355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владо Дамьяновски » CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии » Текст книги (страница 17)
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
  • Текст добавлен: 6 октября 2016, 20:58

Текст книги "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии"


Автор книги: Владо Дамьяновски



сообщить о нарушении

Текущая страница: 17 (всего у книги 42 страниц)

8. Аналоговые видеомагнитофоны

Совсем еще недавно видеомагнитофоны были очень важной частью любой системы видеонаблюдения (и записи), но с появлением цифровых видеорегистраторов (DVR) количество новых инсталляций систем видеонаблюдения с видеомагнитофонами стало стремительно сокращаться. Впрочем, отдавая должное старым добрым временам, когда без видеомагнитофонов нельзя было представить систему видеонаблюдения, в этом издании книги я оставил главу о видеомагнитофонах. Кроме того, если вам придется столкнуться со старой системой видеонаблюдения, то вам, возможно, понадобятся знания, изложенные в этой главе. Особое внимание уделено TL-видеомагнитофонам, которые были предшественниками цифровых видеорегистраторов.


Немного истории и основная концепция

Реально эра записи на магнитную ленту началась в 1935 г. с появления первого коммерческого звукового магнитофона фирмы AEG, названного просто Магнитофоном. В нем использовалась ацетатцеллюлозная лента, покрытая порошком карбонильного железа. Даже при том, что это были очень хорошие звукозаписывающие устройства для своего времени, их эксплуатационные показатели постоянно повышались на протяжении 30-х и 40-х годов до тех пор, пока в конце 40-х годов радиопередачи не стали выходить в записи, не отличаясь при этом по качеству от прямого эфира.

Принципы записи на магнитную ленту известны большинству из нас по старым добрым кассетным аудиомагнитофонам. Сигнал переменного тока (АС), проходя через обмотку аудиоголовки, генерирует переменный магнитный поток сквозь магнитно-проницаемое металлическое кольцо, называемое головкой. Для того, чтобы магнитный поток вышел из кольца (в противном случае, магнитный поток останется внутри сердечника), в сердечнике сделана небольшая прорезь.

Благодаря этой прорези формируется неоднородность для магнитного поля, которое выходит из сердечника и замыкается по воздуху, возвращаясь к другому концу прорези. Но если мы поместим магнитную ленту очень близко к головке, то поток будет проходить через ленту.

Магнитная лента сама по себе очень тонкая и покрыта магнитным порошком, микроскопические частицы которого действуют как небольшие магнитики. Если наложить внешнее магнитное поле, то эти небольшие частицы могут быть поляризованы в различных направлениях, в зависимости от силы тока и его направления.

Если магнитная лента неподвижна, то никакая информация не будет записана, за исключением последнего состояния магнитного поля.

Чтобы произвести звуковую запись, лента должна двигаться с постоянной скоростью. Эта скорость зависит от разрешения, то есть от самой высокой частоты, которую необходимо записать. Чем быстрее движется лента и чем меньше зазор в кольце, тем более высокую частоту можно записать.

По аналогии это напоминает ситуацию: в наличии имеются две авторучки, одна – с острым, другая – с обычным пером. Пользуясь острым пером, мы можем писать более мелким шрифтом и на одном и том же пространстве разместить больше информации, чем при пользовании обычным пером.

Этот пример – упрощенное описание того, как производится звуковая запись. В действительности же звуковой сигнал не записывается непосредственно в том виде, в каком он поступает, а скорее в виде амплитудно-модулированного синусоидального сигнала. Было установлено, что при этом нелинейные искажения при записи намного ниже. Для звуковой кассеты скорость движения ленты была выбрана равной 4.75 см/с. Таким образом, получасовая запись одной стороны кассеты С-60 занимала примерно 86 м ленты (4.75x60x30=8550 см). При хорошем качестве ленты и с чистой головкой возможная полоса пропускания записи звука составляет приблизительно от 50 Гц до 15000 Гц. Если сравнивать с сегодняшними цифровыми CD-стандартами, то такие характеристики звуковой записи не кажутся столь внушительными. Очевидно, что с большими магнитофонами (катушечного типа) и учетверенной скоростью ленты в 19 см/с записанная и воспроизведенная полоса пропускания будет намного шире.

