Текст книги "Живой кристалл"
Автор книги: Яков Гегузин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 5 (всего у книги 12 страниц)
Здесь, продолжив логику изложения, иной читатель обратит внимание на то, что по мере освобождения ступенек вблизи уровня Ферми на них могут переходить электроны с нижних ступенек и в конце концов все электроны начнут принимать участие в тепловом движении. Все станет на свои «классические» места, и шестерка превратится в девятку. «Иной» читатель прав. Точнее, качественно прав, так, вообще говоря, может быть, но ... реально не будет! Дело в том, что из совсем несложных расчетов следует, что электронный газ потеряет воспоминание о своей квантовой природе и превратится в классический газ около так называемой «температуры вырождения», которая для металлов оказывается весьма высокой, порядка 10б К. При такой высокой температуре любой металл испарится, а с ним исчезнет и предмет наших забот – электронный газ. Таким образом, вплоть до температуры плавления электронный газ в металле оказывается, как говорят физики, «сильно вырожденным», заведомо квантовым. И поэтому теплоемкость электронного газа остается пренебрежимо малой по сравнению с теплоемкостью решетки. Разумеется, в области высоких температур, где справедлив закон Дюлонга и Пти.
Подумаем над тем, что должно быть в области низких температур, там, где закон Дюлонга и Пти оказывается несостоятельным. Решеточная теплоемкость Ср ~ Т3, а электронная Сэ ~ Т.
Это означает, что должна существовать такая температура Т*, ниже которой электронная теплоемкость будет больше решеточной. Эта температура оказывается очень низкой, для металлов около 10 К. Экспериментально она отчетливо обнаруживается, свидетельствуя о разумности наших представлений о теплоемкости электронов – квантового газа.
Переведем здесь дыхание, вспомним рассказанное и попытаемся представить себе общую картину движения частиц-ионов и частиц-электронов, составляющих металл. Вначале об области высоких температур. Решетка, состоящая из ионов, ведет себя «классически»: атомы колеблются около положений равновесия, модель «атом-шарик» на пружинке отражает этот процесс. А электроны ведут себя «квантово» и воспринимают лишь малую долю той тепловой энергии, которую они могли бы получить от горячей решетки. Существуют два ансамбля частиц: «классические» ионы и «квантовые» электроны. Частицы каждого из ансамблей движутся, подчиняясь своим законам, проявляя свои признаки жизни.
А теперь об области низких температур. Судьба электронного газа остается той же, так как и «низкая» и «высокая» температуры очень удалены от «температуры вырождения» электронного газа. А вот ионная подсистема при переходе в область низких температур отражает уже известные нам черты квантовости.
В конце очерка, почти вне связи с предыдущим изложением, я хочу обратить внимание на одну важную особенность электронного газа. Так как каждый атом, входя в состав решетки металла, отдает в среднем около одного электрона в газ, то плотность этого газа оказывается огромной, равной 1/ω ≈ 1023 см-3 (ω – объем, приходящийся на атом). Это в 104 раз больше, чем число частиц в обычном газе при нормальном давлении. Таким образом, плотность электронного газа такая, какой была бы плотность (число частиц в единице объема) обычного газа под давлением 10 000 атмосфер. При этом оказывается, что такая высокая плотность не мешает электронному газу сохранять свойства идеального!
Электронный газ обладает еще одной особенностью, которая резко отличает его от обычного «классического» идеального газа, с представлениями о котором мы сроднились еще со школьных времен, когда впервые познакомились с законом Бойля – Мариотта. Тогда мы прочно усвоили, что кинетическая энергия частиц идеального газа настолько превосходит потенциальную энергию взаимодействия между ними, что, вычисляя полную энергию газа, потенциальной энергией можно пренебречь. Делать это можно с тем большим основанием, чем более разрежен газ. Таким образом, степень «идеальности» классического газа увеличивается с уменьшением его плотности. А у квантового (в частности, электронного) газа ситуация диаметрально противоположная: чем плотнее газ, тем он идеальнее. Странно? Действительно странно, но так! Дело в том, что, как оказывается, кинетическая энергия εk электронов в ансамбле зависит от числа электронов в единице объема пепо закону εk ~ ne2/3 , а потенциальная энергия εр их взаимодействия, которое подчиняется закону Кулона, изменяется с расстоянием lе между электронами по закону εр ~ 1/lе . Так как пе = 1/lе3, то εр ~ пе1/3.
