355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владо Дамьяновски » CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии » Текст книги (страница 26)
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
  • Текст добавлен: 6 октября 2016, 20:58

Текст книги "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии"


Автор книги: Владо Дамьяновски



сообщить о нарушении

Текущая страница: 26 (всего у книги 42 страниц)

Лучше всего еще до начала установки, пожертвовав одним разъемом, потренироваться в заделке кабеля. Иногда небольшое различие в размерах кабеля, даже если это RG-59/U, может обернуться массой проблем при подсоединении разъемов.

Технически лучше использовать коаксиальный кабель с твердой внутренней жилой – и с точки зрения импеданса (кабель более жесткий и сохраняет «прямоту»), и с точки зрения заделки. А именно, заделывать такой кабель проще, чем кабель с витой жилой, который слишком гибок. Некоторые предпочитают витой коаксиальный кабель (stranded), главным образом, из-за его гибкости. Но, работая с таким кабелем, необходимо соблюдать осторожность при заделке, поскольку может легко возникнуть короткое замыкание между центральной жилой и экраном.

Если под рукой нет других инструментов, лучше взять спаиваемые BNC-разъемы и заделывать их, соответственно, при помощи пайки. Помните о температуре пайки железа, а также о качестве пайки, так как можно легко повредить изоляцию и изменить полное сопротивление. В этом случае лучше использовать многожильный коаксиальный кабель.

Если в вашем распоряжении есть различные обжимные разъемы, выбирайте те, которые прослужат дольше, то есть более прочные и стойкие к коррозии, например, посеребренные или позолоченные BNC-разъемы. Рекомендуем также использовать «резиновые трубки» (иногда их называют «предохранительными») для защиты внутренней части BNC от коррозии и минимизации напряжения на изгиб при соединении и разъединении.

В особых случаях, например, при установке купольных поворотных устройств, может понадобиться очень тонкий и гибкий коаксиальный кабель в 75 Ом, (поскольку телекамера постоянно поворачивается и наклоняется). Производители кабеля предлагают такой кабель, но не забывайте, что для него потребуются специальные BNC-разъемы и инструменты.

Даже если такой кабель имеет в диаметре всего 2.5 мм (как, например, кабель RG-179 B/U), его полное сопротивление тоже будет равно 75 Ом, что достигается при помощи специального диэлектрика и толщины центральной жилы. Затухание такого кабеля высоко, но для коротких расстояний это несущественно.

Если требуется проложить длинный кабель, необходимы другие кабели 75 Ом, например, RG-11B/U с общим диаметром более 9 мм. Само собой разумеется, для RG-11 также нужны специальные инструменты и BNC-разъемы. Некоторые техники используют специальные механизмы для зачистки или маркировки коаксиального кабеля. Это довольно дорогие механизмы и их трудно найти, но если вы постоянно занимаетесь установкой больших систем видеонаблюдения, то силы, время и деньги, потраченные на их поиск и приобретение, себя оправдают.


Рис. 10.12. Как правильно подсоединить BNC-разъем (размеры зависят от инструмента, используемого для зачистки конца кабеля)


Рис. 10.13. Инструменты для заделки кабеля

В таблице 10.1 представлены типичные показатели затухания различных коаксиальных кабелей. Обратите внимание, что затухание показано в децибелах и относится к амплитуде напряжения видеосигнала.

Воспользовавшись таблицей, приведенной в разделе об отношении с/ш для телекамер, можно подсчитать, что 10 дБ эквивалентны ослаблению сигнала на 30 %, то есть 0.3 Vpp. В кабеле RG-59 длиной 300 м сигнал ослабляется на 10 дБ. Такая низкая амплитуда сигнала может оказаться недостаточной для видеомонитора или видеомагнитофона. При таком затухании потребуется усилитель.


Методы установки

До установки нужно проверить, кабели какой длины предлагают поставщики. Обычно прилагаются катушки с кабелем длиной примерно 300 м (1000 футов), но также встречаются катушки и в 100 м, и в 500 м. Естественно, если это возможно, лучше прокладывать один неразрывный кабель. Если же по каким-либо причинам требуется более длинный кабель, то его можно удлинить, заделав концы основного и добавляемого кабелей. Хотя обычно в подобном случае соединение выполняется при помощи адаптера BNC-BNC («barrel»), но, чтобы уменьшить количество точек соединения, лучше использовать один штекер BNC и одно гнездо (то есть обжимные BNC «папу» и «маму»).

