Текст книги "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии"
Автор книги: Владо Дамьяновски
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 12 (всего у книги 42 страниц)
Завершая этот раздел, мы бы хотели всячески поощрить читателей к обмену своими испытательными таблицами и результатами тестирования, что также можно сделать через веб-сайт CCTV Labs.
Присылая свои результаты тестирования, вы сможете поделиться ими с читателями журнала CCTV Focus, и это позволит нам всем вместе сравнивать различные телекамеры, цифровые видеорегистраторы и анализировать результаты сравнения.
Более подробно о параметрах, которые можно измерять с помощью испытательной таблицы CCTV Labs, вы можете прочесть в Главе 14.
Разрешающая способность тесно связана с полосой пропускания сигнала телекамеры. Эта связь объяснялась в предыдущем разделе.
Тестовая диаграмма на обложке книги, которую я подготовил для измерения разрешающей способности и других важных характеристик видеосигнала, может использоваться таким же образом. В разделе «Тестовая таблица для систем видеонаблюдения» вы найдете подробное объяснение других тестов.
Практический опыт показывает, что человеческий глаз с трудом различает разницу в разрешающей способности, если она составляет менее 50 линий. Это не означает, что разрешающая способность не является важным фактором в определении качества телекамеры, просто небольшая разница в разрешении едва заметна, особенно если она меньше 10 % общего числа пикселов.
Цветные телекамеры с одной ПЗС-матрицей (используемые в системах видеонаблюдения) имеют меньшую разрешающую способность, чем черно-белые, из-за деления на три цветовых компонента при том, что размеры этих ПЗС-матриц такие же, как у черно-белых телекамер. Трехматричные цветные телекамеры, используемые в телевещании, могут иметь гораздо более высокое разрешение. Появились телекамеры высокой четкости, где три 1 – дюймовые матрицы дают горизонтальное разрешение, близкое к 1000 ТВЛ.
Отношение сигнал/шум
Отношение сигнал/шум показывает, насколько хорош может быть видеосигнал телекамеры, особенно в условиях низкой освещенности. Шума избежать невозможно, но его можно минимизировать. В основном, он зависит от качества ПЗС-матрицы, электроники и внешних электромагнитных воздействий, но также в сильной степени и от температуры электроники. Металлический корпус телекамеры в значительной степени защищает от внешних электромагнитных воздействий (Строго говоря, внешние электромагнитные воздействия, как правило, являются стационарными процессами, поэтому их нельзя относить к шумам; их и называют наводками или помехами. Прим. ред.).
Источниками шума внутри телекамеры являются как пассивные, так и активные компоненты, поэтому «зашумленность» зависит от их качества, конструкции системы и в сильной степени от температуры. Вот почему, указывая отношение сигнал/шум, производитель должен также указать и температуру, при которой проводились измерения.
Шум в изображении аналогичен по природе шуму в аудиозаписях. На экране зашумленное изображение дает зернистость или снег, а на цветном изображении могут быть цветовые вспышки. Сильно зашумленные видеосигналы бывает трудно синхронизировать, изображение может получиться нечетким, с плохим разрешением. Зашумленное изображение от телекамеры становится еще хуже при уменьшении освещенности объекта, а также при использовании АРУ с большим усилением.
Отношение сигнал/шум выражается в децибелах (дБ).
Децибелы – это относительные единицы. Отношение выражается не в виде абсолютной величины, а в форме логарифма. Причина проста: логарифмы позволяют переводить большие отношения чисел к двух-трехзначным числам, но что более важно, преобразование сигнала (при вычислении затухания или усиления системы) сводится к простому сложению или умножению. Другая причина использования децибел (т. е. логарифма) – это более естественное понимание уровня звука и изображения. В частности, ухо человека воспринимает звук, а глаз воспринимает свет, подчиняясь логарифмическому закону.