Первоначально была предпринята попытка применить к записи видеосигналов концепцию, подобную применяемой при аудиозаписи на магнитную ленту, когда в 50-х годах были разработаны весьма странные устройства со скоростью протяжки ленты около 1000 см/с с необычайно большими бобинами. Теория, на основе которой построена запись на магнитную ленту, показала, что, чтобы сделать запись монохромного видеосигнала с полосой пропускания всего 3 МГц (при приемлемом качестве изображения, что соответствует только 15 кГц при аудиозаписи), требуется скорость протяжки ленты около 3 м/с (300 см/с). Легко можно вычислить, что при такой скорости только для одночасовой записи требуется 3x60x60=10800 м ленты. Качество такой продольной записи было все еще очень низким, а оборудование – чрезвычайно громоздким и неудобным в использовании.

Зная размер ленты С-60 (86 м), можно представить себе физический размер бобин, на которых намотано 10 км ленты. Поскольку это представлялось абсолютно непрактичным, то было принято решение отыскать другой способ достижения нужной скорости ленты относительно видеоголовки. В 1950-х годах два инженера из Атрех™ придумали систему с поперечным сканированием, которая имела 4 вращающихся видеоголовки, через которые лента проходила с невероятной скоростью – 40 м/с. Эта система была способна записывать сигнал в полосе пропускания до 15 МГц и обеспечивала качество, достаточное для телевещания. Но для коммерческого рынка и для рынка видеонаблюдения это было слишком дорогим продуктом, поэтому требовалась разработка альтернативных проектов и решений.


Рис. 8.1. Принцип магнитной записи


Ранние концепции видеомагнитофонов

В конце 50-х годов была предложена концепция спирального сканирования. Это была намного более простая система по сравнению с поперечным сканированием, хотя первоначально все производители предложили конструкции с открытыми бобинами, несовместимые друг с другом. В магнитофонах еще не использовались кассеты, и они не были предназначены для домашнего просмотра.

В 70-х годах Sony™ предложила свой стандарт U-matic, который, обладая хорошими техническими показателями для своего времени и используя кассеты вместо открытых бобин, твердо обосновался в индустрии вещания.

В 1972 году Philips™ вышла на рынок со своим первым устройством N1500, ориентированным на рынок бытовой электротехники; это было новым этапом в развитии кассетных магнитофонов, но, к сожалению, этот видеомагнитофон продавался не слишком хорошо. Он позволял вести запись в течение одного часа и имел встроенный тюнер, таймер и радиочастотный модулятор. Все это было ориентировано на разработку проекта System 2000, но, к сожалению, в этот же период появилось цветное телевидение, и множество людей копили деньги, чтобы купить цветные телевизоры, а не кассетные видеомагнитофоны.


Рис. 8.2. Ранняя модель видеомагнитофона VHS

В начале 70-х годов Matsushita™ и JVC™ вышли на рынок со своими конкурирующими предложениями, то есть, с домашней видеосистемой (VHS), a Sony™ в то же время предложила систему BETA. Таким образом, возникла ожесточенная конкуренция между System 2000, BETA и VHS. В их основах были заложены сходные, но, к сожалению, полностью несовместимые концепции.

В то время VHS стала наиболее популярной и широко востребованной системой на рынке бытовой видеотехники. С технической точки зрения VHS изначально была самой слабой системой по качеству, но она была намного проще остальных в изготовлении и дешевле.

За прошедшие годы множество усовершенствований позволили значительно улучшить ее качество по сравнению с тем, что она представляла собой изначально, и сегодня в системах видеонаблюдения, как и на рынке домашней видеопродукции, VHS используется более, чем в 90 % случаев. Как только VHS получила широкое признание, Sony вышла на арену со своим форматом 8 мм и затем с форматом Hi 8 мм, предлагая намного меньшие ленты и лучшее качество записи, a JVC™ тем временем выпустила свою систему Super VHS, соответствующую качеству Hi 8.