Еще до укладки кабеля следует изучить трассу на предмет потенциальных проблем вроде острых углов, забитых кабельных каналов и т. п. После определения жизнеспособного маршрута, следует распределить кабель таким образом, чтобы точки соединения и подключения усилителей находились в доступных местах.

Важно, чтобы в местах будущих соединений был оставлен достаточный запас кабеля. Обычно достаточно перехлеста кабелей в 1 м.

Если возможно, кабель следует укладывать в кабелепровод (conduit) соответствующего размера.

Производители предлагают кабелепроводы разной длины и диаметра, в зависимости от числа кабелей и их диаметров. Для внешней прокладки кабеля необходим специальный кабелепровод с усиленной защитой от действия ультрафиолета. В особых условиях, например, на железнодорожных станциях, используйте специальные металлические кабелепроводы. Они защищают кабель от повышенного электромагнитного излучения в момент прохождения электропоезда.

Те же меры предосторожности необходимо соблюдать и при прокладке коаксиального кабеля под землей. При этом особое внимание следует уделить предотвращению повреждений, вызванных чрезмерной нагрузкой в локальных точках. Такие нагрузки могут возникать в местах контакта кабеля с неоднородным материалом засыпки или неровностями траншеи. Повреждения по этой причине проявятся не сразу, но изображение будет страдать из-за изменения полного сопротивления в точках деформации кабеля. Так или иначе, затраты на откапывание и ремонт кабеля очень велики, и лучше сразу постараться сделать все возможное для хорошей укладки.

Вы хорошо защитите кабель от повреждений, если уложите кабель на слой песка толщиной примерно 50-150 мм и присыплете таким же слоем песка сверху. Особое внимание следует уделить выкапыванию траншеи, дно которой должно быть ровным, без выступов. При закапывании траншеи следите за тем, чтобы в засыпке не было камней, которые могут повредить кабель.


Рис. 10.15. Рекомендации по укладке кабеля в грунт


Рис. 10.16. Машина для автоматической заделки коаксиального кабеля


Рис. 10.17. Образец отличной организации кабеля

Глубина траншеи зависит от типа почвы и от ожидаемой нагрузки на поверхности. В твердой породе понадобится траншея глубиной всего в 300 мм, а если почва мягкая и траншея пересекает дорогу, то траншея должна иметь глубину 1 м. Траншея в обычных условиях должна иметь глубину 400–600 мм и песчаную подстилку толщиной 100–300 мм.

Размещение коаксиального кабеля в кабельном лотке (желобе) требует соблюдения все того же главного правила: минимального радиуса изгиба.

Как уже говорилось, минимальный радиус изгиба зависит от размера коаксиального кабеля, но общее правило гласит, что радиус петли должен быть не меньше 5 диаметров (или 10 радиусов) кабеля. Правило минимального изгиба должно соблюдаться даже тогда, когда используется кабельный лоток. Не следует стремиться к аккуратности и изгибать кабель, пытаясь уложить его рядом с силовыми и другими кабелями.

Помните, что изгиб кабеля, превышающий минимальный радиус, влияет на полное сопротивление и ведет к потере качества видеосигнала.


Рис. 10.18. Точная организация и маркировка кабелей требует немало времени и сил


Рис. 10.19. Устройство для автоматической маркировки кабеля

Протяжка коаксиальных кабелей выполняется с использованием стальных или пластмассовых «проводников» (направляющих). Все большую популярность приобретают предназначенные для этой цели средства из новых жестких пластмасс. Их называют «змеями».

Используемые обычно средства скрепления кабелей вполне приемлемы, но помните, что при этом нельзя прикладывать чрезмерную силу, чтобы не раздавить коаксиальный кабель и не изменить его полное сопротивление.

Если требуется использовать смазку, обратитесь за рекомендацией к производителю кабеля. Для уменьшения трения можно использовать также тальк или гранулы из полистирола (bean-bag-type polystyrene beans).

В некоторых случаях кабель уже имеет концевые разъемы. При прокладке кабеля они должны быть хорошо защищены. Отверстия в таком случае должны быть больше.