Если вычисляется отношение любых двух величин, выраженных в одинаковых единицах, то в результате получаются дБ. Если же считается отношение к какому-то уровню, например, уровень напряжения относительно 1 мВ, то единицы называются дБмВ. Если мощность выражена относительно 1 мкВт, то единица называется дБмкВт.
Общая формула для отношений напряжения и силы тока имеет вид:
S/N = 20lg(Uc/Uш) (41)
Где Uc – напряжение сигнала, Uш – напряжение шума. Значения тока используются, если нужно показать отношение токов.
Если целью сравнения является отношение мощностей, то формула принимает несколько иной вид:
S/N = 10lg(P1/P2) (42)
Мы не будем вдаваться в объяснения по поводу различий (10 и 20), но запомните, что это вытекает из соотношения между напряжением, силой тока и мощностью.
В видеонаблюдении мы используем децибелы, в основном, для вычисления соотношения напряжений, то есть мы будем использовать только первую формулу.
В таблице приведены некоторые значения отношений напряжений (тока) и мощности в дБ. Обратите внимание на разницу между этими двумя величинами. В то время, как разница по напряжению в 3 дБ означает, что значение одного напряжения на 41 % больше сравниваемого значения, то для мощности 3 дБ означают двойное увеличение мощности (100 %-увеличение).
Отношение сигнал/шум ПЗС-телекамеры измеряется не так, как это делается в телевещании или при передаче сигнала. В сигнале телевещания отношение сигнал/шум – это отношение сигнала к шуму, накопленному при передаче сигнала от передатчика к приемнику. Оно определяется как отношение (в дБ) амплитуды сигнала, соответствующего шкале градаций яркости, к среднеквадратическому значению напряжения наложенного случайного шума, измеренного в полосе частот от 10 кГц до 5 МГц. Есть специальные приборы, спроектированные для непосредственного измерения этой величины при использовании сигнала испытательной строки (VITS).
Отношение сигнал/шум ПЗС-телекамеры определяется как отношение сигнала к шуму, производимому матрицей и электроникой телекамеры. Чтобы получить реальное отношение сигнал/шум телекамеры, все внутренние цепи (так или иначе влияющие на сигнал) должны быть отключены, включая гамма-коррекцию, АРУ, электронный затвор и схему компенсации встречной засветки. Температура должна быть на уровне комнатной. Самый простой метод измерения шума в сигнале телекамеры – это использование специального измерителя шума. Это устройство оценивает шум в полосе от 100 кГц до 5 МГц и выводит отношение сигнал/шум прямо в децибелах. Для ПЗС-телекамер в видеонаблюдении отношение сигнал/шум более 48 дБ считается хорошим.
Следует помнить, что изменение отношения сигнал/шум на 3 дБ означает примерно 30-процентное уменьшение шума, так как уровень видеосигнала не меняется. И при сравнении телекамеры, у которой сигнал/шум равен 48 дБ, с телекамерой, у которой, например, эта величина равна 51 дБ, последняя даст значительно лучшее изображение, что будет особенно заметно при низких уровнях освещенности. Говоря об отношении сигнал/шум, мы всегда полагаем, что АРУ отключена.
Если не допускать значительного нагрева телекамеры, то шум будет меньше.
Для сравнения приведем такую величину: ПЗС-телекамеры в телевещании имеют отношение сигнал/шум более 56 дБ, что чрезвычайно хорошо для аналогового видеосигнала.
Эффективное охлаждение телекамеры значительно уменьшает шумы. Снижение температуры для любой электроники означает уменьшение шумов. В астрономии и других сферах применения существуют специальные телекамеры с охлаждением, которые разработаны таким образом, что ПЗС-матрица охлаждается очень эффективно. Нередко можно встретить охлаждение до -50 °C и ниже.
Для специфических сфер применения используются телекамеры, у которых блок с ПЗС-матрицей имеет возможность подключения охладителя. Некоторые модели, наподобие той, которая изображена на иллюстрации, используют охлаждающие элементы Пельтье, для того чтобы постоянно поддерживать температуру ПЗС-матрицы на уровне 5 °C, что снижает шум до 1/8 от величины шума при комнатной температуре. Поэтому необходимо отметить, что если в системе видеонаблюдения не используются качественные телекамеры, то их перегрев может очень сильно повлиять на качество изображения.