Как мы уже упомянули, для систем видеонаблюдения был разработан специальный тип кассетного видеомагнитофона VHS, так называемый time lapse видеомагнитофон. Именно поэтому в этой книге мы рассмотрим только концепцию VHS. Вероятно, мы проявим некоторую несправедливость к другим существующим форматам, подобным U-Matic, Beta или 8, но время и место, которыми мы располагаем, позволяют сконцентрироваться только на том оборудовании, которое сегодня используется в большинстве систем.


Концепция бытовых видеомагнитофонов (VHS)

Спиральное сканирование – это концепция, в соответствии с которой головки располагаются на наклонном барабане, вращающемся со скоростью, равной частоте видеокадров, то есть 25 оборотов в секунду для системы PAL и 30 – для системы NTSC. Необходимая скорость движения ленты относительно головки достигается, главным образом, вращением головки барабана.

Первоначально в конструкции бытовых видеомагнитофонов (Video Home System – VHS) фактически использовались две видеоголовки, расположенные под углом 180° друг к другу. Они монтировались на вращающемся цилиндре, называемом барабаном видеоголовок. Таким образом, когда производится запись или воспроизведение, каждая головка записывает или воспроизводит одно телевизионное поле. Видеолента охватывает барабан на 180°, таким образом одна из двух видеоголовок всегда находится в контакте с лентой. Фактическая скорость ленты относительно неподвижных частей отсека, где помещается лента видеомагнитофона, составляет 2.339 см/с (система PAL), т. е. приблизительно вдвое меньше скорости ленты в аудиокассете. Для системы NTSC эта скорость несколько выше – 3.33 см/с.

Используемый в VHS формат ленты по ширине составляет 1/2" (12.65 мм), и, как это можно видеть из приведенного ниже рисунка, ширина каждой из наклонных дорожек составляет приблизительно 0.049 мм, а их длина равна примерно 10 см. На таком небольшом пространстве должна быть записана информация 312.5 строк системы PAL (и 262.5 строк системы NTSC).


Рис. 8.3. Барабан VHS с двумя видеоголовками

Когда вы задумаетесь об этом, вам станет понятно, насколько важно качество ленты – как магнитное покрытие, так и механическая целостность и износоустойчивость.

Кроме видеосигнала, который записывается на наклонных дорожках, на ленте также записываются: звуковой сигнал с помощью стационарной аудиоголовки в верхней части ленты и сигналы управления в ее нижней части. На видеосигнал, формируемый схемой видеомагнитофона, накладываются определенные ограничения. Для начала, конструкция записывающей системы VHS, включающая размер барабана видеоголовок, скорость вращения и качество видеоленты, определяет ширину полосы сигнала, который может быть записан на видеоленту.


Рис. 8.4. Кинематическая схема лентопротяжного механизма VHS

Когда видеосигнал поступает на входной каскад видеомагнитофона, он проходит сквозь низкочастотный фильтр с крутым срезом и значением верхней граничной частоты 3 МГц. Этот фильтр пропускает лишь информацию об яркости, в то время как информация о цветности выделяется фильтром из высокочастотной части того же сигнала. Такое вырезание сигнала яркости производится по причине того, что просто невозможно записывать больше информации. Все это – ограничения концепции VHS.

Из простого соотношения, которое мы приводили ранее, получаем, что 3 МГц соответствуют разрешающей способности по горизонтали в 240 ТВЛ. Фактически это является ограничением для цветного видеосигнала при воспроизведении. Отсюда становится ясно, что в современных системах видеонаблюдения именно видеомагнитофон почти всегда представляет собой наиболее узкое место в процессе достижения хорошего качества воспроизведения изображений.