Между конечными точками крепления кабеля лучше оставить небольшую слабину, а не класть кабель в натяг, в случае чего он будет плохо «реагировать» на колебания температуры и вибрацию.

Если во время установки кабель получил какие-то повреждения, оставьте запас кабеля рядом с поврежденным участком, чтобы можно было вставить дополнительные BNC-разъемы.

Динамический рефлектометр

Если предстоит прокладка сложной и длинной трассы коаксиального кабеля, то для обнаружения дефектных участков кабеля вам будет полезен динамический рефлектометр (time domain reflectometer, TDR).

Основной принцип работы рефлектометра состоит в том, что он генерирует короткие и сильные импульсы и измеряет отраженную энергию. Определяя время задержки между введенным и отраженным сигналами, можно довольно точно определить локализацию дефектной заделки кабеля и/или острых изгибов. Это особенно важно, если кабель проходит в недоступных местах.


Рис. 10.20. Динамический рефлектометр


Передача видеосигнала по витой паре

Витая пара – альтернатива коаксиальному кабелю. Этим кабелем пользуются в ситуациях, когда необходимо проложить линию длиной больше двухсот метров. Это особенно выгодно, когда пара проводов уже протянута между двумя точками.


Рис. 10.21. Симметричная передача видеосигнала (по витой паре)

Если используются обычные провода, то кабель витой пары обходится довольно дешево, но если используется особый кабель (рекомендованный производителями), с минимум 10–20 скрутками на один метр и защитной оболочкой, то это будет гораздо дороже.

Передачу видеосигнала при помощи витой пары также называют симметричной видеопередачей.

Ее идея очень проста и отличается от несимметричной (коаксиальной) передачи видеосигнала. А именно: чтобы минимизировать внешние электромагнитные помехи, по витой паре передается сбалансированный сигнал. Все нежелательные электромагнитные помехи и шум в конечном счете одинаково воздействуют на оба провода. Вот почему лучше использовать специальные кабели, в которых оба провода одинаково подвержены наводкам и имеют одинаковое падение напряжения. В отличие от передачи по коаксиальному кабелю с заземленным экраном, в концепции передачи видеосигнала по витой паре не заложено уравнивание потенциалов между конечными точками.

Когда сигнал достигает приемного конца линии на основе витой пары, он попадает на вход дифференциального усилителя с хорошо сбалансированным фактором коэффициента ослабления синфазного сигнала (КОСС). Этот дифференциальный усилитель считывает дифференциальный сигнал между двумя проводами.


Рис. 10.22. Модули видеоприемника витой пары на 19" кабельной

Если два провода имеют схожие характеристики и достаточно закруток на метр (чем больше, тем лучше), на них будут одинаково воздействовать шумы, падение напряжения и наводки. Усилитель с хорошим КОСС на приемном конце линии устранит большую часть нежелательных шумов.

Выходное полное сопротивление (импеданс) витой пары обычно равно 100 Ом.

Недостаток этого типа передачи состоит в том, что в дополнение к кабелю необходимы одно передающее и одно приемное устройство. Они увеличивают не только стоимость системы, но и риск потерять сигнал, если какой-либо из этих двух компонентов выйдет из строя.

Однако если используется специальный кабель, его можно протянуть на гораздо более дальние расстояния, чем это позволяют кабели RG-59 или даже RG-11. Производители обычно указывают расстояния более 2000 м для ч/б сигналов и более 1000 м для цветных, причем без каких-либо промежуточных усилителей. Кроме того, при симметричной передаче не возникает «земляных петель», что имеет место при передаче по коаксиальному кабелю. Заделка кабеля витой пары не требует специальных инструментов и разъемов. Все это еще больше повышает привлекательность такой передачи.

Должен признаться, что я всегда предпочитал коаксиальный кабель. Но однажды я увидел большую систему в аэропорту Франкфурта на витой паре, которая давала, к моему удивлению, столь же высокое качество видеосигнала, как и коаксиальный кабель. Теперь я не сомневаюсь в том, что при надлежащем выборе оборудования, как кабеля, так и пары передатчик/ приемник, витая пара может быть прекрасной альтернативой коаксиальному кабелю. Кроме того, за последние пять лет мне довелось повидать немало систем видеонаблюдения, которые использовали витую пару для передачи видеосигнала. Следует отметить, что передача видеосигнала по витой паре особенно практична, когда для записи используются цифровые видеорегистраторы, поскольку они особенно чувствительны к эффекту «земляной петли».


