Текст книги "Живой кристалл"
Автор книги: Яков Гегузин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 3 (всего у книги 12 страниц)
Если руководствоваться самыми общими соображениями, естественно предположить, что свойства кристалла должны существенно зависеть от соотношения между двумя его характерными энергиями: нулевой и энергией связи. Верное предположение, мы будем иметь случай убедиться в этом.
Об амплитуде нулевых колебаний. Ее легко можно оценить, воспользовавшись уже известным нам соотношением, которое описывает принцип неопределенности. Неопределенности в координате ∆х придадим смысл амплитуды нулевых колебаний Aн, а неопределенность в импульсе ∆рх близка к среднему значению импульса частицы рх, который связан с кинетической энергией нулевых колебаний: Wн = рх2/2т. Таким образом,
рх = (2тWн )1/2
Вот теперь соотношение неопределенностей можно переписать в виде
Aн =ђ / (2тWн )1/2
Из полученной формулы следует, что чем легче атомы, из которых состоит кристалл, тем больше амплитуда их нулевых колебаний. Масса атома водорода mн2 = 1,6 •10-24 г. При такой массе и известной нам энергии нулевых колебаний их амплитуда оказывается близкой к межатомному расстоянию в кристалле водорода. А вот масса атома золота велика, mAu = 3 •10-22 г, и амплитуда нулевых колебаний в кристалле золота составляет всего около двух процентов от межатомного расстояния.
Рассуждая о нулевых колебаниях, физики часто пользуются величиной так называемого параметра де Бура. Им определяется отношение амплитуды нулевых колебаний к межатомному расстоянию:
Для подавляющего большинства веществ параметр де Бура мал, значительно меньше единицы. Существуют, однако, и такие, для которых он близок к единице и даже превосходит ее. К примеру, у изотопов гелия, атомы которых очень легки (≈ 5 • 10-24 г), оказывается Λ ≈ 3!
Когда параметр де Бура существенно превосходит единицу, это означает, что вещество ни при какой температуре не может существовать в кристаллической фазе, если искусственно (приложением внешнего давления) не уменьшить амплитуду нулевых колебаний и таким образом уменьшить Λ до значений порядка единицы и менее. Таким веществом, как известно, является гелий, который в обычных условиях остается жидким при сколь угодно низких температурах. Закристаллизовать его можно, лишь приложив давление. Небольшое, около 25 атмосфер. Естественно, может возникнуть вопрос, почему этим свойством не обладает водород, который, как известно, легче гелия. Дело в том, что параметр де Бура определяется не только массой атомов, но и энергией взаимодействия между ними. В случае водорода эта энергия больше, чем в случае гелия, и в этом причина того, что водород отвердевает, а гелий нет!
Мой рассказ об одном из непременных признаков жизни кристалла – о нулевых колебаниях – с самого начала основан на доверии читателя.
Доверием я не злоупотребил. Нулевые колебания себя обнаруживают во многих физических явлениях, главным образом в так называемых «квантовых кристаллах», у которых амплитуда нулевых колебаний велика, параметр Λ достигает значений, превосходящих единицу. Это – кристаллы, для которых характерна малая энергия связи, и существуют они в области низких температур (ожиженные и закристаллизованные идеальные газы и др.). Благодаря активным нулевым колебаниям, эти кристаллы обладают аномальными механическими свойствами. А недавно физики обнаружили, что в кристаллах изотопов гелия вблизи 0 К происходит так называемая «квантовая диффузия», при которой коэффициент диффузии растет с понижением температуры. Удивительно? Удивительно, но факт!
ЕСТЬ ЛИ ПРОК В БЕСПОРЯДКЕ?
В шуточных стихах поэт четко выразил общепринятое отношение к интересующей нас проблеме «порядок – беспорядок»:
Порядок стихотворных строк
Люблю в своей тетрадке.
Я лишь в порядке вижу прок,
Не вижу – в беспорядке.
Так вот, с точки зрения кристалла поэт не прав, кристалл «видит» прок в беспорядке. Ему необходимы и порядок, и беспорядок одновременно. Утверждение немного курьезно, оно, однако, ничуть не искажает реальную ситуацию. Быть может, его следует лишь немного уточнить: кристаллу, который является воплощением и торжеством порядка, необходима некоторая доля беспорядка в расположении атомов. Беспорядок может проявлять себя в различных признаках, быть представленным в различной степени, – но обязан быть! – и, как выясняется, степень беспорядка с ростом температуры должна увеличиваться. Беспорядок – непременный признак жизни кристалла, а следовательно, прок в нем есть!