Рис. 5.43. Телекамера с охлаждающим элементом Пельтье, который поддерживает рабочую температуру ПЗС-матрицы около 5 °C и снижает шумы на 85 %.
Динамический диапазон ПЗС-матрицы
Динамический диапазон нечасто упоминается в технических характеристиках телекамер систем видеонаблюдения. Однако, это очень важная деталь, характеризующая эффективность камеры.
Динамический диапазон ПЗС-матрицы определяется как максимальный сигнал накопления (насыщенная экспозиция), деленный на общее среднеквадратическое значение шума эквивалентной экспозиции. Динамический диапазон аналогичен отношению сигнал/шум, но относится только к динамике ПЗС-матрицы при обработке темных и ярких объектов в пределах одной сцены.
Отношение сигнал/шум относится к полному сигналу, включая электронные схемы телекамеры, и выражается в дБ, а динамический диапазон – это отношение, не логарифм. Это число показывает световой диапазон, обрабатываемый ПЗС-матрицей, только этот диапазон выражается не в фотометрических единицах, а в значениях сформированного электрического сигнала. Он начинается с очень низких уровней света, равных среднеквадратическому значению шума ПЗС-матрицы и доходит до уровня насыщенности. Поскольку это отношение двух значений напряжения, то величина безразмерная, обычно порядка нескольких тысяч. Типичные значения лежат между 1000 и 100000. Внешний свет может легко превысить уровень насыщения ПЗС-матрицы, так как динамический диапазон вариаций света в уличных условиях гораздо шире, чем может обработать ПЗС-матрица. Например, в ясный солнечный день ПЗС-матрица быстро достигает насыщения, особенно если телекамера не имеет АРУ, автодиафрагму или электронный затвор. Автодиафрагма оптически блокирует избыточный свет и снижает его до верхнего уровня ПЗС-матрицы, в то время как электронный затвор делает то же, электронным образом снижая время экспозиции матрицы (которое в нормальных условиях составляет 1/50 с для сигнала CCIR/PAL и 1/60 с для EIA/NTSC).
Рис. 5.44. Слева телекамера дает заметный вертикальный ореол, справа ореол почти незаметен
Когда достигается уровень насыщения при экспозиции ПЗС-матрицы (1/50 с в PAL и 1/60 с в NTSC), может проявиться эффект «заплывания» (blooming), когда избыточный свет насыщает не только те элементы изображения (пикселы), на которые он падает, но и соседние тоже. В результате у телекамеры снижается разрешающая способность и детальная информация в ярких зонах. Чтобы решить эту проблему, во многих ПЗС-матрицах была разработана специальная секция (anti-blooming). Эта секция ограничивает количество зарядов, которые могут собираться на каждом пикселе.
Если эта секция спроецирована нормально, ни один пиксел не может аккумулировать больший заряд, чем могут передать сдвиговые регистры. Итак, даже если динамический диапазон такого сигнала ограничен, детали в ярких областях изображения не теряются. Это может оказаться чрезвычайно важным в сложных условиях освещения: если телекамера «смотрит» на свет фар автомобиля или ведется наблюдение в коридорах на фоне яркого света.
Некоторые изготовители телекамер (вроде Plettac) разработали специальную схему, которая блокирует перенасыщенные зоны на этапе цифровой обработки сигнала. Схема АРУ видеосигнала «не замечает» слишком ярких зон и не использует их в качестве белых пиковых опорных точек, вместо этого берутся более низкие значения, благодаря чему детали в темных зонах становятся более различимы.
Другие фирмы, вроде Panasonic, запатентовали новые методы работы ПЗС-матриц, вместо экспозиции одного поля в каждый период (1/50 с в PAL и 1/60 с в NTSC) за этот период проводится две экспозиции. Одна – очень короткое время, обычно порядка 1/1000 с, другая – нормальное время, которое зависит от количества света.
