Текст книги "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии"
Автор книги: Владо Дамьяновски
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 11 (всего у книги 42 страниц)
Рис. 5.26. Структура ПЗС-матрицы с микролинзами, фотография сделана электронным микроскопом
Итак, если включен электронный затвор, он может переключаться в пределах от нормальной скорости экспозиции в 1/50 с (1/60 с) до более высокой (менее продолжительной) в зависимости от условий освещенности. Теоретически экспозиции, длиннее 1/50 с (1/60 с для EIA), не могут использоваться из-за потери ощущения движущегося изображения. В некоторых ПЗС-телекамерах возможны более длительные экспозиции, и такой режим называется интеграцией (накоплением заряда. Прим. ред.). В некоторых последних разработках, включающих цифровую обработку сигнала, интеграция включается автоматически, когда освещенность объекта падает ниже заданного уровня. Это особенно ценно в отношении цветных телекамер, но пока реализовано только для черно-белых телекамер (В современных цветных телекамерах с целью повышения их чувствительности реализован режим День/Ночь, благодаря чему при уменьшении освещенности ниже определенного уровня телекамера автоматически переключается на работу в черно-белом режиме. Прим. ред.). Плата за это – потеря гладкости движения (в режиме накопления мы не можем получить 50 полей/с), которая заменяется видимостью движения, аналогичной прерывистому воспроизведению с time-lapse видеомагнитофона.
Уменьшение размеров пиксела в матрицах со строчным переносом косвенно снижает минимальную освещенность матрицы. Эта проблема может быть разрешена очень просто (хотя технологически это не очень легко) – поверх каждого пиксела помещается микролинза. Микролинза концентрирует весь падающий свет на маленькую область, на сам пиксел, и эффективно увеличивает минимальную освещенность. На сегодняшний день наибольшее распространение в видеонаблюдении получили матрицы со строчным переносом заряда.
Типичный разрез ПЗС-матрицы со строчным переносом и с микролинзами приведен на рис. 5.27.
Рис. 5.27. Типичная структура ПЗС-матрицы с микролинзами
Как видно, микроструктура матрицы становится довольно сложной, когда речь идет о высококачественном сигнале.
Самый лучший проект – это последняя разработка, матрица с кадрово-строчным переносом, которая обладает всеми характеристиками строчного переноса плюс уменьшение вертикального ореола и лучшее отношение сигнал/шум. Как можно заключить из упрощенной схемы, такая матрица работает со срочным переносом на верхней части матрицы, то есть имеет электронный затвор, но изображение не удерживается в колонках маски в течение экспозиции следующего поля, а сдвигается вниз в более защищенную область маски.
В такой матрице вертикальный ореол еще меньше, а также увеличивается отношение сигнал/шум.
Здесь также используются микролинзы для улучшения минимальной освещенности. ПЗС-матрицы с кадрово-строчным переносом заряда имеют еще более совершенную микроструктуру, множество ячеек и областей для предотвращения стекания избыточных зарядов на окружающие области, ловушки генерируемых теплом электронов и пр.
Матрицы с такими усовершенствованиями обладают очень высоким динамическим диапазоном, ослабленным вертикальным ореолом и высоким отношением сигнал/шум, что делает их идеальными для съемок на улице и видеожурналистики. Такие типы камер в широковещательном телевидении обычно называются камерами видеожурналистики.
Итак, матрицы с кадрово-строчным переносом для видеонаблюдения слишком дороги, и, в основном, используются в широковещательном ТВ.
Следует отметить, что независимо от того, насколько совершенна электроника телекамеры, если качество источника информации – ПЗС-матрицы – очень высокое, то и телекамера будет высшего качества. Противоположное тоже верно, т. е. даже если ПЗС-матрица наивысшего качества, но электроника камеры не в состоянии обработать ее наилучшим возможным способом, то весь комплект будет комплектом второго класса.
Также следует отметить, что большинство из немногочисленных производителей матриц подразделяют ПЗС-устройства одного типа на несколько классов, в зависимости от качества и однородности пикселов. Различные производители могут использовать различные классы для одного и того же типа матриц. Это в итоге отражается не только на качестве, но и на цене телекамеры.