Вначале о происхождении порядка в кристалле, которое проще осмыслить, если предположить температуру кристалла равной нулю и мысленно избавиться от всяких признаков беспорядка. Упорядоченное расположение атомов в кристалле есть непосредственное следствие фундаментального закона природы: устойчивыми оказываются такие состояния, при которых энергия системы минимальна. В нашем случае «система» – это кристалл, а энергия – это сумма энергий взаимодействия между всеми парами атомов, составляющих кристалл. Среди прочих значений минимальная энергия выделена своей величиной, и среди прочих возможных расположений атомов ей должно соответствовать некоторое выделенное, т. е. упорядоченное, расположение атомов. Среди необозримого числа неупорядоченных расположений оно тем-то и выделено, что отличается порядком в расположении атомов. Какому расположению будет соответствовать порядок – неважно, а важно лишь то, что порядок! Не хаос, а порядок!
Изложенное немного туманное рассуждение можно прояснить, обсудив элементарную задачу о расположении атомов в кристалле, состоящем всего из трех одиночных атомов, находящихся на одной прямой и скрепленных одинаковыми пружинками. Этакая предельно упрощенная модель одномерного кристалла. Оказывается, что если первый и третий атомы закрепить, то пружинки, с помощью которых эти атомы взаимодействуют со вторым, будут обладать минимальной энергией в случае, когда второй атом расположен посредине между первым и третьим. Избранная упорядоченная структура, когда расстояние l1,2 равно расстоянию l2,3, оказывается выгоднее любой «неупорядоченной», когда l1,2 и l2,3 не равны.
Решение этой задачи почти самоочевидно: сместить в одном и другом направлении второй атом из среднего положения, когда l1,2 = l2,3 – это значит растянуть одну пружинку и сжать другую. При этом энергия, запасенная в каждой из пружинок, возрастает, а это и означает, что расположение, соответствующее минимуму энергии, должно быть упорядоченным (l1,2 = l2,3!).
Теперь о происхождении беспорядка.
Вначале, не уточняя структуру очага беспорядка, можно утверждать: его появление обусловлено тем, что с повышением температуры увеличивается энергия теплового движения атомов, оно становится более активным и в разных участках кристалла нарушается идеальный порядок в расположении атомов. Казалось бы, ну и пусть себе движение становится более активным, а центры, вокруг которых происходят тепловые колебания атомов или ионов, могли бы оставаться на месте и порядок оставался бы порядком. Такое пожелание вроде бы ничему не противоречит, а, исполнись оно, порядок, как в стихотворных строках, на радость поэту, сохранился бы.
Наше интуитивное желание видеть в кристалле идеальный порядок, оказывается, противоречит законам природы. Не уверен, надо ли говорить «к сожалению», но противоречит. Дело здесь вот в чем. Для возникновения очага беспорядка – например, атом покинул свое законное место, которое он занимал в узле решетки, и перескочил в зазор между узлами, в междоузлие, – необходима некоторая энергия. В области будущего очага беспорядка она, заимствованная из энергии теплового движения атомов ближайшего окружения, может появиться случайно. Ближайшие атомы колеблются не строго согласованно, и случайное стечение обстоятельств может привести к такому перераспределению энергии их тепловых колебаний, при котором в области будущего очага беспорядка появится энергия, достаточная для рождения очага. Говорят так: появилась необходимая энергетическая флуктуация. С ростом температуры, когда активность теплового движения возрастает, должна возрастать и частота флуктуаций энергии, достаточной для возникновения очагов беспорядка, и, следовательно, концентрация очагов также должна расти.
Здесь необходимо подчеркнуть, что флуктуация в кристалле – эффект, как говорят, коллективный, в нем участвует группа атомов, а не только тот единственный, который, например, оказался выброшенным из узла в междоузлие. Просто именно он попал в область пика флуктуаций, а мог бы попасть и любой иной из коллектива атомов, оказавшихся в очаге флуктуаций.
