ от напряжений σ: создаем сжимающие напряжения – концентрация вакансий понижается, растягивающие – увеличивается. Установить количественную связь между сυ и величиной и знаком σ – дело не простое, не станем им заниматься. А вот качественно понять, в чем здесь дело, не сложно. Дело в том, что всесторонне сжимаемый кристалл обязан как-то уплотниться, и он это делает, лишаясь части пустоты в виде пустых узлов решетки – вакансий. А растягиваемый кристалл ведет себя диаметрально противоположно: подчиняясь растягивающим напряжениям, которые его вынуждают к увеличению объема, кристалл рождает пустоту в виде дополнительных вакансий. Интуиция подсказывает, что величина изменения концентрации вакансий и величина напряжений должны быть связаны зависимостью Δсυ ~ σ. Скажем, зависимость Δсυ ~ σ2 не может иметь места, так как она означала бы нелепость: Δсυ не зависит от знака σ. Точный расчет подтверждает: зависимость Δсυ ~ σ.
Примитивно процесс диффузионного восхождения дислокации можно проиллюстрировать моделью: колодой скользких карт, одна из которых из колоды частично выдвинута. Если такую колоду сжать, выдвинутая карта выскользнет из нее, а если растянуть, карта упадет в колоду.
Не пытаясь строить теорию восхождения дислокаций, а пользуясь только «общими соображениями», можно полагать, что скорость восхождения определяется величиной диффузионного потока атомов к дислокационной линии или от нее. Это означает, что при неизменном напряжении с ростом температуры скорость восхождения будет увеличиваться так же, как и коэффициент диффузии. И расчеты, и опыты согласно свидетельствуют о том, что при температуре, близкой к температуре плавления металлов, дислокация может восходить со скоростью ≈10- 4 см/с. Это – большая величина! Она означает, что за секунду дислокация пройдет путь ≈10- 4 см и пересечет ≈ 10- 4 / 3.10-8 ≈ 3.103 атомных плоскостей.
За секунду! Именно поэтому восхождение дислокаций проявляется во многих реальных явлениях и процессах, которые происходят при высоких температурах. Расскажу о двух из них.
Один из процессов заключается в обходе препятствий, которые скользящая дислокация может встретить на своем пути. Представим себе, что к кристаллу извне приложено напряжение, вызывающее в нем скольжение краевых дислокаций вдоль какой-то из плоскостей скольжения. В этой плоскости одна за другой движутся дислокации. В бездефектном кристалле ансамбль скользящих дислокаций напоминает цепочку движущихся друг за другом людей. Именно так по узкой тропинке движутся туристы. Пусть на пути движущихся дислокаций встретится непреодолимый для них барьер. Не важно, что собой представляет этот барьер-стопор, а важно лишь, что для скользящей дислокации он непреодолим. У такого стопора головная дислокация остановится. Скользящие за головной тоже будут тормозиться и поджимать ее к стопору. Дело в том, что две одинаковые дислокации, если они находятся в одной плоскости, друг от друга отталкиваются. Таков закон! Подробно о нем будет рассказано позже, в очерке «Взаимодействие и взаимопревращение дефектов». Этот закон означает, что, приближаясь к себе подобной, движущаяся дислокация будет тормозиться. Испытывая сжимающие напряжения, поджатая к стопору, дислокация начнет диффузионно восходить и перейдет на плоскость, которая расположена над (или под) стопором. На этой плоскости она сможет беспрепятственно продолжать скользить, а кристалл – деформироваться. В этом процессе благодаря восхождению дислокация обходит, огибает стопор, который, скользя, она не могла бы преодолеть. Продолжая аналогию между дислокациями и туристами, уместно вспомнить строку из шуточной песни туристов: «Умный в гору не пойдет, умный гору обойдет!»
Здесь надо упомянуть, что описанный процесс обхода препятствия дислокацией может совершаться при высокой температуре, когда диффузия происходит достаточно быстро. В области низких температур события могут развернуться совсем по-иному... Впрочем, об этом позже, в очерке, посвященном зарождению трещин.