Затем две экспозиции комбинируются в одно поле, так что яркие зоны экспонируются более короткое время и дают детали в ярком, а более темные области экспонируются дольше, что позволяет получить детали в темной части изображения, суммарный эффект – увеличение динамического диапазона телекамеры в 40 раз (как утверждает Panasonic).
Рис. 5.45. Супердинамический эффект в телекамерах Panasonic
Следует упомянуть, что кроме конструкции самой ПЗС-матрицы важную роль для ее динамического диапазона, как и для отношения сигнал/шум, играет температура. Более низкие температуры дают меньший уровень шума в любом электронном устройстве, так что динамический диапазон увеличится. В научных исследованиях, где нежелателен любой, даже ничтожно малый, шум, используются специально охлажденные ПЗС-головки, а рабочая температура ПЗС-матрицы сохраняется в пределах ниже -50 °C. Для таких приложений выпускаются телекамеры с ПЗС-блоком со средствами подсоединения охлаждающего агента.
Итак, следует помнить, если в системах видеонаблюдения мы не используем телекамеры хорошего качества, то температура может сыграть существенную роль в снижении качества изображения. Таким образом, очень важно сохранять температуру корпуса телекамеры как можно более низкой.
Рис. 5.46. Затемнение пикового света в телекамерах фирмы Plettac
Цветные ПЗС-телекамеры
Цветное телевидение – это очень сложная наука. Основная концепция цветного телевидения, как уже говорилось, заключена в комбинировании трех основных цветов: красного, зеленого, синего.
Цветовое смешение происходит в нашем глазу, когда мы смотрим на экран видеомонитора с некоторого расстояния. Дискретные цветные элементы (R, G и В) столь малы, что на самом деле мы видим результирующий цвет, получившийся в результате аддитивного смешения трех компонент.
Как мы говорили выше, это называется аддитивным смешением, в противоположность субтрактивному, потому что, добавляя дополнительные цвета, мы получаем большую яркость, и при корректном смешении первичных цветов может быть получен белый цвет.
Большинство цветных телекамер в телевещании имеют три ПЗС-матрицы, каждая получает свою компоненту цвета. Разделение белого цвета на компоненты R, G и В производится специальной оптической светоделительной призмой, устанавливаемой между объективом и ПЗС-матрицами.
Светоделительная призма – это очень дорогой и точный оптический блок с дихроическими зеркалами. Такие телекамеры называются трехматричными цветными телекамерами и нечасто применяются в системах видеонаблюдения, так как они значительно более дорогие, чем одноматричные телекамеры. Однако они имеют очень высокую разрешающую способность и превосходные технические характеристики.
В видеонаблюдении чаще всего используются одноматричные цветные телекамеры. Они формируют композитный цветной видеосигнал, известный как CVBS. В главе 4 мы уже обсуждали цветной видеосигнал (см. уравнение (35)); три компоненты видеосигнала, входящие в состав CVBS: яркостной сигнал (Y), красный цветоразностный (V = R-Y) и синий цветоразностный (U = B-Y). Они квадратурно модулированы и вместе с яркостным образуют композитный цветной видеосигнал. Затем в цветном видеомониторе эти компоненты обрабатываются и получаются первичные сигналы R, G и В.
В одноматричных цветных ПЗС-телекамерах цветоделение может производиться одним из двух методов фильтрации:
– Фильтр полос RGB, где три вертикальные пиксельные колонки (полоски) расположены рядом друг с другом: красная, зеленая, синяя.
– Комплементарный мозаичный цветовой фильтр, где пикселы ПЗС-матрицы не чувствительны к R, G и В цвету, а чувствительны к дополнительным (комплементарным) цветам – голубому, пурпурному, желтому и зеленому, расположенным в виде мозаики.