Итак, и флуктуации энергии, и очаги беспорядка возникают самопроизвольно. Это, однако, не означает, что появление очагов беспорядка в кристалле сопровождается увеличением его энергии, ее удалением от требующегося термодинамикой минимума. Дело здесь вот в чем. Для того чтобы при повышенной температуре поддерживать в кристалле идеальный порядок (все атомы в узлах, все узлы заняты атомами!), надо было бы энергию тратить на то, чтобы гасить самопроизвольно возникающие энергетические флуктуации. Так вот, эта энергия, привнесенная в кристалл извне, делала бы его энергию заведомо неминимальной. А это и значит, что очаги беспорядка возникать будут просто потому, что не возникать они не могут. Они – условие существования кристалла при температуре, отличной от нуля. Они – непременный признак жизни кристалла.
Прочел написанное о термодинамической оправданности беспорядка и почувствовал, что, видимо, читателю нужны дополнительные разъяснения и примеры.
Примеры в научных доказательствах – вещь очень деликатная. Как известно, пример, согласующийся с утверждением, имеет силу лишь иллюстрации, а доказательной силы – никакой, а пример, противоречащий утверждению, имеет доказательную силу: он свидетельствует о том, что утверждение неверно. Скажем, полная корзина красных помидоров фактом своего существования не противоречит утверждению, «все помидоры красные», но и не доказывает его. А один зеленый помидор это утверждение начисто опровергает. И все же я приведу пример в надежде, что он поможет (!) читателю освоиться с мыслью о термодинамической оправданности беспорядка. Если средняя кинетическая энергия одной молекулы в идеальном газе kT/2, топ молекул имеют энергию пkT/2. Эта энергия не изменится, если объем газа увеличится, и, казалось бы, нет оправдания стремлению газа расширяться в пустоту. А между тем газ это самопроизвольно делает при первой же возможности. А оправдание есть и состоит оно в том, что, заняв большой объем, газ окажется в состоянии с большей степенью беспорядка, чем в малом объеме. И самопроизвольное возникновение беспорядка в кристалле, и самопроизвольное расширение газа в пустоту – следствия одной и той же термодинамически оправданной тенденции. Напомню: рассказанное – не доказательство, а всего лишь пример!
Коротко о структуре очагов беспорядка. Главным образом с точки зрения «прока» от них. В этом случае лучше вообще говорить не о структуре, а о величине энергетической флуктуации, необходимой для появления очага данного типа. Очевидно следующее: чем больше нарушение идеальной структуры кристалла в очаге, тем большая нужна флуктуация энергии и тем меньше таких очагов появится при данной температуре. Поэтому очаги значительного беспорядка (поры, трещины, границы) в кристалле самопроизвольно появляться не будут. В энергетических единицах они стоят дорог о и кристаллу противопоказаны, прока от них нет, одни расходы. А вот мелкие очаги беспорядка (лишний атом в междоузлии или вакантная позиция в узле решетки) в кристалле будут: стоят они недорого, а без очагов беспорядка, как мы выяснили, кристалл существовать не может.
Итак, в беспорядке есть прок! Однако прок проком, но должен все-таки существовать естественный предел этому беспорядку, иначе кристалл – образование упорядоченное – потеряет смысл, а с ним и право на существование.
Обсудим меру необходимого кристаллу беспорядка, избрав в качестве примера очага беспорядка в кристалле узел, не замещенный атомом, т. е. вакансию. Обсудим – значит попытаемся выяснить, сколько вакансий должно быть в кристалле при данной температуре, чтобы удовлетворить его потребность в «вакансионном беспорядке».
Вопрос надо уточнить, так как и крупинка в солонке – кристалл, и глыба каменной соли – кристалл. И поэтому следует говорить не о количестве вакансий; а об их концентрации, т. е. об отношении числа вакантных узлов nυ к числу всех узлов кристаллической решетки N0:
сυ = nυ /N0
Так как вакансия возникает вслед за появлением достаточной флуктуации энергии, у читателя может возникнуть опасение, что число вакансий все время будет возрастать – благо источники пустоты неисчерпаемы! Этого не произойдет, так как все те вакансии, без которых кристалл может обойтись, родившись, исчезнут! Сочтем,
что на вопросы «как?» и «куда исчезнут!׳» здесь отвечать не обязательно. Здесь важно лишь, что в сложное переплетении процессов рождения и исчезновения вакансий при данной температуре в кристалле автоматически поддерживается строго определенная, необходимая ему их концентрация. Именуют ее равновесной. С ростом температуры равновесная концентрация вакансий будет возрастать. Это совершенно подобно тому, что происходит в объеме под колпаком, где стоит открытый сосуд с водой. С поверхности воды некоторые молекулы испаряются, а иные конденсируются на нее, но при каждой данной температуре давление водяного пара под колпаком вполне определенное. Если считать, что образование одной вакансии предполагает необходимость во флуктуации энергии величины Uυ и если воспользоваться известным в физике законом (он называется экспоненциальным), который утверждает, что вероятность флуктуации энергии определенной величины Uравна е-U/kT, то концентрация вакансий определится формулой
cυ = е-Uυ/kT .
