Текст книги "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии"
Автор книги: Владо Дамьяновски
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 25 (всего у книги 42 страниц)
Есть несколько поколений стандарта SCSI. У последних поколений скорость передачи данных, разумеется, выше, чем у первых.
Сейчас распространены последние спецификации Ultra160 и Ultra 320, которые поддерживают очень высокие внешние скорости передачи данных (160 Мбайт/с и 320 Мбайт/с соответственно).
В последнее время в связи с ростом требований, предъявляемых к размеру дискового пространства и надежности хранения данных, в видеонаблюдении получили широкое распространение устройства, называемые RAID-массивами.
Аббревиатура RAID расшифровывается как избыточный массив недорогих (независимых) дисков (Redundant Arrays of Inexpensive (Independent) Disks), и уже само название очень хорошо описывает его концепцию. RAID объединяет в массив несколько небольших по размеру жестких дисков (обычно АТА) для повышения производительности или надежности. Если один из дисков выходит из строя, то данные не будут потеряны, и вышедший из строя диск обычно можно заменить в процессе работы. Для организации RAID-массива, как правило, требуется отдельный контроллер (как в случае с дисками SCSI), а сам массив представляется в операционной системе не как набор дисков, а как отдельный логический диск.
Имеется два важных соображения при выборе жестких дисков для RAID-массива: размер диска и скорость вращения. Современные контроллеры работают в основном с жесткими дисками UltraATA/100 или даже UltraATA/133, поэтому они будут достаточно быстры. Высокая скорость вращения дисков позволяет достичь высокой скорости передачи данных и снизить время доступа, но это всегда сопровождается повышением температуры, а также уровня вибрации и шума. В принципе для RAID-массива подойдут любые жесткие диски.
Рис. 9.65. Стандарт параллельной передачи данных ATA (EIDE)
Рис. 9.66. RAID-массив с избыточным резервированием, использующий жесткие диски АТА, с возможностью горячей замены
Сейчас для построения RAID-массивов используются 6 типов архитектуры, каждый из которых имеет свои достоинства и недостатки в функциональности и производительности. Кроме 6 типов архитектуры RAID с избыточностью (то есть повышенной надежностью), сейчас очень часто архитектуру массива дисков без функции избыточности называют RAID-0. Далее мы рассмотрим все 7 типов архитектуры RAID.
– RAID-0 (striping, массив с чередованием)
Это самая быстрая и эффективная архитектура массива, но она не предлагает отказоустойчивости, то есть функция избыточности не реализована. Таким образом, с технической точки зрения RAID-0 не соответствует принципам RAID, поэтому RAID-0 не дает никаких преимуществ в надежности хранения данных. В рамках данной архитектуры все данные равномерно распределяются между всеми дисками массива, которые называются набором томов с чередованием (stripe set). Основное преимущество RAID-0 заключается в скорости, так как скорость передачи данных увеличивается пропорционально количеству жестких дисков массива. Впрочем, если хотя бы один диск выйдет из строя, то данные всего массива будут утеряны.
– RAID-1 (mirroring, зеркалирование)
RAID-1 – это полная противоположность архитектуре RAID-0. Основная задача здесь не повышение скорости, а обеспечение надежности хранения данных. При записи или считывании данных все диски массива используются одновременно. Таким образом, данные записываются одновременно на два и более диска, что эквивалентно созданию идеальной резервной копии, поскольку информация резервной копии не будет устаревать. RAID-1 будет лучшим выбором при создании максимально отказоустойчивой системы.
– RAID-2 (striping, массив с чередованием и коррекцией ошибок)
Принципы архитектуры RAID-2 те же самые, что и у RAID-0: данные распределяются по всем дискам массива, но не на уровне блоков, а на уровне битов, что необходимо для того, чтобы при обмене данными использовать код коррекции ошибок (ЕСС). Для этого потребуются дополнительные жесткие диски. Для обеспечения полной надежности хранения данных необходимо отводить 10 дисков для данных и 4 диска ЕСС для коррекции ошибок. Следующий уровень уже потребует 7 дисков для коррекции ошибок при 32 дисках для хранения данных. Это объясняет, почему RAID-2 никогда не пользовался особой популярностью.