Рис. 5.47. Цветная ПЗС-телекамера с тремя матрицами использует светоделителъную призму для разделения цветов
Первый тип одноматричной цветной ПЗС-камеры дает очень хорошее цветовоспроизведение и требует более простых схем. Однако, такие матрицы «страдают» очень низкой разрешающей способностью по горизонтали, обычно порядка 50 % от общего числа пикселов в горизонтальном направлении матрицы. Что касается разрешающей способности по вертикали, то она определяется полным числом пикселов по вертикали. Подобный тип телекамер формирует цветные сигналы RGB.
Мозаичная одноматричная цветная ПЗС-телекамера требует более сложной электроники и может отставать по качеству цветопередачи в сравнении с RGB моделями (ведь цветовые преобразования должны относиться к компонентам Су, Ye, Mg, Gr), но дает гораздо более высокую разрешающую способность по горизонтали (более 65 % горизонтальных пикселов).
Рис. 5.48. Фильтр полос RGB одноцветной ПЗС-матрицы
Рис. 5.49. Комплементарный (Су, Ye, Mg, Gr) мозаичный фильтр одноцветной ПЗС-матрицы
Поскольку последние наиболее распространены в видеонаблюдении, мы уделим немного больше места этому вопросу и объясним, как цветовые компоненты преобразуются в композитный цветной видеосигнал.
Мозаичный фильтр, обычно называемый матрицей цветовых фильтров (CFA, Color Filter Array), разделяет свет на голубой, пурпурный, желтый и зеленый компоненты. Как уже упоминалось, эти цвета являются дополнительными. И на практике этот тип одноматричных ПЗС-телекамер использует цветовые компоненты Су, Ye, Mg и Gr для создания сигнала яркости Y и цветоразностных сигналов V = R-Yn U = B-Y
Следует отметить (для ясности), что одноматричная цветная ПЗС-телекамера имеет светочувствительные пикселы одинаковой кремниевой структуры, не различной для различных цветов, как можно подумать. Именно CFA-фильтр разделяет изображение на цветовые компоненты.
Чтобы понять, как это происходит, посмотрите на матрицу цветовых фильтров на рис. 5.50.
Рис. 5.50. Матрица цветовых фильтров (CFA) цветной одноматричной ПЗС-телекамеры
Такой тип CFA-фильтра относится к телекамере стандартной интеграции поля, т. е. к телекамере, время экспозиции которой составляет 1/50 с для PAL или 1/60 с для NTSC.
Как видно из схемы, четыре ячейки горизонтального сдвигового регистра содержат сигналы (Gr+Cy), (Mg+Ye), (Gr+Cy) и (Mg+Ye) соответственно. Обрабатывая соответствующим образом эти четыре сигнала, мы можем получить три компонента композитного цветного видеосигнала: яркостной (Y), красный цветоразностный сигнал (R-Y) и синий цветоразностный сигнал (B-Y).
Во-первых, сигнал яркости получается из соотношения:
7 = 1/2 [(Gr + Су) + (Mg + Ye)] = 1/2 (2В + 3G + 2R) (43)
Приведенное выше соотношение показывает, как получается сигнал яркости в цветных одноматричных ПЗС-камерах с любым типом фильтрации (как с мозаичным типом фильтра, так и с фильтром полос RGB).
Красный цветоразностный сигнал получается по линии А1:
R – Y = [Mg + Ye) – (Gr + Су)] = (2R – Gr) Синий (44)
цветоразностный сигнал получается из значений по линии А2:
В – Y = [Gr + Ye) – (Mg + Су)] = (2В – Gr) (45)
Итак, эти два сигнала вместе с яркостным замешиваются в композитный видеосигнал и представляют цветной видеосигнал стандарта PAL (или NTSC).