Рис. 5.28. ПЗС-матрицы могут иметь самые разные размеры
Импульсы переноса зарядов в ПЗС-матрицах
Качество сигнала, даваемого ПЗС-матрицей, зависит от импульсов переноса заряда. Импульсы генерируются внутренним кварцевым генератором телекамеры. Частота зависит от многих факторов, но, в основном, от числа пикселов ПЗС-матрицы, типа переноса заряда (покадровый, строчный, кадрово-строчный), а также числа фаз для каждого элементарного сдвига зарядов, в частности, элементарный сдвиг может производиться двухфазным, трехфазным или четырехфазным сдвиговым импульсом. В видеонаблюдении наиболее распространены телекамеры с трехфазным импульсом переноса.
Как вы можете себе представить, кварцевый генератор камеры должен иметь частоту, по крайней мере, в несколько раз более высокую, чем полоса пропускания видеосигнала, формируемого телекамерой. Все другие синхроимпульсы, в том числе и импульсы переноса, формируются из этой тактовой частоты.
Рис. 5.29. Концепция кадрово-строчного переноса
На схеме рис. 5.30 показано, как происходит перенос заряда в рамках трехфазовой концепции.
Импульсы, обозначенные как фл, ф2 и ф3 это импульсы низкого напряжения (обычно от 0 до 5 В), поэтому ПЗС-камеры не нуждаются в высоком напряжении, как это обстояло с передающими трубками.
На рис. 5.30 показано, как формируются синхроимпульсы видеосигнала при помощи главного синхрогенератора.
Рис. 5.30. Тактовые импульсы ПЗС-матрицы генерируются главным синхрогенератором
Это только один из многих примеров, но он демонстрирует всю сложность и количество генерируемых в ПЗС-телекамере импульсов.
ПЗС-матрица как устройство дискретизации
Как мы уже говорили, используемая в видеонаблюдении ПЗС-матрица является двумерной, состоящей из элементов изображения (пикселов). Разрешающая способность, даваемая такой матрицей, зависит от числа пикселов и разрешающей способности объектива. Поскольку последняя обычно выше, чем разрешение ПЗС-матрицы, то мы не будем считать оптическое разрешение камнем преткновения. Однако, как говорилось в разделе ФПМ, объективы изготавливаются с разрешением, подходящим для конкретного размера изображения, и следует осторожно использовать соответствующую оптику с матрицами различного размера.
Есть и еще один важный момент, касающийся разрешения ПЗС, это отсутствие непрерывности ТВ-линий. ТВ-линия, даваемая телекамерой с передающей трубкой, получается в результате непрерывного сканирования электронным лучом вдоль строки. ПЗС-матрица состоит из дискретных пикселов, и поэтому информация одной ТВ-линии состоит из дискретных значений, соответствующих каждому пикселу. Этот метод дает не цифровую информацию, а скорее дискретную выборку. Таким образом ПЗС-матрица – это оптическое устройство дискретизации.
Как и в случае других устройств дискретизации, мы не получаем полную информацию по каждой строке, только дискретные значения в позициях, соответствующих позициям пикселов.
Может показаться, что восстановить непрерывный сигнал из отдельных его частей невозможно. Однако в 1928 г. Найквист показал, что сигнал может быть реконструирован без потери информации, если частота дискретизации равна, по меньшей мере, двойной ширине спектра сигнала (Точнее, не менее, чем в два раза больше самой высокочастотной составляющей спектра сигнала. В России это положение называют теоремой Котельникова. Прим. ред.). Значения сигнала между выборочными точками знать не обязательно. Это важная теорема, доказанная и используемая во многих электронных устройствах дискретизации, CD-аудио, видео и др. Частота дискретизации, эквивалентная удвоенной ширине спектра, называется частотой Найквиста.
Есть, однако, и нежелательный побочный продукт ПЗС-дискретизации. Это хорошо известная муаровая картина, которая получается в случаях, когда снимается объект с более высоким разрешением. Обычно это хорошо видно, например, если диктор, ведущий программу новостей, наденет рубаху с очень мелким узором. Математически это соответствует случаю, когда максимальная частота приближается к частоте дискретизации. Поскольку пространственная частота дискретизации должна быть в два раза больше максимальной частоты оптического изображения Fsmax, мы можем представить ее в частотной области одним значением частоты в области частоты Найквиста F^^.
Пространственный спектр оптического сигнала основной полосы частот будет модулироваться в окрестностях этой частоты, что очень похоже на амплитудную модуляцию спектра боковых полос.