– RAID-3 (data striping + dedicated parity, массив с чередованием и четностью)
В архитектуре RAID-3 применяется более разумная коррекция ошибок. Данные байт за байтом распределяются по жестким дискам массива, а отдельный жесткий диск используется для хранения избыточных данных четности. Большинство контрольных дисков, используемых в архитектуре RAID-2 используются для определения положения сбойного элемента, так как многие RAID-контроллеры могут самостоятельно определить, где произошел сбой, то количество избыточных дисков можно сократить. В RAID-3 используется только один избыточный диск, это становится как достоинством, так и недостатком данной архитектуры, поскольку при каждом обращении к массиву необходимо обращаться и к этому избыточному диску. Таким образом, преимущество в скорости от распределения данных по нескольким жестким дискам частично нивелируется. Для массива RAID-3 потребуется не менее трех дисков и достаточно сложный контроллер. Все вышесказанное объясняет, почему RAID-3 так же, как и подобные ему RAID-4 и RAID-5, никогда не пользовался массовой популярностью. RAID-3 часто используется в тех случаях, когда требуется считывать и записывать очень большие последовательности данных в однопользовательской среде.
RAID-3 не позволяет одновременно выполнять множественные операции ввода и вывода.
– RAID-4 (data striping + dedicated parity, массив с чередованием и четностью)
RAID-4 очень похож по своим принципам на RAID-3, но распределение данных по дискам происходит на уровне блоков, а не байтов. Теоретически это должно было значительно повысить производительность, но на практике этого не происходит, так как избыточный диск по-прежнему остается слабым звеном. Таким образом, RAID-4 не дает особых преимуществ и не позволяет одновременно выполнять несколько операций записи.
– RAID-5 (distributed data + distributed parity, массив с чередованием дисков и чередованием четности)
RAID-5 обычно считается лучшим компромиссом между производительностью и надежностью хранения данных. Не только данные, но и контрольная информация распределяется по всем дискам. В результате RAID-5 совсем немногим уступает RAID-3 по производительности.
Впрочем, уровень отказоустойчивости не слишком высок, так как без потери данных только 1 диск массива может выйти из строя. Требуется не менее 3 дисков для организации такого массива.
RAID-5 лучше всего подходит для многозадачной и многопользовательской среды, так как скорость записи в таком массиве достаточно высока.
– RAID-6 (distributed data + distributed parity, массив с чередованием дисков и чередованием четности)
RAID-6 очень похож на RAID-5 во всем, кроме того, что хранится двойной объем контрольной информации, необходимой для восстановления массива в случае сбоев диска. Хотя такой подход несколько снижает производительность, он позволяет без потери данных пережить сбой даже двух жестких дисков. Но за все нужно платить. Результатом такого подхода стало то, что RAID-6 требует не менее 5 дисков для организации массива, а скорость записи еще больше снизилась из-за удвоения избыточной информации.
RAID-массивы в видеонаблюдении приобретают все большую популярность, так как они позволяют увеличить время записи и повысить надежность хранения информации.
Чаще всего используется RAID-5, хотя некоторые производители предлагают и RAID-1 с зеркалированием.
Самый новый интерфейс обмена данными между системной платой и жестким диском получил название Serial ATA(SATA).
Этот стандарт последовательной передачи данных является дальнейшим развитием привычного стандарта АТА, предусматривающего параллельную передачу данных, и имеет три основных преимущества по сравнению со своим предшественником: скорость, удобство подключений и возможность горячей замены.
Первая версия Serial ATA имела скорость передачи данных 150 Мбайт/с, но в этот стандарт изначально заложена возможность ее увеличения. Так ожидается, что вторая версия позволит увеличить скорость передачи данных до 300 Мбайт/с, а 600 Мбайт/с мы получим уже к 2007 году. Впрочем, скорость передачи данных 150 Мбайт/с всего лишь на 17 Мбайт/с выше, чем у самого быстрого интерфейса АТА/133 с параллельной передачей данных. Самая большая проблема параллельной передачи данных заключается в том, что при увеличении скорости передачи очень трудно поддерживать синхронизацию нескольких параллельных линий. Новый последовательный интерфейс использует самые новые стандарты передачи сигналов. Впрочем, необходимость в столь высокоскоростных интерфейсах до сих пор является предметом дискуссии, так как самым слабым звеном по-прежнему остается жесткий диск с его низкой скоростью внутренней передачи данных, что связано с механической составляющей жесткого диска.