Новые разработки постоянно совершенствуют технологию получения изображения (ПЗС и КМОП), и хотя бы одну из них следует упомянуть в этом разделе. Компания Foveon создала многослойный одноматричный фотоприемник, в котором разделение цветов происходит не фильтрами на разных ячейках матрицы, а за счет специальной многослойной технологии, где цвета разделяются по мере проникновения в одну и ту же ячейку. В результате достигается лучшая цветопередача и более высокая разрешающая способность. Сейчас уже есть цифровые фотоаппараты с матрицей Foveon X3, и не будет ничего удивительного в том, если в будущем появятся и телекамеры с подобной матрицей для систем видеонаблюдения.
Баланс белого
От цветной телекамеры кроме разрешения и минимальной освещенности, мы требуем хорошей и точной цветопередачи.
Первые цветные ПЗС-телекамеры имели внешние датчики для определения цвета объекта (обычно устанавливаемые на телекамеру сверху), и оценка света этим датчиком влияла на процесс цветовой обработки. Это называлось автоматический баланс белого (automatic white balance, AWB), но из-за разницы в углах обзора у датчика и объектива, устройство не отличалось большой точностью. В современных телекамерах автоматический баланс белого осуществляется через объектив (TTL-AWB, through-the-lens).
Начальная калибровка телекамеры производится путем экспонирования ПЗС-матрицы при включенном питании. Для этого перед телекамерой кладут лист белой бумаги и затем камеру включают. При этом корректировочные коэффициенты запоминаются в памяти телекамеры и затем используются для модификации всех остальных цветов. Этот процесс в значительной степени зависит от цветовой температуры источников света в зоне установки телекамеры.
Многие телекамеры снабжены кнопкой перезагрузки AWB без отключения камеры. Насколько хороша эта корректировка, зависит от самой ПЗС-матрицы и конструкции схемы баланса белого.
Рис. 5.51. Спектральная чувствительность цветной телекамеры с ПЗС-матрицей с мозаичным ПЗС-филътром Cy-Mg-Gr-Ye
Большинство современных телекамер имеют AWB, но все-таки еще можно встретить модели с ручной настройкой баланса белого (manual white balance, MWB). В MWB-телекамерах всего две настройки (выбираемых переключателем): в помещении и вне помещения. Первый режим обычно устанавливается для источников света с цветовой температурой порядка 2800° К – 3200° К, а наружный режим – для температур 5600° К – 6500° К. Это соответствует средним условиям освещенности внутри помещений и на улице.
В некоторых простых телекамерах имеются регулировки, с помощью которых можно настраивать телекамеру. Но если у вас нет образцовой камеры, направленной на ту же сцену, установка цветового баланса может оказаться делом непростым. Задача особо усложняется, если несколько телекамер подсоединены к одному видеокоммутатору, видеоквадратору (разделителю экрана) или видеомультиплексору.
Цветные телекамеры новых моделей кроме AWB снабжены механизмом автоматического отслеживания баланса белого (automatic tracking white balance, ATWB), который непрерывно настраивает (отслеживает) цветовой баланс при изменении положения телекамеры или освещенности. Это особенно удобно для телекамер, установленных на поворотном устройстве, а также для зон со смешанным освещением (естественным и искусственным). В системах видеонаблюдения, где используется поворотное устройство, обзор телекамеры может попадать в зоны с источниками различной цветовой температуры, например, с одной стороны – внутренний (в помещении) свет от ламп накаливания, а с другой – уличный естественный свет. Устройство ATWB динамически отслеживает цветовую температуру источников света в процессе панорамирования. Так что если у вас нет ATWB-телекамеры, то будьте очень внимательны к световым условиями в поле зрения телекамеры, принимая во внимание не только интенсивность, но и цветовую температуру.
И наконец, как уже упоминалось выше, не забудьте учесть цветовую температуру экрана видеомонитора. Большинство цветных кинескопов характеризуются температурой 6500° К, но некоторые могут иметь более высокую (9300° К) или низкую (5600° К) цветовую температуру.