Если в оптическом изображении, спроецированном на ПЗС-матрицу, присутствуют высокие частоты и эти частоты выше половины частоты FNYQUIST, то боковые полосы (после дискретизации) наложатся на видимую основную полосу, и в результате мы увидим нежелательную картинку, муар. Муаровая частота ниже самой высокой частоты телекамеры FNYQUIST/2-Fsmax
Чтобы минимизировать этот эффект применяется низкочастотная оптическая фильтрация (low-pass optical filtering, LPO). Фильтры обычно составляют часть стеклянной маски ПЗС-матрицы и формируются путем комбинирования нескольких двоякопреломляющих кварцевых пластин.
Эффект аналогичен размыванию (blurring) мелких деталей оптического изображения.
Рис. 5.31. ПЗС-матрица как устройство дискретизации
ПЗС-матрица из пикселов (разрешение немного ниже, чем у проецируемой на нее испытательной таблицы)
Двойная коррелированная выборка
Шум в ПЗС-матрице имеет несколько источников. Самый значительный – это тепловой шум, в существенной степени он может быть вызван примесями в полупроводниках и недостатками процесса производства.
Высокий уровень шума снижает динамический диапазон фотоэлемента, что в свою очередь ухудшает качество изображения.
Тщательное проектирование ПЗС-устройств и точное изготовление позволяют снизить шумы. Низкая рабочая температура может снизить тепловые шумы. К сожалению, пользователь редко способен управлять этими параметрами.
Однако, существует метод обработки сигнала, позволяющий существенно уменьшить шум, и этот метод может быть реализован в конструкции ПЗС-камеры. Этот метод называется двойная коррелированная выборка (ДКВ). Термин выборка здесь относится к выборке выходного сигнала.
Концепция ДКВ основана на том факте, что в видеосигнале и опорном сигнале существует одна и та же шумовая компонента. А именно, когда выходной каскад ПЗС-матрицы переносит зарядовый пакет, он преобразуется в выходное напряжение. Для этого используется плавающая считывающая диффузия, чтобы собирать зарядовые пакеты сигнала при их переносе с ПЗС-матрицы. По мере переноса зарядовых пакетов напряжение на считывающей диффузии падает. Это напряжение представляет собой данные видеосигнала и усиливается на матрице усилителем с термокомпенсацией. Прежде чем следующий зарядовый пакет сможет быть перенесен в область диффузии, она должна быть полностью очищена от предыдущего пакета. Это выполняет опорный сигнал сброса, который содержит такую же компоненту теплового шума, что и видеосигнал матрицы. Если заранее сохранить эту компоненту шума, то потом ее легко вычесть из результирующего сигнала, который содержит шум и полезный сигнал.
ДКВ лучше всего работает при использовании двух быстродействующих цепей выборки и фиксации, подсоединенных к выходному сигналу фотоприемника через низкочастотный фильтр.
Мы не будем углубляться в архитектуру этих цепей, так как это выходит за рамки данной книги, но следует помнить, что схема ДКВ является частью электронной системы телекамеры, а не ПЗС-матрицы.
Рис. 5.33. Двойная коррелированная выборка – один из способов уменьшения шума в ПЗС-матрице
Технические параметры телекамер и что они означают
Основные задачи телекамеры – захват изображений, разбиение их на ряд неподвижных кадров и строк, передача и быстрое воспроизведение на экране, в результате чего человеческий глаз воспринимает их как движущееся изображение.
Выбирая телекамеру, мы должны принимать во внимание ряд характеристик. Некоторые из них очень важны, другие не очень, все зависит от применения.
Невозможно судить о телекамере на основе только одной или двух характеристик, взятых из инструкции.
Различные производители используют различные критерии и методы оценки, и в большинстве случаев, даже если мы знаем, как интерпретировать все числа из технического паспорта, нам все же приходится самим оценивать качество изображения, сравнивая его с изображением, даваемым другой телекамерой.
Сравнительный тест – это зачастую наилучший и единственный объективный способ проверки характеристик телекамеры – вертикального ореола, шума, чувствительности и пр. Не забывайте, что общее впечатление о хорошем качестве изображения создается комбинацией многих факторов: разрешающей способности, ореола, чувствительности, шума, гамма-коррекции и пр.
Человеческий глаз не одинаково чувствителен ко всем этим факторам. Люди, не обладающие достаточным опытом, будут удивлены, узнав, что разница в разрешающей способности в 50 ТВЛ иногда менее важна для качества изображения, чем, например, правильная установка гамма-коррекции или разница в 3 дБ в отношении сигнал/шум.