На практике, самым большим преимуществом оказалась замена неудобных IDE-кабелей на более гибкие кабели, которые имеют только 7 проводников и разъемы шириной 8 миллиметров с каждой стороны. Максимальная длина кабеля может составлять 1 метр, что в сравнении с короткими IDE-кабелями (45 сантиметров в длину) с 40 или 80 проводниками будет большим подарком для инсталляторов. Кроме того, улучшается вентиляция системного блока, что нельзя недооценивать.
Рис. 9.67. Разъемы жесткого диска Serial АТА
Рис. 9.68. Кабели Serial АТА
Концепция использования на одном шлейфе нескольких устройств (master-slave) тоже осталась в прошлом, что не может не радовать, так как теперь можно забыть о многочисленных комбинациях перемычек на жестком диске. Теперь на одном кабеле может находиться только одно устройство. Все разъемы должны быть выполнены таким образом, чтобы их нельзя было подключить неправильно, а эта проблема существовала при подключении жестких дисков АТА.
Настоящие жесткие диски SATA также имеют другой разъем электропитания, который невозможно спутать с чем-либо еще. В нем имеется 15 контактов с различным напряжением (3.3, 5 и 12 В). Во время перехода от параллельного к последовательному интерфейсу АТА планируется использовать различные адаптеры для подключения одного интерфейса к другому, что, впрочем, будет сказываться на быстродействии. В начале 2003 года проводились тесты, которые показали, что потери в быстродействии составляют от 30 до 50 %. В настоящее время многие производители жестких дисков уже выпускают накопители с полноценным интерфейсом Serial.
Среднее время наработки на отказ (MTBF)
Большинство производителей жестких дисков приводят для своей продукции такое значение, как среднее время наработки на отказ (MTBF, Mean Time Between Failure). Обычно оно варьируется от 300,000 до 1,000,000 часов. С точки зрения обычного человека это немало (примерно 30-100 лет). Впрочем, эти значения относятся больше к миру теории, чем гарантируют практическое применение. Развитие технологий не позволяет эффективно использовать жесткие диски на протяжении более чем двух лет: они раньше устаревают. Впрочем, статистика и математические расчеты позволяют получить важные данные о качестве жестких дисков и предполагаемом времени бесперебойной работы.
Практика показывает, что жесткие диски выходят из строя значительно раньше, чем истечет среднее время наработки на отказ. Это связано во многом с неадекватными условиями эксплуатации (удары, вибрации, сотрясения, перегрев вследствие недостаточного охлаждения, пыль), о чем мы уже говорили, но это всегда имеет смысл повторить.
Среднее время наработки на отказ основывается на простом экспоненциальном распределении вероятности сбоя, при этом вероятность сбоя равна (47)
где е = 2.71, t – время, для которого вычисляется вероятность сбоя, а М – средняя наработка на отказ.
Так, например, при 500,000 часов наработки на отказ жесткого диска имеется 1 % вероятности того, что он выйдет из строя в течение 7 месяцев, 5 % – в течение 3 лет, 10 % – в течение 6 лет, и 50 % – в течение 40 лет.
10. Средства передачи видеосигнала
Изображение, зафиксированное объективом и телекамерой и затем преобразованное в электрический сигнал, поступает на коммутатор, видеомонитор или записывающее устройство.
Для того чтобы видеосигнал попал из пункта А в пункт Б, он должен пройти через передающую среду. Тоже самое относится к сигналу управляющих данных.
Самыми распространенными средствами передачи видеоинформации в видеонаблюдении являются:
– Коаксиальный кабель
– Кабель витой пары
– Микроволновая связь
– Радиочастотная передача (эфирная)
– Связь с помощью инфракрасного излучения
– Телефонная линия
– Оптоволоконный кабель
– Компьютерная сеть
Для видеопередачи чаще всего используется коаксиальный кабель, но все большую популярность приобретает волоконная оптика – благодаря ее превосходным характеристикам. Также можно использовать смешанные средства передачи, например, микроволновую передачу видеосигнала и передачу управляющих поворотным устройством и трансфокатором данных (PTZ-данных) через витую пару.
Мы рассмотрим все эти средства передачи по отдельности, но особое внимание обратим на передачу при помощи волоконной оптики и коаксиального кабеля.