При записи только сигналов черно-белого изображения низкочастотная фильтрация может быть опущена, поскольку в этом случае отсутствует несущая сигнала цветности. В таких случаях фактическая разрешающая способность будет немного выше и может приближаться (в зависимости от качества ленты и видеомагнитофона) к 300 ТВЛ. Многие видеомагнитофоны имеют автоматические выключатели, позволяющие обойти этот фильтр, но в большинстве time lapse видеомагнитофонов для этого предусмотрен ручной переключатель.

Фактически видеосигнал яркости не записывается непосредственно в том виде, в каком он поступает, а модулируется так же, как это делается при записи звука. В VHS для яркости применяется частотная модуляция (ЧМ) с девиациями частоты, начиная с 3.8 МГц (соответствует самому низкому уровню – импульсам синхронизации) и до 4.8 МГц (соответствует максимальным значениям – уровню белого). Информация о цветности, поступающая со входа видеомагнитофона, записывается непосредственно после преобразования с понижением частоты, с несущей частотой 627 кГц и занимает спектральный диапазон 0… 1 МГц. Это становится возможным, потому что яркость частотно модулируется выше этой области.

В процессе дальнейшей разработки концепции системы VHS было выполнено множество усовершенствований. Были выпущены модели с четырьмя головками, был предложен режим длительного воспроизведения и значительно повышена стабильность режима паузы. Кроме того, в моделях Hi-Fi было улучшено качество записи звука, которое изначально была очень низким при низкой скорости поперечной записи. Вместо первоначальных 40 Гц… 12 кГц полосы звуковых частот, с помощью аудиоголовок, расположенных непосредственно на барабане видеоголовок и вращающихся с той же скоростью, что и видеоголовки, записывается звук безукоризненного качества. При такой высокой скорости ленты относительно головок звуковая полоса пропускания была расширена до 20 Гц…20 кГц, и соотношение сигнал/шум существенно увеличилось – с 44 дБ до более 90 дБ. Звуковые каналы Hi-Fi записываются не на отдельных дорожках, а в более глубоком слое ленты и с различным азимутальным углом записываемого частотно-модулированного (ЧМ) сигнала. Поэтому такой тип записи называется мультиплексированная по глубине запись.

Даже несмотря на то, что были изготовлены более качественные ленты и видеоголовки, полоса частот видеосигнала не могла быть значительно расширена вследствие ограничений самой концепции. Принимая это во внимание, разработчики VHS представили новый улучшенный формат, названный Super VHS.


Рис. 8.5. Упрощенный чертеж: ленты VHS в масштабе 1:1 и схема записи


Рис. 8.6. Композитный видеосигнал


Рис. 8.7. Принцип VHS


Рис. 8.8. Принцип S-VHS


Рис. 8.9. Структура ленты S-VHS


Super VHS, Y/C и гребенчатая фильтрация

Следующий крупный шаг в развитии видеомагнитофонов системы VHS был сделан в 1987 году с представлением концепции Super VHS. Формат Super VHS улучшил качество яркости и цветности записываемых видеосигналов, сохранив при этом совместимость с форматом VHS. Такая совместимость подразумевает использование одного и того же типа видеоголовок, вращающихся с одинаковой скоростью и под тем же углом.

В основном видеомагнитофоны Super VHS (S-VHS) отличаются от VHS более широкой полосой пропускания. Это достигается выделением сигналов цветности и яркости из композитного видеосигнала с помощью специального гребенчатого фильтра и последующей модуляцией сигнала яркости на более высокой частоте и в более широкой полосе ЧМ-сигнала, частота которого изменяется от 5.4 МГц до 7 МГц. Это означает, что видеосигнал яркости может быть записан в полосе частот, превышающей 5 МГц, что дает разрешение свыше 400 ТВЛ. При этом используются видеоголовки тех же физических размеров, но обладающие лучшими характеристиками. Кроме того, хотя и применяются видеоленты тех же размеров, однако качество их магнитного покрытия намного выше.

Видеомагнитофоны системы S-VHS могут записывать и воспроизводить записи форматов VHS и S-VHS.