Очевидно, что с ростом пе , т. е. с увеличением плотности электронного газа, εk возрастает быстрее, чем εр, а это означает, что газ дает больше оснований пренебрегать εр по сравнению с εk , то есть становится более идеальным.
Итак, металлический кристалл «пропитан» электронным газом огромной плотности. Легко понять, что наличие такого газа – необходимое условие существования металлического кристалла. Ведь если бы мы могли удалить свободные электроны из металла, «выдуть» их из решетки, ионы, оставшиеся в узлах, имея одинаковые заряды, под влиянием кулоновского отталкивания разлетались бы прочь друг от друга, решетка «взорвалась» бы и перестала существовать. Электронный газ как бы скрепляет решетку, состоящую из взаимно отталкивающихся ионов.
ЭЛЕКТРОНЫ ДВИЖУТСЯ В МЕТАЛЛЕ
В школьные годы я не испытывал благоговения перед законом Ома. Напротив, мне казалось, что совершенно нет оснований почти самоочевидное утверждение превращать в памятник ученому. Ток пропорционален напряжению! А чему бы ему еще быть пропорциональным? Конечно же, напряжению!
Закон Ома, однако, явно заслуживает большей почтительности. Его видимая простота отражает сложные процессы, которые происходят в кристалле, когда по нему течет электрический ток. Закон Ома был экспериментально установлен в 1826 г. и со временем явился источником важной информации о свойствах живого кристалла. Об этом и рассказ.
Если отвлечься от гипноза школьного учебника, то не так уж очевидно, что ток должен быть пропорционален напряжению. Легко построить вполне логичную последовательность шагов, которая приведет к утверждению, отличному от закона Ома. Логика эта будет основана на совершенной правде. Разве только не вся необходимая правда будет ею учтена. Построим эту последовательность шагов, имея в виду металл, т. е. кристалл, состоящий, как известно, из ионов, которые размещены в узлах решетки, и обобществленных электронов, о которых говорят: «электронный газ».
Первый шаг: ток, т. е. количество электронов, которое проходит через площадь 1 см2 за единицу времени, при прочих равных условиях должен быть пропорционален скорости электронов. Шаг верный, сомнений он не вызывает.
Второй шаг: если к кристаллу приложено постоянное напряжение, то электрон испытывает на себе действие определенной силы. В этом случае, согласно закону Ньютона (а электрон не имеет права не подчиняться этому закону), электрон должен двигаться с постоянным ускорением, т. е. со временем его скорость должна увеличиться. Это означает, что со временем будет увеличиваться и ток. Кажется, и в этом шаге нет ошибки.
А если так, то мы пришли к заключению, отличному от закона Ома: напряжение постоянно, а ток со временем возрастает, так как возрастает скорость электронов. Наши дисциплинированные шаги привели нас к поразительному следствию: приложим к металлическому кристаллу малое напряжение, а ток в нем будет со временем увеличиваться беспредельно, до бесконечности. Логика кажется непорочной, а следующее из нее предсказание резко противоречит фактам. Попросту нелепо!
Конечно же, порочны не факты, а наши рассуждения. Для того чтобы согласовать их с фактами, надо понять, почему электроны, испытывая на себе действие извне приложенной постоянной силы и не приходя при этом в конфликт с законом Ньютона, движутся все же с постоянной скоростью, а не с постоянным ускорением. Под влиянием постоянной внешней силы тело может двигаться с постоянной скоростью лишь при условии, что кроме этой силы на него действует еще и сила трения. Ну, скажем, шарик в жидкости падает с постоянной скоростью, испытывая на себе две силы: силу тяжести и противоположно направленную силу трения шарика о жидкость. По величине эти две силы равны, их разность равна нулю, и закон Ньютона оказывается удовлетворенным: в отсутствие действующей силы тело должно либо покоиться, либо двигаться равномерно и прямолинейно. Происходит второе.
Вернемся к электронам. Итак, для того чтобы соблюдался закон Ома, электроны в металле должны двигаться, испытывая силу трения. Мы явно на правильном пути, так как, видимо, благодаря именно этой особенности движения электронов в металлическом кристалле, он нагревается проходящим током, обнаруживая «омическое сопротивление». Тепло является следствием потерь электронами энергии, расходуемой на преодоление трения.