Коаксиальные кабели
Концепция
Коаксиальный кабель – самое распространенное средство передачи видеосигналов, а иногда видео и PTZ-данных вместе. Такую передачу называют несимметричной передачей, исходя из концепции коаксиального кабеля.
Поперечное сечение коаксиального кабеля показано на рис. 10.1. Кабель имеет симметричное и соосное строение. Видеосигнал проходит через центральную жилу, в то время как экран используется для уравнивания нулевого потенциала концевых устройств – телекамеры и видеомонитора, например. И не только для этого, экран также защищает центральную жилу от внешних нежелательных электромагнитных помех (ЭМП).
Рис. 10.1. Разнообразные оптоволоконные кабели
Идея соосного строения кабеля состоит в том, что все нежелательные ЭМП индуцируются только в экране. Если он должным образом заземлен, то наведенный шум разряжается через заземления телекамеры и монитора. С точки зрения электричества коаксиальный кабель замыкает контур между источником и приемником, где центральная жила кабеля является сигнальным проводом, а экран – заземляющим. Поэтому передачу по коаксиальному кабелю и называют несимметричной передачей.
Рис. 10.2. Поперечное сечение коаксиального кабеля
Шум и электромагнитные помехи
То, насколько хорошо экран коаксиального кабеля защищает центральную жилу от шума и ЭМП, зависит от процента экранирования. Как правило, производители указывают в спецификациях цифры от 90 до 99 %. Но имейте в виду, что даже если обещано 100 % экранирование, невозможно получить защиту от внешних наводок на все 100 %. Проникновение ЭМП внутрь коаксиального кабеля зависит от используемой частоты.
Теоретически, успешно подавляются только частоты выше 50 кГц – главным образом, из-за ослабления скин-эффекта. Все частоты ниже этой индуцируют электроток, в меньшей или большей степени.
Насколько силен электроток – зависит от силы магнитного поля. Понятно, что нас, прежде всего, интересует излучение промышленной частоты (50 или 60 Гц), окружающее почти все искусственные объекты.
Вот почему возникают проблемы, если коаксиальный кабель проведен параллельно электросети. Величина наведенного электромагнитного напряжения в центральной жиле зависит, во-первых, от электротока, текущего через электрический кабель сети, что, в свою очередь, зависит от расхода тока на данной линии.
Во-вторых, она зависит от того, насколько далеко коаксиальный кабель пролегает от силового кабеля. И, наконец, она зависит от того, на какой протяженности эти кабели пролегают вместе. Иногда соседство на протяжении 100 м не оказывает никакого влияния, но если по силовому кабелю течет сильный ток, то даже 50 м могут сказаться на качестве сигнала. При монтаже постарайтесь (всегда, когда это возможно) сделать так, чтобы силовые и коаксиальные кабели не проходили очень близко друг к другу. Для ощутимого уменьшения ЭМП необходимо, чтобы расстояние между ними составляло хотя бы 30 см.
На экране монитора наводки (нежелательные) электросети имеют вид нескольких жирных горизонтальных полос, медленно сползающих вверх или вниз. Частота сползания определяется разницей между частотой полей видеосигнала и промышленной частотой и может составлять от 0 до 1 Гц. В результате на экране появляются неподвижные или очень медленно перемещающиеся полосы.
Другие частоты проявляются в виде различных – в зависимости от источника – картин распределения шумов. Главное правило заключается в том, что, чем выше частота наведенного нежелательного сигнала, тем тоньше детали шумовой картины. Повторно-кратковременные наводки, вроде молнии или проезжающего автомобиля, будут давать нерегулярную картину шумов.
Характеристический импеданс (полное сопротивление)
Короткие провода и кабели, используемые в обычных электронных блоках оборудования, имеют незначительные сопротивление, индуктивность и емкость и не влияют на распределение сигнала. Однако если сигнал должен быть передан на довольно большое расстояние, в сложную картину передачи информации включается множество разных факторов. Особенно подвержены влиянию высокочастотные сигналы.
Тогда сопротивление, индуктивность и емкость начинают играть значительную роль и ощутимо влияют на передачу сигнала.
С точки зрения электромагнитной теории такое простое средство как коаксиальный кабель можно представить в виде схемы, состоящей из сопротивлений (R), индуктивностей (L), конденсаторов (С) и проводников (G) на единицу длины (как показано на рис. 10.3).