Чтобы выполнить запись формата S-VHS, должна быть использована лента S-VHS (видеомагнитофон S-VHS распознает ленту S-VHS с помощью небольшой щели на кассете). Видеомагнитофон системы VHS не может воспроизводить записи, выполненные в стандарте S-VHS.

Когда сигналы цветности и яркости объединены в полном композитном видеосигнале, всегда заметны видимые перекрестные искажения. Чтобы минимизировать этот дефект, формат S-VHS допускает непосредственный вход и выход раздельных сигналов яркости и цветности. Эта пара обозначается Y/C (Y используется для яркости, а С – для цветности), им соответствуют контакты миниатюрных разъемов DIN (Deutsche industrie norme), которые находятся на задней панели видеомагнитофонов S-VHS.

Если у вас есть источник видеосигнала, который формирует Y/C-сигналы (это относится к некоторым видеомультиплексорам, видеомагнитофонам или устройствам видеопамяти и некоторым цветным телекамерам. Прим. ред.), то они могут быть подсоединены к видеомагнитофону S-VHS специальным Y/C-кабелем, который составлен из двух миниатюрных коаксиальных кабелей.

Среди некоторых пользователей существует неверное представление, будто мы в состоянии делать видеозапись высокого качества только в том случае, если сигнал Y/C поступает на S-VHS видеомагнитофон. Это неверно, поскольку система S-VHS была разработана прежде всего для записи композитных видеосигналов. С этой целью для S-VHS был разработан специальный адаптивный гребенчатый фильтр, с помощью которого цветовая информация выделяется из композитного видеосигнала без существенной потери разрешения сигнала яркости (что наблюдается в случае с фильтром нижних частот в формате VHS).

Ранее проблема разделения сигнала Y/C решалась путем пропускания композитного видеосигнала через фильтр нижних частот и отфильтровывания цветового сигнала на частотах выше приблизительно 2.5 МГц в системе NTSC (выше 3 МГц в системе PAL), чтобы получить сигнал яркости. Уменьшенная полоса частот Y-сигнала значительно ограничивала разрешение изображения. Для выделения цветового сигнала использовался полосовой фильтр, но он все-таки содержал высокочастотные составляющие сигнала яркости, то есть имелись перекрестные искажения. (На изображении это проявляется в виде цветового муара. Прим. ред.)

Между тем известно, что основной композитный видеосигнал по своей природе периодический, что обусловлено строчной и кадровой разверткой, а также процессами гашения. Это означает, что если такой сигнал рассмотреть в частотной области (с применением анализа Фурье), то его спектр в большей степени будет представлен дискретными гармониками, нежели равномерным спектром. Этот факт является особенно важным и фундаментальным в анализе телевизионного сигнала.

Процесс разделения сигналов Y/C может быть упрощен путем выбора определенного соотношения междучастотами строчной и кадровой развертки и частотой цветовой поднесущей. Частота цветовой поднесущей в системе NTSC (подобный подход может быть применен и к системе PAL), Fsc, выбрана равной 3.579545 МГц (обычно приводится округленное значение 3.58 МГц). Это соответствует 455-ой гармонике частоты строчной развертки, Fh, деленной на два (согласно определениям NTSC).

Fh = 15734.26 Гц

Fsc = 455 · Fh/2 = 3.579545 МГц

Поскольку видеокадр содержит 525 строк, а сам кадр состоит из двух поочередно передаваемых полей, то в каждом поле содержатся 262.5 строк. Отсюда частота строчной развертки равна: Fv = Fh/262.5 = 59.94 Гц. Кадр состоит их двух полей, поэтому частота кадра равна Fv/2 = 29.97 Гц.


Рис. 8.10. Категории гребенчатого фильтра

Так как видеосигнал по своей природе периодический, спектральное распределение видеочастот сгруппировано по блокам. Анализ Фурье статического видеосигнала показывает, что энергетический спектр сконцентрирован в блоках, отстоящих друг от друга на 15.734 кГц, что равно частоте строчной развертки. Каждый блок имеет боковые полосы с разнесением 59.94 и 29.97 Гц. Таким образом, сигнал яркости не имеет непрерывного распределения энергии в полосе частот. Вместо этого он существует в виде блоков энергии, отстоящих друг от друга на 15.734 кГц. Эти блоки не очень широки, из-за чего большая часть пространства между ними пуста.