Для примера оценим значения cυ в золоте при двух температурах: комнатной (Т = 300 К) и температуре плавления (Т = 1336 К). Энергия образования вакансии в золоте Uυ = 1,6• 1 0-12 эрг. Помня, что константа Больцмана к = 1,38•10-16 эрг/К, легко получить интересующие нас величины: при комнатной температуре одна вакансия приходится на 1015 атомов, а при температуре плавления одна вакансия – на 104 атомов. Кристалл, как выясняется, довольствуется малым числом вакансий, но отказаться от них и не может, и не имеет нрава!
С температурой нарастающей по экспоненциальному закону беспорядок в кристалле приводит к тому, что многие его характеристики изменяются, подчиняясь этому же закону. Это относится к коэффициенту диффузии, определяющему подвижность атомов в кристаллах, к упругости пара, которая зависит от вероятности отрыва атома от поверхности кристалла, а в ионных кристаллах и к коэффициенту электропроводности, которая, как известно, осуществляется диффузионным механизмом, и ко многому другому. Мне кажется, что происходящее с кристаллом при повышении температуры можно определить так: он экспоненциально оживает. Определение, разумеется, не строгое, но правильно передающее существо происходящего.
ПАРА ФРЕНКЕЛЯ
Знаменитый английский физик-теоретик, шестой из славной плеяды кавендишских профессоров и Нобелевский лауреат Невилл Мотт в своих сердечных воспоминаниях о Якове Ильиче Френкеле говорит о том, что любой английский студент-физик знает о «паре Френкеля» и что так будет всегда, до тех пор, пока люди будут интересоваться физикой.
Я хочу проследить историю возникновения идеи о «паре», проследить судьбу этой идеи от ее рождения до того времени, когда она овладела сознанием всех, изучающих реальный кристалл, и вместе с читателем подумать над тем, как через четверть века после рождения она обрела вторую молодость. Пользуясь терминологией спортсменов – обрела второе дыхание. История «пары Френкеля» – поучительная история, она заслуживает пристального внимания.
В конце 10-х годов нынешнего века Абрам Федорович Иоффе изучал процессы в ионном кристалле, к которому извне приложена разность потенциалов. Обнаруженные им явления выглядели неожиданно. Во-первых, оказалось, что сквозь кристаллы течет ток. Точнее говоря, не ток, а два тока: ток положительных зарядов к катоду и ток отрицательных зарядов к аноду. Во-вторых, выяснилось, что при неизменной разности потенциалов с повышением температуры величины обоих токов растут.
Следовало удивляться и одному, и другому результату. К тому времени, когда Иоффе экспериментировал, уже было известно, что ионный кристалл состоит из положительно и отрицательно заряженных ионов, из катионов и анионов, которые образуют две сосуществующие подрешетки. В этих подрешетках каждый из ионов приписан к определенному узлу. Молчаливо предполагалось, что приписан навечно: анион, окруженный катионами, катион – анионами.
А если так, то как могут возникнуть токи? Кто переносит заряды? Ионы? Но им двигаться запрещено. И не словесно, а структурой кристалла. Фактом приписки навечно к определенному узлу решетки. В такой ситуации, когда непонятно, как и кем переносятся заряды, вряд ли стоит обсуждать, почему ток увеличивается с температурой.
Для объяснения результатов опытов возникла рабочая гипотеза, которой суждено было стать одной из фундаментальных идей физики реального кристалла. Я. И. Френкель эту гипотезу теоретически развил. В те годы Френкель был совсем молодым человеком и ему были свойственны независимость и революционность мышления, которые приличествуют талантливой молодости. Впрочем, свой огромный творческий потенциал Я. И. Френкель сохранил до конца своей, к несчастью, короткой жизни.