Рис. 10.3.1. Передача видеосигнала по коаксиальному кабелю
Рис. 10.3.2. Теоретическое представление коаксиального кабеля
При использовании короткого кабеля эта схема оказывает незначительное влияние на сигнал, но если кабель более длинный, ее влияние становится заметным. В последнем случае совокупность элементов R, L и С становится столь существенной, что действует как грубый фильтр нижних частот, который, в свою очередь, воздействует на амплитуду и фазу различных компонентов видеосигнала. Чем выше частоты сигнала, тем больше на них влияют неидеальные свойства кабеля.
Каждый кабель имеет однородное строение и собственный характеристический импеданс (полное сопротивление), который определяется элементами R, L, С и G на единицу длины.
Главное преимущество несимметричной передачи видеосигнала (о чем будет сказано несколько позже) основано на том, что характеристический импеданс передающей среды не зависит от частоты (это относится, главным образом, к средним и высоким частотам), в то время как сдвиг фазы пропорционален частоте.
Амплитудные и фазовые характеристики коаксиального кабеля на низких частотах в большой степени зависят от самой частоты, но так как в подобных случаях длина кабеля достаточно мала по сравнению с длиной волны сигнала, то влияние на передачу сигнала оказывается незначительным.
Когда характеристический импеданс коаксиального кабеля соответствует выходному импедансу источника видеосигнала и входному импедансу приемного устройства, происходит максимальная передача энергии между источником и приемником.
Для высокочастотных сигналов, каким является видеосигнал, согласование полного сопротивления имеет первостепенную важность. Когда импеданс не согласован, видеосигнал целиком или частично отражается назад к источнику, воздействуя не только на выходной каскад, но и на качество изображения. Отражение 100 % сигнала происходит, когда конец кабеля либо замкнут накоротко, либо оставлен открытым (незамкнут). Вся (100 %) энергия сигнала (напряжение х ток) передается только тогда, когда есть согласование между источником, средствами передачи и приемником. Вот почему мы настаиваем на том, чтобы последний элемент в цепи видеосигналов всегда заканчивался 75 Ом.
В видеонаблюдении принят характеристический импеданс 75 Ом для всего оборудования, передающего или принимающего видеосигналы. Поэтому нужно использовать коаксиальный кабель с полным сопротивлением 75 Ом. Но производители выпускают и другое оборудование, например 50 Ом (которое в отдельных случаях используется для вещательного или ВЧ-оборудования), но тогда между такими источниками и 75-омными приемниками должны использоваться преобразователи импеданса (пассивные или активные).
Рис. 10.4. Оплеточная машина для коаксиального кабеля
Согласование импеданса также необходимо при использовании передатчиков и приемников с кабелем витой пары, о чем мы поговорим ниже.
75 Ом коаксиального кабеля – это комплексное сопротивление, определяемое отношением напряжения/тока в каждой точке кабеля. Это не активное сопротивление, и поэтому его нельзя измерить обычным мультиметром.
Чтобы вычислить характеристический импеданс, мы воспользуемся электромагнитной теорией и представим кабель эквивалентной схемой, состоящей из элементов R, L, С и G на единицу длины.
Полное сопротивление этой схемы:
Zс = SQRT((R + jωL)/(G + jωC)) (48)
где, как уже объяснялось, R – сопротивление, L – индуктивность, G – проводимость и С – емкость между центральной жилой и экраном на единицу длины. Символ j – это мнимая единица (квадратный корень из -1), которая используется для представления комплексного сопротивления, ω = 2πf, где – f частота.
Если коаксиальный кабель имеет достаточно короткую длину (меньше двухсот метров), то R и G можно пренебречь, и в результате мы получим упрощенную формулу для полного сопротивления коаксиального кабеля:
Zc = SQRT(L/C) (49)
Эта формула означает, что характеристический импеданс не зависит от длины кабеля и частоты, но зависит от емкости и индуктивности на единицу длины. Однако, это не так, если длина кабеля (например, RG-59/U) превышает двести метров. В этом случае сопротивление и емкость имеют значение и оказывают влияние на видеосигнал. Ну а для достаточно коротких кабелей вышеприведенная аппроксимация вполне подходит.