Сигнал цветности тоже по своей природе периодический, поскольку он появляется при каждом рабочем ходе по строке и прерывается на время гашения. Поэтому, сигнал цветности будет также сгруппирован в блоки с интервалом 15.734 кГц по всей полосе частот. Если цветовая поднесущая выбрана на

нечетной гармонике Fh/2 (455), то сигналы блоков цветового сигнала попадут точно между сигналами яркости. Вследствие этого сигналы Y и С могут занимать одно и то же частотное пространство, реализуя процесс частотного разделения.

Эта идея лежит в основе гребенчатых фильтров. Гребенчатый фильтр может быть разработан таким образом, что его амплитудно-частотная характеристика будет иметь нули на периодических частотных интервалах. На средней частоте между нулями, гребенчатый фильтр пропускает сигнал. Если гребенчатый фильтр настроен на те же самые интервалы 15.734 кГц, что присутствуют в спектре Y/C, то он будет пропускать сигнал Y, подавляя сигнал С или наоборот.

При использовании кабелей Y/C для связи между компонентами видеосистемы S-VHS наблюдаются минимальные перекрестные искажения цвета и яркости, однако для системы видеонаблюдения это непрактично, поскольку требует использования двух коаксиальных кабелей. Миниатюрный кабель Y/C, который поставляется с некоторыми моделями видеомагнитофонов S-VHS, является двойным коаксиальным кабелем, предназначенным только для небольших расстояний, поскольку его затухание намного больше, чем у широко распространенного кабеля RG-59/U. Основное назначение таких Y/C-соединений – это возможность перезаписи.

Следует также отметить, что технология гребенчатой фильтрации совершенствуется с каждым днем.

Сегодня самые усовершенствованные модификации гребенчатых фильтров используются не только в видеомагнитофонах S-VHS, но также и в высококачественных видеомониторах и телевизорах.

Сначала это был двумерный гребенчатый фильтр, в котором, чтобы сравнить «содержимое» цветового сигнала и выбрать оптимальную фильтрацию, использовалась не одна единственная строка видеосигнала, а еще и две соседние – предыдущая и последующая (отсюда название – двумерный). Дальнейшее усовершенствование было привнесено трехмерной гребенчатой фильтрацией и цифровой гребенчатой фильтрацией, когда информация о цвете обрабатывается не только в одном телевизионном поле, но и в предыдущем и последующем полях (поэтому – трехмерный). Новые разработки продолжают повышать разрешение и точность воспроизведения цвета.

Возможно, что в состав вашего оборудования входят, например, видеомагнитофон S-VHS и видеомонитор, оба со встроенными гребенчатыми фильтрами, но необязательно одинакового типа и качества. Имеет смысл поэкспериментировать, поскольку может случиться так, что лучшее качество при воспроизведении изображения будет достигнуто, если с видеомагнитофона взять композитный видеосигнал, информация о цвете из которого будет извлекаться гребенчатым фильтром видеомонитора (если он обладает лучшими параметрами), чем при использовании кабельного соединения Y/C между видеомагнитофоном S-VHS и видеомонитором.

Таким образом, применение в системе видеонаблюдения видеомагнитофонов S-VHS с цветными телекамерами высокого разрешения и одним коаксиальным кабелем для композитного видеосигнала является все же гораздо более предпочтительным, чем использование видеомагнитофонов формата VHS.