Второй процесс. Он интересен тем, что восхождение дислокаций в нем проявляется в чистом виде, без примеси скольжения. Речь идет о процессе самопроизвольного разгибания некогда согнутого кристалла. Легко представить себе, что к изгибу кристалла приводят незавершенные плоскости, вставленные в кристалл с одной его стороны. Модель: колода карт, в которой некоторое количество карт вставлено не на всю длину колоды. Каждая незавершенная плоскость соответствует одной краевой дислокации. Очевидно, радиус кривизны кристаллической пластинки будет тем меньшим, чем большее число краевых дислокаций одного знака в нем расположено. В процессе отжига эти дислокации расположатся в ряды: это оказывается энергетически выгодным. При этом, однако, число дислокаций останется неизменным, а значит, неизменным останется и кривизна кристалла. Каждый ряд дислокаций подобен сжатой пружине, так как расположенные друг над другом дислокации отталкиваются, – таков закон их взаимодействия. Поэтому дислокации, расположенные над и под средней линией изогнутого кристалла, должны перемещаться к его противоположным поверхностям.
При этом первые (незавершенные плоскости укорачиваются!) становятся «источником» атомов, а вторые (незавершенные плоскости удлиняются!) – «источником» вакансий. Обмениваясь атомами и вакансиями, дислокации диффузионно восходят, через поверхность кристалла выходят за его пределы, их число в кристалле уменьшается, и он разгибается.
Этот эффект наблюдался в очень простых опытах. Тонкая пластинка монокристалла NaСl изгибалась по кругу так, что между ее концами оставался маленький зазор. Затем она горизонтально располагалась в печи. В процессе отжига велось наблюдение за шириной зазора. Со временем он увеличивался, свидетельствуя о распрямлении кристалла. По скорости распрямления можно было вычислить коэффициент диффузии и убедиться в том, что основной механизм распрямления – это диффузионное восхождение дислокаций.
ТРУДНОСТИ ТЕОРИИ КРИСТАЛЛИЗАЦИИ
В истории всякой теории есть период, когда она привлекательна не столько достигнутыми успехами, сколько возникшими перед ней трудностями. Это обычно юношеский период развития теории, когда она испытывает то, что именуется «трудностями роста».
Вопрос «Как растут кристаллы?» тревожил многие умы – и те, которые проблему обсуждали умозрительно, и те, которые, служа практике, пытались лучшим образом искуссвенно выращивать кристаллы.
В нашем повествовании оставим без обсуждения множество наивных догадок о том, как растут кристаллы; эти догадки в ранг теории возводить не надо. Не будучи теориями, они, однако, предшествуют их появлению, и поэтому пренебрежительно перешагивать через эти догадки не следует, они, безусловно, заслуживают благодарности.
Первая серьезная теория роста кристаллов появилась в середине 20-х годов и была предложена немецким физиком Косселем и болгарским физиком Странским. Они рассуждали строго, физически оправданно и очень прямолинейно.
Вот их логика. Есть кристаллик, ограненный плоскими поверхностями. Он играет роль зародыша будущего кристалла, ему надлежит расти. Есть источник атомов, которые, осев на кристалле, увеличивают его объем, способствуют его росту. Атомы могут осаждаться, приходя к зародышу из пересыщенной газовой фазы, или из пересыщенного раствора, или из расплава. До сих пор рассуждения физиков заведомо непорочны, так как ничего, кроме констатации факта, они не содержат: зародыш кристаллика растет за счет осаждения на нем атомов. Теория, однако, обязана предложить модель процесса и ответить на следующие вопросы: в каких случаях атом «сочтет целесообразным» осесть на поверхности растущего кристалла, будет ли он это делать единолично или в компании себе подобных, с какой скоростью кристаллик будет расти, как на эту скорость можно повлиять? У теории можно потребовать ответа еще на многие другие вопросы. Ограничимся этими основными и сочтем теорию разумной, если, в согласии с фактами, она ответит на них.