Ограничения кабеля являются, главным образом, результатом накопленного сопротивления и емкости, которые настолько высоки, что упомянутое приближение (49) перестает работать, и сигнал получает значительные искажения. Это происходит, в основном, в форме падения напряжения, высокочастотной потери и групповой задержки.
В видеонаблюдении чаще всего используется коаксиальный кабель RG-59/U, который может успешно и без корректоров передавать ч/б сигналы на расстояние до 300 м и цветные – на расстояние до 200 м.
Еще один популярный кабель – это RG-11/U, более толстый и дорогой. Максимальная рекомендованная длина для него – до 600 м для ч/б сигнала и 400 м для цветного сигнала. Существуют также более тонкие коаксиальные кабели с импедансом 75 Ом и диаметром всего 2.5 мм и даже плоские коаксиальные кабели. Они очень удобны для перегруженных участков передачи множества видеосигналов, например, многовходовых матричных коммутаторов. Максимальная длина такого кабеля намного меньше, чем у толстых кабелей, но ее вполне достаточно для соединений и перемычек. Обратите внимание, что эти цифры могут варьироваться у разных производителей и в зависимости от ожидаемого качества сигнала.
Рис. 10.5. Сравнение физических размеров коаксиальных кабелей
За различие между максимальной длиной кабеля для передачи ч/б и цветного сигнала отвечает цветовая поднесущая 4.43 МГц для системы PAL или 3.58 для системы NTSC. Поскольку длинный коаксиальный кабель действует как фильтр нижних частот, то влияние на цветовую информацию будет сказываться быстрее, чем на нижние частоты, так что потеря цветовой информации будет предшествовать потере деталей в нижних частотах.
Если требуется большая длина, то можно использовать дополнительные устройства для выравнивания и усиления видеоспектра. Такие устройства называют усилителями, выравнивателями или корректорами кабеля. В зависимости от качества усилителя (и кабеля) можно увеличить протяженность кабеля в два или даже три раза.
Лучше всего подключать усилители в середине кабеля, где соотношение с/ш наиболее приемлемо, но часто это невозможно или неудобно из-за трудностей с электропитанием и хранением. Так, большинство усилителей в видеонаблюдении предназначено для подключения со стороны телекамеры, и в этом случае мы фактически получаем предкоррекцию и предусиление видеосигнала. Однако существуют и такие устройства, которые подключаются со стороны монитора и дают выход 1 Vpp (полный размах видеосигнала) с последующей коррекцией полосы частот видеосигнала.
Рис. 10.6. Миниатюрный коаксиальный кабель сэкономит пространство и???
Из вышеупомянутого теоретического объяснения импеданса понятно, что однородность кабеля по длине имеет большое значение для соответствия требованиям характеристического импеданса. Качество кабеля зависит от точности и однородности центральной жилы, диэлектрика и экрана.
Эти факторы определяют значения С и L на единицу длины кабеля. Вот почему надо уделить особое внимание прокладке кабеля и его концевой заделке. Петли и изгибы нарушают однородность кабеля и, следовательно, влияют на его импеданс. Это приводит к высокочастотным потерям, то есть потере мелких деталей изображения, а также удвоению изображения из-за отражений сигнала. Так, если короткий качественный кабель проложен ненадлежащим образом, с острыми изгибами, качество изображения будет очень далеко от идеального.
Качество изображения будет лучше, если изгиб петли будет в 10 раз больше диаметра коаксиального кабеля. Это равносильно высказыванию: «радиус петли должен быть не меньше 5 диаметров или 10 радиусов кабеля». Это означает, что кабель RG-59/U не должен быть согнут в петлю диаметром меньшее 6 см (2.5"), a RG-11/U не должен быть согнут в петлю диаметром меньше 10 см (4").
Медь – один из лучших проводников для коаксиального кабеля. Только золото и серебро обладают более высокими эксплуатационными показателями (сопротивление, коррозия), но для производства кабеля они слишком дороги. Многие полагают, что лучшие кабели получаются из покрытой медью стали, но это не так.