Рис. 5.52. Настройка баланса белого может осуществляться вручную или автоматически
Рис. 5.53. Точность цветопередачи можно проверить с помощью вектороскопа
КМОП-технологии
Технологии ПЗС уже около 30 лет. ПЗС-устройства вступили в пору зрелости и дают прекрасные изображения с низким уровнем шума. Хотя принципы работы ПЗС-матриц основаны на МОП-электронике (металл-окисел-полупроводник), но для изготовления ПЗС-матриц требуется особая кремниевая технология и специализированные линии производства.
Использовать ПЗС-процесс для интеграции других функций телекамеры – формирователей тактовых импульсов, логических схем синхронизации, обработки сигнала и пр. – было бы реальным решением с технической точки зрения, но не с экономической. Обычно эти функции реализованы в других микросхемах. Таким образом, большинство ПЗС-телекамер состоит из нескольких микросхем.
Кроме этой проблемы – интеграции всех электронных схем телекамеры в отдельную микросхему – есть еще одна: ахиллесовой пятой ПЗС-устройств является потребность в тактовом генераторе.
Для успешного функционирования важна амплитуда, и форма сигнала тактового генератора критична. Генерация импульсов необходимого размаха и формы обычно входит в задачу специализированной микросхемы, формирователя тактовых импульсов, а это приводит к двум серьезным затруднениям: несколько нестандартных напряжений питания и высокое энергопотребление. Если у пользователя имеется один вход подключения питания, то придется использовать несколько внутренних регуляторов для выполнения требований к электропитанию.
За последние несколько лет на рынке появилось фоточувствительное устройство нового типа – КМОП-чип (комплементарная МОП-ИС, КМОП-ИС).
КМОП-матрицы изготавливаются на базе стандартной КМОП-технологии, опираясь на так называемую VLSI-технологию (Very Large Scale Integration – сверхвысокий уровень интеграции). Это гораздо более дешевый и стандартизованный метод производства микросхем, чем ПЗС-технология.
Рис. 5.54. Цветная однокристальная КМОП-телекамера
Основное преимущество КМОП-телекамер в сравнении с ПЗС – это высокий уровень интеграции, который достигается за счет фактической реализации всех функций электроники телекамеры на одной ИС. КМОП-технология для этого идеальна: логическая схема синхронизации, контроль экспозиции и аналого-цифровой преобразователь могут быть совмещены с матрицей, образуя завершенную однокристальную телекамеру.
КМОП-фотоприемник «чувствует» свет так же, как и ПЗС, но дальше все происходит иначе. Зарядовые пакеты не переносятся, а на ранней стадии обнаруживаются высокочувствительными усилителями зарядов на КМОП-транзисторах. В некоторых КМОП-матрицах усилители находятся поверх каждой колонки пикселов – сами пикселы содержат только один транзистор, который используется как шлюз, подключая содержимое пиксела к усилителю. Эти пассивные пиксельные КМОП-матрицы работают наподобие аналоговой DRAM-памяти (динамического ОЗУ).
Слабое место КМОП-матриц – это проблема согласования множества различных усилителей внутри каждой матрицы. Некоторые производители решили эту проблему, снизив остаточный уровень шума с постоянным спектром до незначительных пропорций. Первые КМОП-устройства и прототипы телекамер давали низкокачественное, зашумленное изображение, что делало сомнительным применение технологии в коммерческих целях. Вариации процесса приводят к тому, что каждый пиксел дает несколько отличный от других отклик, что проявляется в виде снега на изображении.
Кроме того, светособирающая площадь матрицы меньше, чем у ПЗС-матриц, поэтому эти устройства менее чувствительны к свету.