Микроволновая связь

Микроволновая связь (СВЧ) используется для высококачественной беспроводной передачи видеосигнала.

Видеосигнал сначала модулируется частотой, которая соответствует микроволновому диапазону электромагнитного спектра. Длины волны этого диапазона варьируются от 1 мм до 1 м. Используя известное уравнение, связывающее частоту и длину волны:

λ = с/Т [м] (50)

где с – скорость света 300 000 000 м/с, мы можем подсчитать, что микроволновый диапазон лежит в пределах от 300 МГц и 300 ГГц. Верхний уровень фактически накладывается на инфракрасные частоты, которые не превышают 100 ГГц. Следовательно, нижняя часть инфракрасного спектра также входит в микроволновый диапазон. Однако практически, для микроволновой передачи видеосигнала обычно используются частоты от 1 до 10 ГГц.

Так как многие службы – военные, полиция, скорая помощь, курьеры, авиационные радары – используют искусственные частоты, необходимо было урегулировать проблему использования частот. Это сделали Международный союз телекоммуникаций (ITU) и местные власти разных стран. В Австралии это входило в обязанности Министерства транспорта и коммуникаций, которое недавно было переименовано в Spectrum Management Agency («Агентство распределения спектра»). Таким образом, используя микроволновую связь в видеонаблюдении, следует учитывать тот важнейший факт, что каждую частоту и vикроволновый передатчик необходимо согласовать с местными властями, чтобы свести к минимуму вторжения на частоты других служб, использующих тот же спектр. Это позволяет защитить зарегистрированных пользователей, но также является большим недостатком (по крайней мере, для видеонаблюдения) и причиной того, что многие разработчики систем видеонаблюдения обращаются к микроволнам лишь в крайнем случае.


Рис. 10.23. Микроволновая передача видеосигнала

Микроволновая связь позволяет передавать очень широкую полосу частот видеосигналов, а также, если необходимо, других данных (включая звук и/или PTZ-контроль). Полоса частот передачи зависит от модели передатчика. Качественные устройства обычно обеспечивают полосу частот в 7 МГц, которой достаточно для высококачественной передачи видеосигнала без заметного искажения.

Микроволновая передача обычно идет в одном направлении – например,

видеосигнал посылается из пункта А в пункт Б. Хотя возможна и двунаправленная передача – если необходимо передавать видеосигнал в двух направлениях или нужно передавать видеосигнал в одном направлении, а другие данные – в другом. Последнее очень важно, если используются PTZ-камеры.

Техника кодирования, обычно используемая в передаче видеосигнала, – это частотная модуляция (ЧМ), но может использоваться и амплитудная модуляция (AM). Если аудио– и видеосигналы передаются одновременно, то видеосигнал модулируется посредством AM, а аудиосигнал – посредством ЧМ, как и в телевещании.

Передатчик и приемник должны находиться на линии прямой видимости. В большинстве случаев передающие и приемные антенны представляют собой параболические антенны, аналогичные тем, что используются для приема спутникового телевидения.

Расстояния, которые можно покрывать при помощи этой технологии, зависят от выходной мощности передатчика и диаметра антенны, что определяет коэффициент усиления передатчика и чувствительность приемника.

Очевидно, что на качество сигнала влияют атмосферные условия.

Если система спроектирована не достаточно грамотно, то микроволновая связь, обеспечивающая отличное изображение в погожий день, может давать значительную потерю сигнала в проливной дождь. Туман и снег также влияют на сигнал. Если параболическая антенна не закреплена должным образом, качающий ее ветер может повлиять на связь, приводя к периодической потере прямой линии видимости.

Многие параболические антенны имеют пластиковое или кожаное покрытие, защищающее внутреннюю параболическую поверхность. Это покрытие одновременно уменьшает воздействие ветра и защищает чувствительные части антенны от дождя и снега.

Крепление и устойчивость антенны СВЧ-диапазона имеют первостепенную важность для качества связи. Чем большее расстояние требуется покрыть, тем больше должна быть антенна и более надежным должно быть крепление. Первоначально выровнять линию видимости на большом расстоянии довольно сложно, хотя в высококачественном оборудовании есть встроенный индикатор напряженности поля, который облегчает выравнивание.