Рассмотрим некоторые наиболее важные характеристики:
– Чувствительность телекамеры;
– Минимальная освещенность;
– Разрешающая способность телекамеры;
– Отношение сигнал/шум;
– Динамический диапазон.
Другие, менее важные, но тоже имеющие значение характеристики включают: гамма-коррекцию, темновой ток, спектральную чувствительность, оптическую низкочастотную фильтрацию, диапазон АРУ в дБ, энергопотребление, габаритные размеры и пр.
Чувствительность
Чувствительность телекамеры, четко определенная в широковещательном ТВ, в видеонаблюдении часто понимается неверно, ее обычно путают с минимальной освещенностью.
Чувствительность характеризуется минимальным отверстием диафрагмы (максимальным F-числом), дающим видеосигнал полного размаха 1 В на тестовой таблице, освещенность которой равна точно 2000 лк и создана источником с цветовой температурой 3200° К.
Тестовая таблица должна иметь шкалу градаций яркости от черного до белого и общий коэффициент отражения 90 % для белой части этой шкалы.
Одна из стандартных тестовых таблиц для этих целей – это градационная испытательная таблица EIA. Пиковый уровень белого должен составлять 700 мВ, а уровень черного – около 20 мВ. Гамма-коррекция тоже играет роль в правильном воспроизведении тонов серого и должна быть установлена на 0.45. Чтобы установить чувствительность телекамеры, требуется объектив с ручной установкой диафрагмы, обычно с фокусным расстоянием 25…50 мм. Чтобы измерения были корректны, следует отключить АРУ телекамеры.
Когда все вышеперечисленное проделано, ручную диафрагму объектива закрывают до тех пор, пока пиковый уровень белого (700 мВ относительно уровня гашения) не начнет уменьшаться.
Отметка установки диафрагмы – F/4 или F/5.6 – и дает чувствительность телекамеры. Чем больше это число, тем выше чувствительность телекамеры. При сравнении различных телекамер следует использовать одинаковый источник света и ту же испытательную таблицу.
Рис. 5.34. Этот пример иллюстрирует тестирование телекамеры с градационной испытательной таблицей. На отметке диафрагмы F/5.6 полный размах видеосигнала еще 1 В
Минимальная освещенность
В видеонаблюдении не существует четкого определения минимальной освещенности, в отличие от чувствительности телекамеры. Обычно этот термин относят к наименьшей освещенности на объекте, при которой данная телекамера дает распознаваемый видеосигнал. Поэтому данная характеристика выражается в люксах на объекте, при которых получается данный видеосигнал.
Термин распознаваемый используется в широком смысле, и в зависимости от производителя может быть определен или нет. Это одна из самых больших «уловок» в видеонаблюдении. Большинство производителей, особенно тайваньских, не указывают уровень видеосигнала на выходе телекамеры для освещенности, указываемой как минимальная освещенность. Этот уровень может составлять 30 % (от 700 мВ), иногда 50 %, а иногда и 10 %.
Вот, например, общепринятые выражения при описании минимальной освещенности: «0.1 лк на объекте с коэффициентом отражения 80 % при использовании объектива F/1.4».
Следует иметь в виду, что в телекамере с хорошей схемой АРУ даже 10 % видеосигнала (70 мВ) можно раскачать так, что он будет казаться намного больше, чем есть на самом деле. Это, естественно, может вводить в заблуждение.
Например, в паспорте записано: 0.01 лк на объекте с объективом F/1.4, что предполагает (но не сообщается вам) что АРУ включена. Другие производители скромно указывают в технических характеристиках, например, что минимальная освещенность равна 0.1 лк при F/1.4 (при этом на выходе 50 % видеосигнала получается с отключенной АРУ). Понятно, на бумаге первая телекамера может показаться гораздо более перспективной, хотя в действительности гораздо лучше вторая.
Еще один вопрос для дискуссии: одни производители дают минимальную освещенность на объекте, а другие имеют в виду минимальную освещенность ПЗС-матрицы. Это далеко не одно и то же.
Когда определяется минимальная освещенность телекамеры (освещенность объекта), должно также указываться соответствующее F-число. Вторым важным фактором после освещенности, который тоже необходимо знать, является коэффициент отражения объекта в процентах.