Теперь наша логика согласуется с законом Ома: так как устанавливающаяся скорость тем больше, чем большая сила действует на электрон, и так как эта сила пропорциональна приложенному напряжению, то и ток пропорционален напряжению. Оба закона соблюдены: и Ома, и Ньютона.
Неистолкованным остается физическое содержание, которое следует вложить в слово «трение». Вообще говоря, «трение» – это то, что порождает силу, которая в процессе движения препятствует нарастанию скорости тела, движущегося под влиянием извне приложенной силы. Это, как уже упомянуто, лишь «вообще говоря». А если говорить конкретно, имея в виду электрон, движущийся в кристалле, то под влиянием силы, рожденной приложенным напряжением, электрон прогрессивно не наращивает скорость из-за того, что встречает на своем пути различные препятствия, о которые электрон как бы спотыкается. Наращивает скорость, а затем теряет ее, наращивает и опять теряет и т. д. В этом скачкообразном процессе он перемещается с некоторой средней «дрейфовой» скоростью υд. Именно она и определяет ток.
Естествен вопрос: обо что «спотыкается» электрон? Практически о любую неоднородность структуры металла. Во-первых – о примесные, чужеродные атомы, которые в решетке вокруг себя создают напряжения. Так как число примесных атомов от температуры не зависит, их вклад в омическое сопротивление металла с температурой не изменяется. Говорят: температурно независимый вклад. Во-вторых – о те меняющиеся со временем неоднородности структуры кристалла, которые обусловлены тепловым движением составляющих его атомов. Мы, уже знающие, что совокупность тепловых возбуждений в решетке можно представить как газ квазичастиц-фононов, об этой второй причине сопротивления, оказываемого решеткой электронам, можем сказать так: рассеяние электронов на фононах. Так как плотность газа фононов с температурой растет, растет и обусловленный им «температурно зависимый вклад» в сопротивление решетки движущимся электронам.
Два вклада в электросопротивление металлов можно разделить, воспользовавшись их различным отношением к температуре: если охладить металлический кристалл до температуры, очень близкой к абсолютному нулю, то фононы практически исчезнут (говорят «вымерзнут»), и тогда роль примесей обнаружится в чистом виде: чем меньше примесей, тем меньше окажется «остаточное» сопротивление. Этой возможностью определить степень чистоты металла физики пользуются очень широко.
Итак, закон Ома заслуживает почтительного к себе отношения, в школьные годы я явно заблуждался.
ВЕТРЫ В КРИСТАЛЛЕ
В этом очерке рассказ о двух различных ветрах, дующих в кристалле: электронном и вакансионном. То, о чем будет идти речь, назвать ветрами можно с достаточным основанием, так как аналогия с обычным ветром, который, как известно, поддерживается разностью давлений воздуха, оказывается далеко идущей.
Вначале об электронном ветре. Имеется в виду тот направленный поток электронов в металле, который поддерживается разностью потенциалов. О нем мы уже говорили, когда обсуждали закон Ома. Мы, однако, интересовались лишь способностью потока переносить заряд, а образ «электронный поток – ветер» в том разговоре об электрическом токе мы оставили в стороне. Здесь разговор именно об этом образе.
Современным уровнем понимания явлений, сопутствующих электронному ветру, мы обязаны главным образом известному физику-теоретику В. Б. Фиксу.
Итак – электронный ветер, которому, как и всякому истинному ветру, положено сдувать препятствия на своем пути. В металле при высокой температуре на пути электрона среди прочих препятствий может оказаться ион, который, получив случайно нужную порцию энергии, совершает элементарный диффузионный скачок, т. е. находится в состоянии перескока. Такой «возбужденный» ион, сидящий не в потенциальной яме, а оказавшийся на вершине потенциального барьера, очень подвержен действию ветра. Движущийся электрон, подгоняемый полем, этому иону может передать часть своего импульса, «дунуть» на него и увлечь за собой. Обсудим этот процесс подробнее.
Если мысленно, сохранив разность потенциалов, исключить движение электронов, то окажется, что положительно заряженный ион со стороны поля будет испытывать действие силы, направленной к катоду, и, следовательно, к катоду должно быть направлено и преимущественное перемещение ионов,
Совершающих диффузионный скачок. Эта сила равна произведению истинного заряда иона q на величину напряженности электрического поля:
F← = qЕ.