Продолжим прямолинейную логику Косселя и Странского. Если на гладкой поверхности кристалла осядет всего один атом, он с кристаллом будет связан непрочно и, прожив на поверхности какое-то короткое время, покинет ее. А это означает, что кристаллик расти не будет, он как бы не приемлет атомы, которые хотели бы в одиночку обосноваться на нем. Их непрочная связь обусловлена изолированнестью атома, недостатком со
седей. Если представить атом в форме кубика, то из шести возможных связей кубика с соседями установленной оказывается только одна. Будем считать, что прочность связи такого атома с кристаллом составляет одну шестую от максимальной. Поэтому теоретики решили, что для того, чтобы кристалл приобрел способность к росту, осесть на поверхности должен коллектив атомов, образующих колонию. Легко понять, что чем больше атомов входит в состав плоской колонии, тем прочнее она окажется связанной с кристаллом.
Коссель и Странский выяснили, что чем меньше степень пересыщения раствора или переохлаждения расплава, тем больше должен быть размер колонии, которая окажется способной к росту, не распадется на отдельные атомы, поодиночке покидающие поверхность кристалла. Такую колонию они назвали «критическим двумерным зародышем». Если на поверхности кристалла возник такой зародыш, то к его контуру могут пристраиваться приходящие одиночные атомы и зародыш будет разрастаться, покрывая собой всю поверхность кристалла, выстраивая новый одноатомный слой. А затем должно начаться все сначала: появляется двумерный зародыш, разрастается, образуется одноатомный слой.
Если принять описанную модель роста и если считать, что время ожидания появления жизнеспособного зародыша τ значительно больше времени, в течение которого он разрастается, то легко написать основную формулу теории, определяющую скорость роста кристалла:
υкр = a/τ
где а – расстояние между атомами, т. е. толщина одноатомного слоя.
Теоретики сумели вычислить величину τ, нашли ее связь со степенью неравновесности, т. е. со степенью переохлаждения расплава или пересыщения раствора (источника атомов, питающих кристалл). Выяснилось, что т увеличивается по мере уменьшения степени неравновесности, стремясь к бесконечности при стремлении степени неравновесности к нулю. И скорость при этом стремится к нулю.
Все оправданно, разумно, и, казалось бы, эксперимент не должен, не имеет права противоречить такой стройной логичной теории. Природа, однако, оказалась изощреннее формально строгой логики теоретиков. Выяснилось, что во многих случаях при малой степени неравновесности среды реальные кристаллы растут существенно быстрее, чем это предсказывает логически стройная теория. Существенно – это значит не в 2—3 раза, а в тысячи раз. Теория явно нуждается в коренном усовершенствовании, дисциплинированная логика явно где-то ограничила фантазию, и правда ускользнула от теоретиков.
Итак, теория встретилась с трудностью – залогом того, что не за горами ее усовершенствование. Оно появилось на кончике пера английского теоретика Франка, размышлявшего о структуре реального кристалла менее дисциплинированно, чем его предшественники. Он усмотрел слабую сторону теории Косселя и Странского в том, что, согласно их представлениям, идеальный зародыш разрастается в идеальный кристалл. Ни в зародыше, ни в кристалле нет дефектов, кристалл растет так, что на его поверхности наслаиваются идеальные атомные плоскости. Именно для этого Косселю и Странскому понадобился идеальный зародыш, который долго не желает появляться, если степень неравновесности невелика. Франк, однако, видел перед собой реальный кристалл, и его логика, очевидно, развивалась следующим образом. От двумерного зародыша надо отказаться. Если даже при очень малой степени неравновесности кристалл растет быстро, на его поверхности, видимо, существует не исчезающая в процессе роста ступенька, к которой пристраиваются одиночные атомы. В этом месте своих рассуждений Франк освободился от гипноза предшественников и высказал неожиданный фантастический домысел: неисчезающая ступенька. В теории Косселя и Странского роль ступеньки играет контур зародыша.