Покрытая медью сталь просто дешевле и, возможно, жестче, но для длинных кабелей в видеонаблюдении лучше использовать медь. Омедненные стальные коаксиальные кабели приемлемы для коллективной антенны, где передаваемые сигналы ВЧ-модулированы (VHF или UHF, MB или УВЧ). А именно, на более высоких частотах так называемый скин-эффект (поверхностный эффект) проявляется сильнее: фактический сигнал перетекает на медную поверхность проводника (не экрана, а центрального проводника). Видеосигналы находятся в основной полосе частоты, и поэтому омедненный стальной коаксиальный кабель может подходить для ВЧ-сигналов, но не для видеонаблюдения. Так что всегда используйте медный коаксиальный кабель.
Рис. 10.7. Минимальный радиус изгиба петли
BNC-разъемы
В видеонаблюдении широко используется концевая заделка коаксиального кабеля, которая называется BNC-разъемом (по первым буквам фамилий создателей Bayonet-Neil-Concelman). Существует три типа BNC-разъемов: с резьбой, запаиваемые и с обжимкой.
Опыт доказывает, что обжимные BNC-разъемы – самые надежные. Для них требуются специальные и дорогие обжимные инструменты, но траты на них себя оправдывают. Больше 50 % проблем, возникающих при установке систем, являются результатом плохой или неправильной заделки кабеля.
Монтажник не должен знать или понимать досконально все оборудование, используемое в системе (это обязанность проектировщика или поставщика), но если он квалифицировано проложит и заделает кабели, то почти наверняка система будет работать отлично.
Рынок предлагает различные BNC-изделия. Самые распространенные из них – штекерные (штыревые контакт-соединения, «папы»). Существуют также гнездовые контакт-соединения («мамы»), угловые адаптеры, адаптеры BNC-BNC (их часто называют «barrels»), 75-омные концевые заделки (или «фиктивные нагрузки»), адаптеры BNC к другим типам соединений и т. д.
Разрыв кабеля посередине и заделка образовавшихся концов приведет к некоторой потере сигнала, особенно, если концы заделаны плохо или использованы некачественные BNC-разъемы. Хорошая заделка дает потерю сигнала всего в 0.3–0.5 дБ. Если на одном кабеле не слишком много заделок, то сигнал пострадает незначительно.
Рис. 10.8. BNC-разъем
Существуют посеребренные и даже позолоченные BNC-разъемы, предназначенные для минимизации контактного сопротивления и защиты разъема от окисления, что особенно важно в прибрежных районах (из-за воздействия соленой воды и влажного воздуха) и промышленных зонах.
Хороший комплект для установки BNC-разъемов должен включать позолоченный или посеребренный наконечник для разрезания кабеля, оболочку (основу) соединителя (BNC shell body), кольцо для обжимания экрана и резиновую трубку-протектор (ее иногда называют «strain relief boot») для защиты конца разъема от острых изгибов и окисления.
Рис. 10.9. Обжимные BNC-элементы (входные и выходные)
Рис. 10.10. Различные BNC-разъемы и адаптеры
Коаксиальные кабели и концевая заделка BNC
Никогда не заделывайте коаксиальный кабель электрическими резаками или плоскогубцами. Зачищать коаксиальный кабель электрическим резаком очень опасно. Во-первых, мелкие частицы меди опадают вокруг центральной жилы, что может стать причиной короткого замыкания. Но даже если короткого замыкания не произойдет, меняется импеданс. Во-вторых, использование обычных плоскогубцев для подсоединения BNC к коаксиальному кабелю никогда не дает надежного результата. В целом, это очень опасные инструменты для заделки обжимных BNC-разъемов, и их можно использовать лишь в крайнем случае, когда не доступны никакие иные инструменты (при этом следует быть предельно осторожным).
Если вам по роду работы постоянно приходится заделывать коаксиальные кабели, приобретите хороший набор специальных инструментов. Это: специальные кусачки (резаки), инструменты для зачистки провода и для обжимки.
Рис. 10.11. Примеры плохого присоединения BNC-разъемов
Инструменты для зачистки и обжимки должны соответствовать диаметру кабеля. Если вы используете кабель RG-59/U (диаметром 6.15 мм), то не путайте
его с RG-58/U (диаметром 5 мм), хотя они и выглядят почти одинаково. У этих кабелей разный импеданс: у RG-59/U – 75 Ом, а у RG-58/U – 50 Ом. Кроме того, у RG-59/U несколько толще и центральная жила, и экран. BNC-разъемы для RG-58/U внешне выглядят так же, но внутри они тоньше.