Рассуждал он примерно так. Ион, находящийся на поверхности кристалла, может, случайно оторвавшись от него, покинув узел, в котором находился, уйти в паровую фазу. Для этого случайного события нужно, чтобы тот ион, которому надлежит совершить героический поступок – оторваться от соседей и покинуть узел, – обрел необходимую для этого энергию. Почему, собственно, рассуждал Френкель, атом может испаряться лишь с поверхности кристалла в окружающую пустоту? Вообще говоря, не существует никаких принципиальных запретов, в силу которых атом не может из объема кристалла испариться... в объем кристалла. Точнее говоря, покинуть узел в объеме кристалла и перейти в межузельное пространство. Быть может, этот поступок требует даже меньшего героизма, количественной мерой которого является необходимая для этого энергия, чем испарение с поверхности в пустоту? Если атом покинет узел, перейдя в межузельное пространство, а затем, совершив несколько случайных скачков из междоузлия в междоузлие, уйдет прочь от своего узла, то в результате возникнут одновременно два дефекта: вакантный узел и атом в междоузлии, где ему быть не положено. Эти два дефекта, родившиеся одновременно в одном акте «испарения атома в кристалл», и обрели название «пары Френкеля».
Вот теперь качественно объяснить результаты опытов Иоффе – сущий пустяк. Обе компоненты «пары Френкеля» – и межузельный ион, и вакансия – заряжены и под действием электрического поля направленно могут перемещаться по решетке, а значит, и переносить заряд.
Ион, несущий заряд, – это не вызывает вопросов. А вот «заряженная вакансия» – это следует пояснить! Если иметь в виду величину и знак заряда, то речь идет о том, что уход иона из узла вместе со своим зарядом можно представить как приход в опустевший узел заряда, равного по величине и обратного по знаку заряду ушедшего иона. Ушел катион – осталась отрицательно заряженная вакансия, ушел анион – осталась положительно заряженная вакансия.
Межузельный атом перемещается легко, так как рядом с тем междоузлием, в котором он находится в данный момент, всегда имеются иные междоузлия, в которые он может перепрыгнуть. А вакансия может перемещаться потому, что находящийся вблизи нее ион может «впрыгнуть» в нее, а это значит, что вакантной окажется та позиция, где раньше находился этот ион. В этом процессе вакансия перемещается на одно межатомное расстояние.
Итак, благодаря представлению о «паре Френкеля» можно понять, почему под влиянием внешнего поля в ионном кристалле текут токи. Очень естественно объясняется и рост тока с температурой. Как и упругость пара, концентрация «пар Френкеля» с температурой растет по экспоненциальному закону, по этому же закону растет концентрация носителей тока, а значит, и его величина.
Представления о «парах» Яков Ильич облек в математическую форму, вычислив концентрацию «пар». Его расчет не сложен. Результат расчета прост, физически ясен, его можно понять, минуя математику. Как мы уже знаем, какое-то количество «пар» обязательно должно в кристалле присутствовать, так как их появление есть следствие флуктуаций энергии, а флуктуации – это то, что не происходить не может. В этом смысле «пары» будто и не дефект, так как существовать без них кристалл не может. Термодинамика, требующая появления флуктуаций, делает «пары» жизненно необходимыми кристаллу.
До сих пор мой рассказ похож на сказку со счастливым концом: есть загадочное явление, есть счастливая догадка, объясняющая явление. Экспериментатор открыл, теоретик предложил качественное объяснение – конец счастливый! Все было бы так, если бы не одно обстоятельство, если бы не малая малость: в тех кристаллах, с которыми экспериментировал Иоффе, ...«пары Френкеля» практически не могут возникать потому, что переход из узла в междоузлие требует непомерно большой энергетической флуктуации: ион велик, а междоузлие мало, и «втиснуться» в междоузлие – это значит сильно потеснить атомы, находящиеся в непосредственном соседстве с данным междоузлием. А для этого нужна большая энергия. Во всяком случае именно так дело обстоит в таких кристаллах, как NaCl, КCl и др. Разве только в кристаллах AgCl дело обстоит по-иному, так как ион серебра значительно меньше иона хлора и ему в междоузлии, образованном ионами хлора, будет не тесно.