Рис. 5.35. На левой части можно было бы увидеть мальчика со свечой в руке, но его контуры практически неразличимы, так как чувствительности фотопленки недостаточно, но телекамера позволяет отчетливо его разглядеть, как это видно на мониторе справа.
Если указывается минимальная освещенность на ПЗС-матрице, можно учитывать не все факторы (такие, как отражение и пропускание объектива). Тогда при расчете эквивалентной освещенности объекта, проецируемого на ПЗС-матрицу, мы должны компенсировать все эти факторы.
Эмпирическое правило (которое я вывел в разделе «Вычисление количества света») гласит: с объективом F/1.4 минимальная освещенность ПЗС-матрицы обычно в 10 раз выше (меньше люкс), чем чувствительность на объекте. Например, освещенность объекта в 1 лк при отражении 75 % с объективом F/1.4 соответствует освещенности в 0.1 лк на ПЗС-матрице.
Вышесказанное приводит к такому выводу: реальные характеристики телекамеры можно легко скрыть, просто не указывая некоторые факторы. Внимательно читайте спецификации.
Известный факт – черно-белые ПЗС-телекамеры всегда имеют более низкую минимальную освещенность, чем цветные ПЗС-телекамеры.
Одна из причин – инфракрасный отсекающий фильтр на ПЗС-матрице. Как указывалось раньше, такой фильтр корректирует спектральную характеристику ПЗС-матрицы, приближая ее к характеристикам человеческого глаза, но он также снижает количество света, падающего на матрицу.
Другая причина заложена в конструктивных особенностях используемой в видоенаблюдении одной цветной матрицы. Каждый пиксел цветной ПЗС-матрицы состоит из трех элементов (саб-пикселов), размещенных на физическом пространстве одного черно-белого пиксела.
Размер каждого элемента составляет не более 1/3 черно-белого пиксела, что косвенно снижает чувствительность.
За период, прошедший между появлением этого издания книги и предыдущего, появилось большое количество телекамер, которые условно называются «день/ночь» (Day/Night). Эти телекамеры обычно имеют цветной фотоприемник, который превращается в черно-белый за счет механического удаления отсекающего ИК-фильтра и интегрирования трех пикселов RGB в один монохромный.
Таким образом, цветная телекамера при нормальных уровнях освещенности превращается в более чувствительную черно-белую телекамеру при минимальных уровнях освещенности. Кроме того, чувствительность возрастает также за счет инфракрасного диапазона, так как убирается отсекающий ИК-фильтр. Некоторые модели телекамер только переключаются в черно-белый режим с интегрированием пикселов, но не убирают отсекающий ИК-фильтр. Некоторые производители телекамер пошли еще дальше и к цветной матрице добавили черно-белую. В этом случае, когда уровень освещенности снижается ниже определенного, происходит механическое переключение фотоприемников.
Хотя такие решения достаточно практичны, но реализация механического переключения должна быть выполнена очень качественно, так как его придется делать как минимум два раза в сутки, что может послужить причиной выхода из строя. (Существуют телекамеры с двумя матрицами и двумя объективами, где переключение между матрицами осуществляется не механически, а электрически. Однако изображение на этих матрицах, как бы близко друг к другу они ни были расположены, будет немного отличаться. Впрочем, для большинства случаев, эти отличия не будут критичными. Прим. ред.) Чаще всего такие телекамеры нужны, когда требуется ночное наблюдение в инфракрасном свете с сохранением цветного режима работы при полном дневном свете.
Следует заметить, что большинство современных цветных телекамер даже без удаления отсекающего ИК-фильтра будут чувствительнее человеческого глаза.
Разрешающая способность телекамеры
Вопрос о разрешении телекамеры прост, но часто его неправильно понимают. Когда речь идет о разрешающей способности системы видеонаблюдения (телекамера-линия связи-устройство записи-монитор), то основной частью системы будет устройство ввода (то есть в большинстве случаев разрешающая способность системы будет во многом определяться разрешающей способностью телекамеры).
Существует разрешающая способность по вертикали и разрешающая способность по горизонтали.
Эти параметры измеряются по испытательной таблице. Разрешающая способность по вертикали – это максимальное число горизонтальных линий, которое способна передать телекамера. Это число ограничено стандартом CCIR/PAL до 625 горизонтальных строк и стандартом EIA/NTSC до 525 строк.
Реальное вертикальное разрешение (в обоих случаях) далеко от этих значений.