Большинство производителей, специализирующихся на микроволновой связи, указывают максимальное расстояния передачи до 30 км. Обычно для систем видеонаблюдения требуется не больше двухсот метров, так что если есть линия прямой видимости, это ограничение не является проблемой.

Мощность передачи и размер антенны, необходимой для определенного расстояния, должны быть подтверждены производителем.


Рис. 10.24. Микроволновые антенны и приемники


Рис. 10.25. Микроволновый передатчик

Для микроволновой связи на более коротких расстояниях могут использоваться стержневые антенны или другие типы непараболических антенн, что очень практично, если имеются проблемы с размещением. В данном случае возникают проблемы безопасности, связанные с ненаправленной передачей сигнала, но есть и преимущества – довольно широкая область охвата.

Один очень интересный способ использования микроволновой передачи видеосигнала был впервые предложен в Австралии во время трансляции по телевидению автогонок. Для того чтобы зрители могли видеть то, что видит участник соревнования, на крыше гоночного автомобиля устанавливалась всенаправленная передающая антенна, которая транслировала видеосигнал телекамеры автомобиля на приемник, установленный на вертолете, который кружил над гоночным треком. С вертолета сигнал дальше передавался в фургон с ТВ-аппаратурой.

Большинство производителей систем микроволновой связи предлагают интерфейс RS-232 – для телекамер и других средств дистанционного управления. Некоторые производители оборудования для систем видеонаблюдения предлагают также средства управления в аудиодиапазоне, так что фактически вы можете использовать аудиоканал микроволновой связи (в направлении, противоположном направлению передачи видеосигнала) для управления PTZ-камерами.

Относительно недавно с появлением цифровых систем видеонаблюдения микроволновый канал стал очень часто использоваться для передачи цифрового видеосигнала. С помощью современных средств беспроводной связи Wi-Fi микроволновая передача данных значительно упростилась. Фактически нужно только правильно организовать компьютерную беспроводную сеть и назначить устройствам IP-адреса.

Сейчас для такой микроволновой передачи цифровых данных чаще всего используется специально зарезервированная свободная частота 2.4 ГГц. Так же, как и при передаче аналогового видеосигнала, максимальное расстояние передачи зависит от мощности передатчика и размера антенны.


Радиочастотная беспроводная (эфирная) передача видеосигнала

Радиочастотная (РЧ) передача видеосигнала по модуляции напоминает микроволновую передачу. Однако основные различия заключаются в том, что частота модуляции лежит в ОВЧ и УВЧ (VHF и UHF) диапазонах и осуществляется «всенаправленная» передача сигнала. Направленная (директорная) антенна типа «волновой канал» (подобно внутренним антеннам, используемым для приема определенного телеканала) позволяет получать сигнал в более удаленных точках. Следует отметить, тем не менее, что в зависимости от норм, принятых в вашей стране, мощность излучения не должна превышать определенный предел, а в случае такого превышения потребуется одобрение соответствующего органа, регулирующего использование частот.

РЧ-передатчики обычно снабжены видео– и звуковыми входами, а методы модуляции напоминают методы модуляции микроволн, то есть, для видеосигнала используется амплитудная модуляция, а для звукового сигнала – частотная. Передаваемый спектр зависит от модели передатчика, но вообще он уже, чем при микроволновой связи. Обычно это 5.6 МГц, что достаточно для объединения звука и видео в один сигнал.

Подобными характеристиками обладает бытовая аппаратура – это так называемые «РЧ-отправители» или беспроводные модули связи с видеомагнитофоном (VCR). В РЧ-модулятор с выходов видеомагнитофонов подаются аудио– и видеосигналы, которые он перемодулирует и затем передает на другой видео магнитофон, находящийся в доме. Подобные устройства изготавливаются без расчета на видеонаблюдение, поэтому сигнал передается на расстояния в непосредственной близости от дома. Если требуется беспроводная передача на короткое расстояние, то это самый дешевый и удобный способ.

Так как ОВЧ и УВЧ диапазоны предназначены для приема обычного сигнала телевещания, то вы должны (с разрешения местных властей) использовать каналы, не мешающие телевещанию.