Сделанным замечанием, разумеется, идея Френкеля не порочится, потому что замечание носит характер не принципиальный, а только количественный: потребная флуктуация энергии велика, и поэтому образование «пары» маловероятно.
В те годы, когда френкелевская идея только появилась, ясного понимания ее неприменимости к объяснению опытов Иоффе не было. Конец рассказанной мной истории тогда казался истинно счастливым. Иллюзорность согласия теории и эксперимента выяснилась позже, но большое событие в истории науки произошло, «пары Френкеля» родились, идея дефектов, существование которых предсказывает термодинамика, появилась и прочно вошла в ткань науки о кристаллах, повлияв на развитие многих ее разделов.
Опыты Иоффе количественно были объяснены немного позже. Для этого была использована идея, лишь чуть-чуть отличающаяся от той, из которой следуют «пары». О ней я рассказывать не стану. Здесь мне, однако, хочется высказать почти самоочевидную сентенцию: внутренне непротиворечивая, глубоко физическая идея может оказаться жизнеспособной и значащей и тогда, когда она оказывается бессильной объяснить факты, для объяснения которых была рождена.
В заключение очерка несколько фраз о «втором дыхании идеи». Когда физики и инженеры начали активно заниматься исследованиями последствий взаимодействия ядерных излучений с веществом – это было в конце 40-х – начале 50-х годов, – идея «пары» привлекла их пристальное внимание. Как выяснилось, под влиянием облучения атом может покинуть узел принудительно, не ожидая необходимой для этого энергии, которая ему может быть доставлена волей случая. Атом выбивается из узла и застревает в одном из ближайших междоузлий – образуется «пара».
В этом радиационном варианте «пара Френкеля» – один из основных типов дефектов, которые возникают в кристаллах при их облучении протонами, нейтронами, γ-квантами и др. Именно в радиационном варианте «пара Френкеля» обрела второе дыхание.
ЗАМОРОЖЕННАЯ ПУСТОТА
Идея заморозить пустоту возникла задолго до того, как о ней стали писать в научных журналах и докладывать на научных конференциях.
Ссылки на «частное сообщение» особой доказательностью не отличаются. Но в данном случае иной ссылки быть не может, и, рассказывая о том, как родилась идея «заморозить пустоту», я могу сослаться лишь на «частное сообщение».
Борис Георгиевич Лазарев – крупный специалист в области физики низких температур, один из поколения физиков, начинавших свою деятельность в «школе Иоффе», – мне рассказывал о том, что Яков Ильич Френкель советовал ему «заморозить пустоту» еще в середине 30-х годов, т. е. почти за двадцать лет до того, как Б. Г. Лазарев одним из первых эту идею осуществил.
Речь идет вот о чем. При высокой температуре в кристаллической решетке концентрация вакансий – «атомов пустоты» – велика. Впрочем, лучше выразиться точнее: «велика» – значит всего около сотой процента
позиций в решетке вакантны. Если температуру понижать, то и концентрация вакансий должна понизиться. Важно, с какой скоростью будет происходить понижение температуры и уменьшение концентрации вакансий. Если температуру понижать медленно, вопрос не возникает: концентрация вакансий будет в точности соответствовать равновесной при данной температуре образца.
В принципе мыслимо (видимо, так рассуждал Я. И. Френкель) температуру понижать с такой скоростью, что вакансии, которые при понижении температуры оказываются лишними и которым надлежит как-то уходить из кристаллической решетки, не будут успевать это делать. У вакансий есть много способов исчезнуть, уйти из кристаллической решетки. Не будем их обсуждать, нам вполне достаточно знать, что как-то вакансии могут уйти. А при низких температурах, когда диффузионная подвижность вакансий пренебрежимо мала, они практически вообще этого делать не будут. Это значит, что вакансии, т. е. атомы пустоты, окажутся замороженными. Именно это и имеется в виду, когда говорят «замороженная пустота». Так можно заморозить песчинки в быстро охлаждаемой воде, в которой взмучен песок. Если бы вода остывала медленно, песок успел бы осесть на дно.
Замороженные вакансии должны увеличить омическое сопротивление металлического кристалла на некоторую величину ∆R. Так как каждая из них является центром, рассеивающим электроны, то
∆R ≈ cv = e-UvlkT.