В действительности, однако, ион испытывает действие двух сил: силы поля, которая определяет перемещение к катоду положительно заряженного иона, и противоположно направленной силы электронного ветра, который «сдувает» ионы по направлению к аноду. Теоретики вычислили, что в истинных металлах, где число свободных электронов близко к числу ионов, образующих решетку, сила электронного ветра значительно, в десять и более раз, превосходит силу, обусловленную полем. Упрощая их расчет, можно оценить силу ветра F→. Она оказывает на ион некоторое давление
P→ = F→ / S ,
где S – площадь, занимаемая ионом. Физики говорят «поперечник рассеяния», подчеркивая этим, что электрон, столкнувшийся с этой площадью, испытывает рассеяние. Приблизительно эта величина равна квадрату расстояния между ионами в решетке: S ≈ а2 ≈ 10-15 см2. Давление есть произведение плотности движущихся электронов п на величину энергии ε, которой каждый из них обладает:
P→ = пε.
Так как электрон запасает энергию на пути между двумя актами рассеяния, т. е. пройдя путь, равный длине свободного пробега l, и так как приобретенная энергия есть произведение силы на путь, то
ε = qlЕ.
Вот теперь можно
записать, что F→ = nqlSЕ. Результирующая сила, которую при наличии поля Е испытывает ион, оказавшийся на вершине потенциального барьера, очевидно равна разности сил F←и F→ :
F = F← – F→ = (1 – nlS)qE
Эффективная сила ветра F→ , как правило, в металлах оказывается существенно большей, чем сила, зависящая от истинного заряда иона. Сравним эти силы:
χ = F→ / F← = nlS
Так как п ≈ 3•1022 см -3, S ≈ 10-15 см2, l « 5•10-7 см, то χ ≈ 15! Сила ветра может оказаться отнюдь не пренебрежимо малой, более того – существенной. Это означает, что если в отсутствие электрического поля ионы хаотически блуждают по решетке (самодиффузия), то при наличии поля должно обнаружиться их преимущественное перемещение по направлению к аноду со скоростью, пропорциональной разности двух сил: ветра и поля.
Подведем попутный итог: под влиянием электронного ветра диффузионное перемещение атомов в металле становится направленным. Это значит, что электронный ветер должен обусловить перенос вещества. Говорят так: электроперенос. Здесь, пожалуй, следует количественно представить условия опыта, в котором обнаруживается перенос вещества под действием электронного ветра.
Вот некоторые цифры, характеризующие опыты по электропереносу в металлах. Они заимствованы из исследования, в котором изучалось влияние электрического поля на самодиффузию серебра при температуре 800 °С. Плотность тока, текущего через образец, 2• 104 А/см2, скорость, с которой двигались атомы серебра к аноду, 10-4 см/ч, перенос одного атома серебра к аноду сопровождался прохождением через образец 1010 электронов. Цифры 1 атом и 1010 электронов характеризуют, разумеется, не силу электронного ветра, а то, насколько электроны подвижнее атомов, перемещающихся диффузионно.
Экспериментально действие ветра можно обнаружить, используя меченые атомы: в отсутствие тока полоска меченых атомов будет диффузионно расползаться симметрично, а при наличии тока – асимметрично, смещаясь по направлению ветра. Можно, однако, обнаружить действие ветра и не прибегая к помощи меченых атомов. Расскажу об одной из таких возможностей.
При переносе вещества к аноду происходит следующее. Вблизи катода, откуда атомы уходят, атомные плоскости должны разбираться, поатомно перемещаться к аноду, и там организовывать новые плоскости, «встраивающиеся» в решетку. Сделать зримыми следствия этого переноса можно с помощью очень остроумного приема. Идея приема крайне проста. На полированную поверхность образца напыляется равномерный тонкий слой сажи. После отжига оказывается, что вблизи анода, где сформировались новые атомные плоскости, образец расширялся и в слое сажи появилась отчетливо видимая трещина. Несколько курьезно об этом можно сказать так: дует электронный ветер и вынуждает лопаться тонкий поверхностный слой сажи.