В большинстве стран УВЧ-каналы с 36 до 39 преднамеренно не используются телевизионными станциями – они оставлены для VCR-TV связи, видеоигр и т. п.

Существенным недостатком использования радиочастоты в видеонаблюдении является то, что сигнал может быть получен любым ТВ-приемником, находящимся на незначительном расстоянии. Правда, иногда это и требуется. Например, для работы системы в больших комплексах, где телекамеры, наблюдающие за главным входом, подсоединены через коллективную антенну, так что арендаторы могут просматривать телекамеру на определенном канале своих ТВ-приемников.

Радиочастотная связь, в отличие от микроволновой связи, не требует прямой видимости, поскольку РЧ-излучение (в зависимости от того, УВЧ это или ОВЧ) может проходить через кирпичные стены, дерево и другие неметаллические объекты. Расстояние распространения радиосигнала зависит от многих факторов, и лучше всего проверять это в конкретных условиях (там, где будет использоваться РЧ-передатчик).


Рис. 10.26. Беспроводная (РЧ) передача видеосигнала


Рис. 10.27. РЧ-модулятор


Инфракрасная беспроводная передача видеосигнала

Из заголовка понятно, что инфракрасная передача использует для передачи видеосигнала оптические средства. Источником света является инфракрасный светодиод. Яркость световой несущей модулирована видеосигналом. Данный тип передачи напоминает нечто среднее между микроволновой передачей и оптоволоконной (которая рассматривается ниже). Вместо микроволновых частот используются инфракрасные частоты (ИК-частоты выше). И вместо оптоволоконного кабеля (что имеет место в волоконной оптике, опирающейся на принципы полного внутреннего отражения), используется открытое пространство. Следовательно, для этой передачи необходима линия прямой видимости. Для передачи на ИК-частотах особого разрешения не требуется – в этом очевидное преимущество этого типа связи.

Чтобы сконцентрировать инфракрасный свет в узкий пучок и минимизировать потери при передаче, требуется смонтировать систему линз на передатчике. Потребуется также система линз на принимающем конце линии, чтобы сфокусировать свет на фоточувствительный детектор.

Цветные и ч/б видеосигналы, а также аудиосигнал можно передавать на расстояние более 1 км. Более мощные системы линз и светодиоды, а также чувствительный приемник, позволят передавать сигнал на большие расстояния.

Необходимо принять специальные меры предосторожности для обеспечения благоприятного температурного режима в зоне передатчика, иначе на приемник могут попасть инфракрасные частоты, излучаемые горячими стенами, раскаленными крышами и металлическими объектами.

Понятно, что такие погодные условия, как дождь, туман и ветер влияют на инфракрасный канал связи больше, чем на ультракоротковолновую передачу.


Рис. 10.28. Инфракрасная (эфирная) передача видеосигнала


Рис. 10.29. Инфракрасный видео Tx/Rx


Рис. 10.30. Инфракрасная видеосвязь между поездом и телекамерами на станции


Передача изображений по телефонной линии

Вначале были системы slow-scan TV (ТВ медленного сканирования). Такая система передавала видеоизображение по телефонной линии с очень маленькой скоростью – один полный кадр черно-белого изображения передавался десятки секунд. Затем появились системы fast scan TV, которые стали популярной альтернативой системам slow-scan. Когда готовилось это издание книги, практически вся индустрия видеонаблюдения перешла на использование сети Интернет, которая оказалась прекрасной заменой телефонным коммуникациям при передаче видеоизображения, поскольку Интернет-коммуникации в большинстве случаев стали настолько же хорошими, как и телефонные. Большинство организаций и частных лиц сейчас имеют высокоскоростные линии связи для подключения к сети Интернет. Как правило, для этого используется уже проложенная телефонная пара проводов (DSL, цифровая абонентская линия). В этом случае скорость передачи выше, чем в системах fast scan. Впрочем, для того чтобы полностью осветить тему, мы немного расскажем и об использовании телефонной линии для передачи изображения в системах видеонаблюдения. Кроме того, возможно, вам еще придется столкнуться с такой ситуацией, когда телефонная линия имеется, а Интернет не подключен.

Концепция медленного сканирования родилась в конце 1950-х, тогда ею воспользовались операторы радиолюбительской связи. Позже она начала использоваться в видеонаблюдении. Концепция очень проста.