Рис. 5.55. Современные КМОП-матрицы позволяют проводить аналого-цифровое преобразование в самой матрице
Впрочем, за последние пять лет удалось решить многие проблемы КМОП-матриц. За время, прошедшее между двумя изданиями этой книги, в развитии КМОП-технологии наметился существенный прогресс. Стремительный рост спроса на цифровые фотоаппараты заставил производителей значительно улучшить качество изображения, получаемое с помощью КМОП-матриц и сократить стоимость их производства. Некоторые крупные производители, как Canon и Kodak, уже выпустили КМОП-матрицы с 10 млн. пикселов с очень высоким качеством изображения. Кроме повышения разрешающей способности КМОП-матриц, имеются и другие технологические достижения. Одно из таких усовершенствований КМОП-технологий позволяет избавиться от т. н. «фиксированного рисунка шумов». Такой метод позволяет считать для каждого пиксела свой уровень шума и сохранить такую структуру для каждой матрицы, как ее уникальную характеристику. Затем производится коррекция видеосигнала, при которой соответствующие значения этой структуры вычитаются из каждого значения, полученного в пикселе, что позволяет значительно снизить шумы КМОП-матрицы.
Еще одна новая разработка в сфере КМОП-технологии, которая еще недавно рассматривалась только гипотетически, теперь стала реальностью и представляет особый интерес с точки зрения видеонаблюдения. Компания Pixim разработала новый тип КМОП-матрицы, которая преобразует аналоговые зарядовые пакеты в цифровой поток данных сразу же на матрице. Эта революционная и очень перспективная концепция позволяет избавиться от многих недостатков КМОП-технологии.
Например, здесь удалось добиться очень точного управления экспонированием индивидуально для каждого пиксела, что позволяет значительно расширить динамический диапазон. Новая разработка от Pixim также позволяет учитывать собственный темновой шум матрицы, что улучшает отношение сигнал/шум.
Специальные телекамеры высокой чувствительности
ПЗС-матрицы оказались гораздо более эффективными в условиях минимальной освещенности, чем телекамеры с передающими трубками, но и они имеют пределы по минимальной освещенности. Черно/белая телекамера в условиях низкой освещенности «видит» примерно так же, как и человеческий глаз. В технических терминах это звучит так: стандартная черно/белая ПЗС-телекамера охватывает диапазон освещенности от 105 лк до 102 лк.
Этот диапазон интенсивностей света называется областью фотопического зрения.
В особых случаях возникает необходимость в еще более чувствительных к низким уровням света телекамерах. Уровни освещенности ниже 102 лк относятся к области скотопического зрения. Глаз человека не способен разглядеть что-либо при таких низких уровнях освещенности, но некоторые телекамеры посредством интеграционных функций способны формировать изображения при уровнях много ниже 102 лк. Эти функции характеризуются более продолжительным временем экспозиции – более 1/50 с (1/60 с для EIA). Понятно, что в этом случае мы теряем эффект реального времени, и телекамера реально становится устройством с накоплением заряда. Это может быть неприемлемо для наблюдения за движущимися объектами при низких уровнях освещенности, но для наблюдения за медленно движущимися в темноте объектами вполне подходит. Если же мы хотим наблюдать реальное движение в скотопической области зрения, то можно использовать специальный тип телекамеры – усиленную LLL-телекамеру (low light level, низкий уровень освещенности) с фотоумножителем.
Такая телекамера имеет дополнительный элемент – фотоумножитель, обычно устанавливаемый между объективом и телекамерой. Фотоумножитель – это трубка, которая преобразует очень слабый свет, неразличимый ПЗС-матрицей, в уровень света, который матрица может «увидеть». Вначале объектив проецирует изображение слабо освещенного объекта на специальную пластину, которая работает подобно электронному умножителю: буквально каждый фотон световой информации усиливается до сигнала значительного уровня. Усиление основано на лавинном эффекте (лавинном умножении электронов), вызванном фотонами в статическом поле высокого напряжения. Результирующие электроны ударяются о люминофорное покрытие на конце трубки, люминофор светится, и получается видимый свет (так же, как электронный луч заставляет светиться экран черно-белого кинескопа). Это (теперь видимое) изображение проецируется на ПЗС-матрицу. Вот так телекамера видит слабо освещенные объекты. Из-за специфики инфракрасного диапазона длин волн, а также из-за монохромного люминофорного покрытия экрана фотоумножителя, LLL-телекамера способна давать только черно-белое изображение.