Теперь о ветре вакансионном. Его возникновение удобно объяснить на следующем простом примере. Представим себе, что кристалл, состоящий из атомов сорта A, плотно прижат к кристаллу, который состоит из атомов сорта В. При высокой температуре начнется диффузионное перемещение атомов обоих сортов. Двигаться они будут навстречу друг другу, чтобы в конце концов произошло их полное перемешивание и образовался однородный раствор. Мы предполагаем, что в принципе образование такого раствора энергетически оправдано и, следовательно, он должен образовываться. И еще одно предположение: атомы обоих сортов перемещаются по вакансиям. И, наконец, последнее предположение, точнее, не предположение, а констатация почти всегда осуществляющегося обстоятельства: атомы сорта А и сорта В перемещаются с разными скоростями. Слова «почти всегда» оправдываются элементарной логикой: у двух величин есть всего один способ совпадать, который заключается в том, чтобы оказаться совпадающими, а способам различаться – нет числа!
Итак, два встречных потока атомов обусловливают наличие двух встречных потоков вакансий. Так как потоки атомов различны, различными оказываются и встречные потоки вакансий. А это означает, что существует направленный поток вакансий, который является разностью двух встречных вакансионных потоков. Вот он-то и обусловливает «вакансионный ветер», дующий по направлению к тому кристаллу, чьи атомы диффундируют быстрее.
Что он может, этот ветер? «Сдувать» диффундирующие атомы! Но делает он это очень своеобразно. Поток вакансий, направленный, скажем, к источнику атомов сорта А, будет подавать им транспортное средство в виде вакансий, и те, таким образом, помогут этим атомам двигаться... против ветра. Направленный поток вакансий оказывается как бы отрицательным ветром, так как «сдувает» атомы не от себя, а на себя. Немного курьезно, но убедительно: ведь ветер создают не материальные атомы, а «атомы пустоты»!
В специально поставленных опытах оказалось, что отрицательный ветер вакансий – вполне реальный ветер, который заметно вмешивается в процесс диффузионного перемешивания атомов разных сортов.
Здесь хочется сделать замечание, карающееся модельного термина «вакансионный ветер». Этот термин существенно менее оправдан, чем термин «электронный ветер». Дело в том, что «дующая» вакансия атому не передает импульс, как это делает «дующий» электрон. А для истинного ветра передача импульса – главный признак. Именно поэтому «вакансионный ветер» – термин менее оправданный, лежащая в его основе модель используется лишь в меру чисто внешнего признака: подобно частицам в истинном ветре, в «вакансионном» вакансии перемещаются направленно. И только!
Г Л А В А II
ЗАСЕЛЕНИЕ КРИСТАЛЛА ДЕФЕКТАМИ
По поводу двух слов, фигурирующих в названии главы, – «дефекты» и «заселение» – с читателем следует объясниться.
Вначале о слове дефект. В будничном понимании слова, «дефект» – это плохо! Это то, чего надо не допускать, с чем надо бороться, что надо исправлять или, в иных случаях, вуалировать. В качестве синонима часто употребляют слово «брак», а это уж вне сомнения плохо! В гамме красок слову «дефект», как правило, принадлежит черная краска! Однако употребляемое применительно к кристаллу, оно выглядит существенно многокрасочнее. Иногда «дефект» – не позор, а доблесть кристалла!
Будем считать, что дефектом является любое отклонение от идеальной правильности в строении кристалла, когда каждый атом находится в узле кристаллической решетки и каждый узел замещен одним атомом. Так вот, такая бездефектная идеальность – фикция, в кристалле имеются и те дефекты, которые ему предписаны законами физики и, следовательно, которые кристалл обязан в себе поселить в качестве непременных признаков жизни, и те дефекты, которые в нем поселены насильно при росте кристалла или в процессе его службы.
Издавна слово «кристалл» употребляется с эпитетами «чистый», «совершенный», «прозрачный», «сияющий». В кристалле, однако, обнаружилось множество дефектов, и иной раз кажется, что в нем не остается места совершенству. Серьезно говоря, это опасение не имеет оснований, так как в формировании дефектов в кристаллах, даже далеких от совершенства, принимает участие сравнительно малая доля всех атомов. И все-таки добросовестный реестр дефектов длинен и со временем удлиняется.
Каждый из дефектов – достойный объект и исследования, и популярного рассказа о нем. Кристалл жив своими дефектами, они и его сила, и слабость, и цепкая память, и транспортные магистрали, и органы приспособления к окружающей среде, и нервная система, реагирующая на внешние воздействия. Разумеется, дефекты остаются дефектами, но черной краской их изображать не следует, надо пользоваться тонами посветлее.