Если принимать во внимание кадровые синхроимпульсы, уравнивающие строки и пр., то максимальная разрешающая способность по вертикали оказывается равной 575 строк в CCIR/PAL и 470 строк в EIA/NTSC. Это требует корректировки с учетом фактора Келла – 0.7, и мы получим максимальное действительное вертикальное разрешение в 400 ТВЛ для CCIR/PAL (более подробно см. «Разрешающая способность» в главе 4 «Общие характеристики телевизионных систем»). Дедуктивное рассуждение может быть продолжено для сигнала EIA/NTSC, что даст максимальное действительное вертикальное разрешение в 330 ТВЛ.
Разрешающая способность по горизонтали – это максимальное число вертикальных линий, которые способна передать телекамера (В тех случаях, когда в документации указана только разрешающая способность, то это надо понимать, как разрешающая способность по горизонтали. Прим. ред.). Это число ограничено только технологией и качеством монитора. В наши дни существуют ПЗС-телекамеры с разрешающей способностью по горизонтали более 600 ТВЛ.
Горизонтальное разрешение ПЗС-телекамер обычно равно 75 % горизонтальных пикселов ПЗС-матрицы. Как объяснялось выше, это результат соотношения сторон 4:3. В частности, подсчитывая вертикальные линии в целях определения горизонтального разрешения, мы считаем только горизонтальную ширину, эквивалентную высоте монитора по вертикали. Идея в основе сего – получить линии равной толщины, как по верти-кали, так и по горизонтали. Итак, если мы подсчитаем общее количество вертикальных линий по ширине монитора, то их надо умножить на 3/4 или 0.75. Поскольку это необычный расчет, то мы обычно называем горизонтальное разрешение ТВ-линиями (ТВЛ), а не просто линиями.
Рис. 5.36. Более точное измерение горизонтального разрешения по 5 % модуляции
Рис. 5.37. Испытательная таблица CCTV Labs была специально разработана для CCTV и используется для измерения разрешающей способности и многих других важных параметров
Для оценки разрешения телекамеры существует ряд тестовых диаграмм. Наиболее популярна таблица EIA RETMA, но для этих целей можно использовать и другие. На обложке книги вы найдете тестовую диаграмму, разработанную специально для видеонаблюдения.
Здесь важно знать одну вещь: при измерении разрешающей способности кабель, по которому передается видеосигнал, должен быть нагружен на согласующее сопротивление 75 Ом, и изображение на экране должно быть видно полностью, без отсечения краев (что делает большинство видеомониторов). Для этого необходимо использовать специальный видеомонитор высокого разрешения без ограничения растра.
Затем объектив телекамеры настраивается на наилучшую фокусировку (обычно при среднем значении F-числа: 5.6 или 8), при этом таблица должна полностью находиться в поле зрения. Также должны быть отключены все внутренние корректирующие цепи телекамеры (АРУ, гамма-коррекция, электронный затвор).
Рис. 5.38. Визуальное определение горизонтальной разрешающей способности (в центре) будет менее точным, чем при измерении по 5 % модуляции с использованием осциллографа с выбором ТВ-строки
Рис. 5.39. Испытательная таблица RETMA
Рис. 5.40. Новые рекомендации IEEE-208 для измерения разрешающей способности
Разрешающая способность оценивается по установлению момента, когда четыре сходящиеся линии в виде остроугольного треугольника на изображении испытательной таблицы перестают быть различимыми. Если это делать визуально, то вывод будет приблизительным (Это так назывемый метод измерения по «испытательному клину». Реально в силу дискретного характера ПЗС-матрицы строки начинают «биться» в нескольких местах, проявляется муар, о котором написано выше. Чтобы определить реальное место, соответствующее, например, разрешающей способности по горизонтали, следует поперемещать в небольших пределах телекамеру – при этом места биений будут перемещаться, а место, соответствующее пределу разрешающей способности будет неподвижно. Прим. ред.).