На обоих концах линии связи (как и при любой другой передаче) находятся вполне определенные устройства – передатчик и приемник. Аналоговый видеосигнал, поступающий с телекамеры, преобразуется в цифровой формат. Затем он сохраняется в ОЗУ (RAM) передатчика. Обычно это происходит по внешнему сигналу тревоги или по запросу с приемника. Сохраненное изображение (на этом этапе оно в цифровом формате) частотно модулируется аудиочастотой, которую «слышит» принимающий телефон. Эта частота обычно лежит в пределах 1–2 кГц – на этой частоте ослабление сигнала в телефонной линии минимально. Приемник, получив сигнал, разбирает изображение строка за строкой, начиная с верхнего левого угла, пока изображение на принимающем конце линии не будет преобразовано в аналоговое представление (стоп-кадр).

Вначале эта концепция была очень медленной, но, учитывая неограниченные расстояния, обеспечиваемые телефонной линией (при наличии совместимого с приемником передатчика), идея стала привлекательной для удаленного мониторинга в системах видеонаблюдения.

Передатчики «slow-scan» обычно подсоединяются к нескольким телекамерам, так что зритель может просматривать изображения с любой из них. К тому же, любая телекамера может передавать изображение автоматически по сигналу тревоги. Передавать изображение на принимающую станцию могут несколько передатчиков, каждый из которых защищен паролем от несанкционированных зрителей.

Один из способов увеличения скорости передачи заключается в уменьшении разрешения оцифрованного изображения или в использовании только одной четвертой части экрана для изображения с каждой телекамеры. Тогда изначальные 32 секунды можно понизить до 8 секунд для обновления изображения, или те же 32 секунды понадобятся для обновления изображения на полном экране, разделенном на блоки от четырех телекамер. Учитывая, что к этому могут быть добавлены и другие сигналы – аудио или управляющие сигналы для дистанционной активации реле – можно сказать, что исторические начинания становятся все более совершенны.

Системе медленного сканирования, принадлежащей к старому поколению, потребуется 32 секунды, чтобы передать простое, низкого качества изображение с тревожного пункта на станцию слежения. К этому времени надо добавить время дозвона и соединения, в результате более минуты уйдет на передачу первого изображения. Однако медленное сканирование было очень популярно и опережало свое время. Сегодня существуют гораздо более прогрессивные способы передачи видеосигналов по телефонной линии.

Новая технология — Fast Scan (быстрое сканирование) – исходит из той же концепции, но опирается на гораздо более мощные методы обработки изображений и алгоритмы сжатия, что позволяет менее чем за 1 с передать полноцветное изображение. Манипулирование изображением осуществляется в цифровой форме, при этом используются различные методы сжатия, что позволяет еще больше увеличить скорость передачи, сохраняя при этом качество изображения на должном уровне.


Рис. 10.31. Передатчик и приемник быстрого сканировнаия (Fast-Scan)

Выбирая систему быстрого сканирования, следует учитывать несколько важных факторов:

– Разрешение кадровой памяти (в пикселах)

– Черно-белое изображение или цветное

– Будут ли одновременно передаваться другие сигналы (часто требуется управление PTZ-блоком, или активация реле)

– Скорость передачи данных.

В последнем вопросе следует быть очень гибким, так как различные телефонные линии и различные модемы дают различные и пристрастные сравнительные характеристики.

Иногда потребителю нужно просто примерно видеть, что происходит на другом конце линии fast-scan.

Другим может потребоваться очень четкое (хорошего разрешения) изображение, даже если оно поступает с временной задержкой.

Также важно знать, что еще может быть подсоединено к системе в будущем. Возникнет ли необходимость в дополнительных телекамерах или может на одной из камер будет PTZ-блок?

Не забудьте, если вам требуется управление PTZ-блоком, вы должны учитывать задержку между отданной с клавиатуры командой и обновленным изображением, чтобы увидеть, куда направлена камера.

Некоторым это покажется необычным или неприемлемым, но многие производители предлагают интеллектуальное решение. В частности, если используется джойстик, изображение автоматически выбирает более узкую область обзора, которая остается резкой (и больше скорость обновления), так что вы можете видеть, куда направлена камера. После того, как вы отпустите джойстик, изображение восстанавливается до размеров полного экрана.


    Ваша оценка произведения:

Популярные книги за неделю