Теперь несколько фраз о слове заселение.
Однажды, после публичной лекции, которую я прочел в юношеской аудитории, один из слушателей, вдумчиво подбирая слова, спросил меня:
– А кто впервые изобрел..., нет, поселил вакансии в кристаллах?
Этот вопрос, заданный серьезно, мне понравился и словом «поселил», и своей курьезностью, напомнившей шуточный вопрос: «Кто изобрел болезнь Боткина?»
Ну, разумеется же, никто вакансии в кристаллах не поселял, они испокон веков «там жили», неувиденные, неопознанные, в открытую о себе не заявлявшие, как, впрочем, и многие другие дефекты. До поры до времени кристаллофизики были не подготовлены для того, чтобы заняться поисками вакансий в кристаллах, – и запас идей для этого был недостаточен, и экспериментальные методы были не развиты. Там, где вакансии должны были обнаружиться, внося ясность в изучаемое явление, бытовала полуясность, иллюзия понимания, знание, близкое к правде, но с правдой не совпадавшее. И когда в естественном ходе развития науки представление о вакансиях созрело – их начали обнаруживать в десятках лабораторий сотни исследователей. Раньше вакансий вроде и не было, а вот появились! Поселились в кристаллах!
У каждого типа дефектов свои истории «поселения». Одни, прежде чем обнаружиться в исследованиях экспериментаторов, заявляли о себе в формальных построениях теоретиков. Так, в частности, было с вакансиями и дислокациями. Другие, благодаря своей очевидности, обнаружили себя, минуя формулы и уравнения. Таких дефектов множество: и поры, и трещины, и царапины, и многие другие. И в первом, и во втором случае эти истории интересны и красочны, каждая из них, безусловно, достойна специального рассказа.
Применительно к дефектам в кристалле у слова «заселение» есть еще один смысл, более близкий к его бытовому значению. Дефекты действительно можно поселить в кристалле, подвергая его различным воздействиям – деформированию, облучению потоком частиц или квантов различной плотности. Можно поселить, поместив кристалл в электрическое поле или в какую-нибудь агрессивную среду. Много есть способов вынудить кристалл поселить в себе дефект. Их исследование – одна из основных задач кристаллофизики – науки, изучающей реальный живой кристалл.
В этой главе я расскажу о многих дефектах кристалла, полагая при этом, что о вакансии—дефекте, без которого кристалл не может обойтись, уже рассказано, как об одном из непременных признаков жизни кристалла.
У ИСТОКОВ ИДЕИ
Стала уже тривиальной мысль о том, что различные поколения ученых воспринимают новые идеи с различной степенью легкости. Наиболее легко новые идеи усваиваются юным поколением ученых, которые свою жизнь в науке начали тогда, когда «новая» идея была уже не очень нова. Ими она воспринимается как нечто само собой разумеющееся. Ее усвоение не вызывает ни внутреннего протеста, ни необходимости преодолевать множество барьеров, среди которых есть и барьер под названием «традиция», и барьер под названием «косность». Иной раз эти барьеры не могут «взять» даже светлые и независимые умы. Семилетний сынок моего друга, стоя рядом с отцом и глядя в ночное небо, по которому быстро двигалась светящаяся точка, сказал взволнованному отцу: «Ничего особенного, обыкновенный спутник!» Для мальчика – обыкновенность, для отца – чудо.
Для зрелого ученого появление новой идеи означает необходимость заново истолковывать многое из того, что ранее казалось ясным и решенным. А эта необходимость исподволь рождает внутреннее сопротивление новой идее. Преодолевать это сопротивление нелегко, переучиваться всегда труднее, чем учиться.
Некогда Макс Планк, размышляя о становлении и развитии новых идей в связи с тем приемом, который им оказывают различные поколения, высказал грустную мысль о том, что счастье развивающейся науки состоит в том, что старшие поколения уходят...
Вспоминаются годы, когда представление о дислокациях – уже отчетливо сформулированное и подтвержденное вполне убедительными экспериментами – с большим трудом усваивалось поколением моих учителей. Вакансия – это было вне сомнений, это то, чем оперировали многие годы, с чем сроднились, что оправдало себя во многих научных баталиях, к чему были проникнуты доверием и чувством благодарности. Это поколение отнеслось к дислокациям не скажу враждебно, но с некоторой предвзятостью, с настороженным недоверием, которое с годами, с появлением новых фактов, убывало.