Например, если в испытательной таблице используется клин с четырьмя линиями (как на иллюстрации), то в точке, где эти четыре линии сливаются в три или две, находится предел разрешающей способности. Для более точных измерений следует анализировать только яркостный сигнал. Обычно это достигается путем отключения цветности или подключением через раздельный видеовыход Y/C, если такой имеется в телекамере. (Тем не менее, если нам интересна разрешающая способность телека меры именно в цветном режиме, то цвет отключать не следует. Прим. ред.) Поскольку место, где сливаются линии, точно определить визуальным способом нельзя, так мы получим только приблизительно значение. Погрешность визуальной оценки составляет около 10 %, что значительно затрудняет сравнение описанным методом телекамер с близкой разрешающей способностью. Например, визуально очень тяжело заметить разницу между телекамерой с 460 ТВ-линиями и другой телекамерой с 480 ТВ-линиями. Для более точного измерения следует воспользоваться высококачественным осциллографом с возможностью выбора ТВ-строки. Измерение затем сужается до выбора строки с глубиной модуляции четырех линий, которая равна или превышает 5 %. Метод расчета модуляции показан на иллюстрации и в общем случае выражается формулой 100х(А-В)/(А+В), где А– высшая точка, а В – низшая точка в измеряемой строке.
Использование осциллографа позволяет игнорировать ограничение по разрешающей способности монитора. Для того чтобы точно знать, какую часть испытательной таблицы мы измеряем, требуется как-нибудь указать положение измеряемой строки на испытательной таблице.
Существуют осциллографы (один из них показан на фотографии) с функцией отображения видеосигнала (монитора), где измеряемая строка будет отмечена линией. Если такого осциллографа у вас нет, то придется как-нибудь сопоставить измеряемую строку с положением на таблице.
Рис 5.41. Рекомендуем: Tektronix TDS3012B
Рис. 5.42. Измерение полосы частот видеосигнала тесно связано с разрешающей способностью
В случае с испытательной таблицей CCTV Labs мы упростили эту процедуру, так как номера строк уже сопоставлены с разрешающей способностью по тестовому клину. Эти соотношения (номер строки – разрешение) напечатаны с левой стороны таблицы.
Также подчеркнем, что при измерении разрешающей способности телекамеры следует использовать только качественную оптику, так как объективы среднего качества имеют значительно более высокое оптическое разрешение в центре, чем по краям, поэтому с такими объективами результаты измерения разрешающей способности телекамеры будут выше в центре, чем по краям.
Разрешающая способность тесно связана с полосой частот сигнала телекамеры. Эту связь мы уже объясняли, но не лишним будет еще раз вспомнить простое правило, согласно которому 1 МГц в полосе частот телекамеры дает 80 ТВ-линий горизонтального разрешения.
Практический опыт показывает, что человеческий глаз с трудом видит разницу в разрешающей способности, если она составляет менее 50 линий. Это, конечно, не означает, что разрешающая способность не является важным фактором в определении качества телекамеры, просто небольшая разница в разрешении едва заметна, особенно если она составляет менее 10 % общего числа пикселов.
Цветные телекамеры с одной ПЗС-матрицей (используемые в системах видеонаблюдения) имеют меньшую разрешающую способность, чем черно-белые, из-за деления на три цветовых компонента при том, что размеры этих ПЗС-матриц такие же, как у черно-белых телекамер. Трехматричные цветные телекамеры, используемые в телевещании, могут иметь гораздо более высокое разрешение. Появились телекамеры высокой четкости, где три 1-дюймовые матрицы дают горизонтальное разрешение близкое к 1000 ТВ-линиям.
Существует немало испытательных таблиц, которые используются для оценки разрешающей способности телекамер. Наиболее популярная из них – это испытательная таблица EIA RETMA, но в последнее время таблица по рекомендациям IEEE-208 становится все более популярной. Существуют и другие таблицы, которые вы легко можете найти в сети Интернет. Многие из них разработаны для оценки какого-либо одного параметра телекамеры, но только испытательная таблица CCTV Labs была специально разработана для индустрии видеонаблюдения. Эта таблица появилась еще в первом издании этой книги в 1995 году и в настоящее время стала стандартом де-факто.
Сейчас примерно 500 производителей оборудования для видеонаблюдения используют испытательную таблицу CCTV Labs в своих измерениях и сравнительных тестах. Как и в предыдущих изданиях книги, в этом издании мы публикуем испытательную таблицу на обложке. На момент выхода книги это была самая последняя версия таблицы, которая со временем изменялась, и каждый ее новый элемент позволял измерять новые параметры. Для более точных измерений читатель может приобрести через веб-сайт www.cctvlabs.conn испытательную таблицу большего формата (A3). Эта таблица отличается более точным воспроизведением цветов и деталей. Конечно, издатель постарался по возможности точно воспроизвести версию таблицы для данной книги, но точность воспроизведения мной не контролировалась, так как требуется индивидуальный контроль типографских красок и полиграфического процесса.