Измеряя сопротивление в образцах, закаленных от разных температур, точнее – величину прироста сопротивления, можно получить сведения о равновесной концентрации вакансий при этих температурах. Очень заманчивая возможность!
Логика теоретика как будто внутренне непротиворечива, пустоту заморозить можно. В этом, однако, очень многие сомневались и тогда, когда идея жила как таковая, и даже тогда, когда появились результаты первых опытов, свидетельствовавшие о ее состоятельности.
Возражавшие против принципиальной возможности заморозить пустоту говорили, что, как бы скоро экспериментатор ни охлаждал образец (а делать это с бесконечной скоростью он принципиально не может), вакансии все равно будут успевать уходить из решетки. Куда? Куда-нибудь, где найдется для них пристанище: в пору, в трещину, в дислокацию, на поверхность образца. Именно куда-нибудь, только бы не оставаться в растворе, где она лишняя, «избыточная». Не закалится! Уйдет!
Вначале расскажу о том, как были поставлены опыты по закалке вакансий, а потом попробуем построить элементарную теорию «замораживания пустоты».
Опыты были поставлены очень просто. Я имею в виду замысел опытов, а не их осуществление. Предварительно тщательно отожженные током проволочки металлов – золото, платина и др. – помещали в ванну с холодной жидкостью, током нагревали проволочку до определенной температуры, после чего выключали ток. Проволочка с большой скоростью охлаждалась. О том, что в ней сохранились замороженные вакансии, судили на основании измерения омического сопротивления. Оно оказывалось тем более высоким, чем до более высокой температуры была током нагрета проволочка, т. е. чем большее число вакансий было заморожено.
Такие опыты были поставлены в нескольких лабораториях мира, и результат опытов оказался одним и тем же, никак не зависящим от географического положения лаборатории: пустота везде замораживалась.
Теперь попытаемся построить элементарную теорию явления. Настолько элементарную, что даже и теорией ее называть не следует. Так, приближенные оценки, годные лишь для того, чтобы почувствовать величины, которые определяют явление.
Допустим, что стоки вакансий в образце в среднем отстоят друг от друга на расстоянии ≈ 10-4 см. Почему 10-4 см? Просто потому, что для реальных кристаллов это разумная величина. Здесь пусть читатель автору поверит. Допустим также, что металлическая проволока, нагретая до предплавильной температуры, охлаждается со скоростью υ= 103 °С/с. Скорость разумная, приблизительно такие скорости экспериментаторами осуществлялись в опытах по замораживанию вакансий. Вот теперь обсудим, какой путь успевают пройти вакансии за время остывания образца на ∆Т градусов при предплавильной температуре и при температуре, существенно более низкой. Так как остывание на ∆Т градусов происходит за время τ = ∆Т/υ , то, очевидно, за это время вакансия успеет пройти путь, определяемый формулой
l ≈ (Dυτ)1/2 = (Dυ.∆T/υ)1/2
Пусть и здесь читатель мне поверит, что я пользуюсь правильной формулой. На с. 56 (всего через 5 страниц) я эту формулу докажу и оправдаю доверие читателя.
Предположим, что в интервале в один градус коэффициент диффузии вакансий остается неизменным. Для определенности будем считать, что эксперимент ставится с проволоками золота, у которого при температуре плавления Т = 1063 °С Dυ= 10-5 см2/с, а при Т = 700 °С Dυ= 10-9 см2/с. Предположим также, что ∆Т ≈ 1 °С. Так вот, если охлаждать, начиная с температуры плавления, то за время остывания на 1 °С вакансии пройдут путь ≈ 10-4 см, а это значит, что некоторая их часть, и, быть может, немалая часть, успеет достичь стоков и исчезнуть в них. Часть, но не все! Оппоненты идеи торжествуют: вакансии исчезают прежде, чем экспериментатор успевает их заморозить. А вот за время остывания на 1 °С, начиная с температуры 700 °С, вакансии успевают пройти путь в 10-6 см. По сравнению с расстоянием между стоками 10-4 cм прохождение такого малого пути равносильно стоянию на месте. Читателю теперь легко понять, что при данной скорости охлаждения «замораживание» пустоты будет происходить, начиная с некоторой температуры, до которой образец успел остыть. И чем более высока скорость охлаждения, тем меньше та высокотемпературная область, где оппоненты идеи оказываются частично правы, так как некоторые вакансии действительно успевают достигать стоков.