Моему поколению кристаллофизиков было легче, мы усваивали науку о дислокациях тогда, когда внутренние барьеры на пути к усвоению новой идеи были невысоки. Дислокации родились – мы были детьми, дислокации заявили о себе во всеуслышание – мы были начинающими в науке.
А моим учителям и учителям моих читателей было трудно. Вторым труднее, чем первым! Я вспоминаю, когда в журнале «Успехи физических наук» в начале 50־х годов появился обстоятельный обзор сформировавшихся к тому времени теоретических представлений о дислокациях. Обзор был написан выдающимся физиком А. Н. Коттреллом. Научная молодежь встретила обзор с искренним интересом к новому кругу идей и, к счастью, со сбывшейся надеждой на то, что многие туманные места в физике реального кристалла будут прояснены.
Представители старшего поколения кристаллофизиков были взволнованы. Они не находили в себе готовности стать приверженцами и пропагандистами новой теории. В этой теории, после добросовестных сомнений и поисков, они не находили ответа на множество вопросов, которые, впрочем, оставались без ответа и в кругу привычных им идей. Вот примеры их сомнений. Если дислокации – носители пластичности кристалла, то почему кристалл тем более пластичен, чем он совершеннее, т. е., видимо, чем меньше в нем дислокаций? Непонятно, как появляются дислокации. Флуктуационно, как вакансии, они возникнуть не могут, что признает и Коттрелл. На границах между зернами они тоже возникать не должны, так как поликристалл менее пластичен, чем монокристалл. Видимо, дислокации не имеют непосредственного отношения к возникновению пластического сдвига, а их наличие может лишь помешать распространению пластической деформации. Объяснение пластичности следует искать, исходя из представлений о правильной решетке, а «дислокационная гипотеза» может оказаться помехой в развитии иных теорий, которым, быть может, суждено решить проблему пластичности... В их заблуждении была доля недальновидности, но главным образом – тот добросовестный консерватизм честных ученых, которые, прежде чем признать новые идеи, упорно пытаются обойтись зарекомендовавшими себя старыми. Вспомним, что так поступали и самые великие до тех пор, пока не убеждались, что в рамках старых идей новое необъяснимо. В этом, собственно, и заключались истоки их величия.
К счастью, дислокационные представления были настолько плодотворными, что скоро завоевали себе безоговорочное право на жизнь. А сомнения старших – они психологически оправданы. Без таких сомнений развивающаяся наука не может обойтись, и не обходится.
Если бы автором этой книги был физик лет на 10– 15 младше меня, он, видимо, начал бы с изложения основ, не очень оглядываясь на то время, когда новое направление в физике реального кристалла завоевывало себе право на признание. Об основах и я кое-что скажу. Но вначале мне хотелось вспомнить о том времени, когда дислокация с трудом завоевывала себе право «поселиться» в кристалле. Я жил и работал тогда и на такое воспоминание имею право.
СДВИГ ОСУЩЕСТВИТЬ ТРУДНО
Пожалуй, одна из важнейших услуг, которая может быть оказана ученым какой-либо проблеме (кроме, разумеется, ее полного решения), состоит в том, чтобы указать границы применимости господствующих в ней идей и представлений. Очень важно обнаружить противоречие между идеями в области теории и известными экспериментальными фактами. Речь идет об истинных противоречиях, а не тех иллюзорных, которые могут явиться следствием, например, ошибки в эксперименте, когда иной раз экспериментатор принимает желаемое за действительное, или когда теоретик исходит из ошибочных посылок или попросту неверно вычисляет. Оба примера очень реальны!
В 1924 г. выдающийся советский физик-теоретик Яков Ильич Френкель, размышляя о прочности твердых тел, решил вычислить усилие, необходимое для того, чтобы одну часть кристалла сдвинуть вдоль кристаллографической плоскости относительно другой.
Казалось бы, задача простейшая из простых. Ею, однако, до Френкеля никто не занимался, и ему в очередной раз довелось выполнить расчет, который стал классическим, обнаруживший глубокое противоречие между принятыми тогда представлениями о процессе сдвига в кристалле и огромной совокупностью экспериментальных фактов.