Качество записываемого сигнала обеспечивается высоким качеством адаптивного гребенчатого фильтра, встроенного в видеомагнитофон S-VHS, и воспроизведенный сигнал будет хорош настолько, насколько его способен будет отображать видеомонитор. Если используется цветной видеомонитор с высоким разрешением, который к тому же обладает своим гребенчатым фильтром, то качество будет намного выше, чем при использовании видеомониторов, предназначенных для коммерческого использования. Если мы предполагаем, что разрешающая способность по горизонтали телекамеры составляет 470 ТВЛ,

видеомагнитофон S-VHS имеет приблизительно 400 ТВЛ, а видеомонитор – 600 ТВЛ, то ясно, что видеомагнитофон представляет самое узкое место в смысле разрешающей способности и воспроизведенный сигнал будет иметь около 400 ТВЛ (предполагается, разумеется, использование ленты формата S-VHS).

Другое второстепенное замечание, затерявшееся среди многочисленных технических вопросов, связанных с видеомагнитофонами формата S-VHS, связано с режимами LP/SP (длительное воспроизведение/стандартное воспроизведение). Качество S-VHS достижимо как в режиме длительного воспроизведения, так и в режиме стандартного воспроизведения. Наблюдается весьма незначительное ухудшение записи в области верхних частот вследствие более близкого расположения видеодорожек и более медленного перемещения ленты, но этот дефект почти не обнаруживаем.

Использование бытовых видеомагнитофонов для целей видеонаблюдения

Самый тривиальный вопрос, который часто задают мне люди, далекие от техники, звучит так: «Могу ли я присоединить телекамеру к своему домашнему видеомагнитофону и записывать, а потом просматривать запись по телевизору?». Ответ – «Да», хотя вам следует иметь в виду, что при этом произойдет снижение качества записи из-за использования оборудования, не предназначенного специально для систем видеонаблюдения.

Типичный бытовой видеомагнитофон кроме радиочастотного (антенного) входа, имеет также входы Аудио/Видео (A/V). Обычно они представлены в виде входных розеток (иногда их называют RCA-разъемами), одна предназначена для основной полосы пропускания видеочастот (это то, что, как мы ранее упоминали, передается нам камерой видеонаблюдения), а другая – для звукового сигнала. Таким образом, видеосигнал камеры видеонаблюдения должен быть присоединен непосредственно к видеовходу видеомагнитофона с помощью соответствующего адаптера (BNC-RCA). После этого видеовыход видеомагнитофона (того же самого типа RCA) должен быть присоединен к видеовходу телевизора. Как видеомагнитофон, так и телевизор должны быть переключены на канал A/V, после чего изображение с телекамеры должно появиться на экране вашего телевизора.


Рис. 8.11. Стойки с видеомагнитофонами в Сиднейском казино «Star City», которые записывают сигналы со всех телекамер в режиме реального времени и полностью управляются матричным коммутатором.

Однако, если ваш телевизор не имеет входа A/V, то радиочастотный выходной сигнал видеомагнитофона должен быть принят на радиочастотном (или антенном) входе телевизионного приемника. Понятно, что телевизор при этом должен быть настроен на канал видеомагнитофона, которым в большинстве случаев должен служить один из ДМВ-каналов (36–39), поскольку это – заранее определенная зона для видеомагнитофонов, но некоторые более ранние модели могут модулировать свой сигнал в диапазонах метровых волн – 0, 1,2 или 3. В этом случае видеомагнитофон также должен быть настроен на канал A/ V, чтобы передать сигнал телекамеры с видеовхода на радиочастотный выход. В обоих упомянутых случаях видеомагнитофон включается между телекамерой и телевизором. При просмотре сигнала в реальном времени или в записи изображение появляется на экране телевизора, и в режиме воспроизведения видеомагнитофон отсекает входящий сигнал «живого» изображения и показывает на том же самом телевизоре записанное изображение.

При сравнении моделей бытовых видеомагнитофонов со специально предназначенными для видеонаблюдения time lapse видеомагнитофонами, которые будут рассмотрены в следующем параграфе, становятся очевидными их многочисленные неудобства: нет встроенных времени и даты в записываемый видеосигнал, нет входов для внешних датчиков тревоги и максимальное время записи может быть достигнуто в режиме длительного воспроизведения, который не превышает 10 часов для системы цветного телевидения PAL и 8 часов для системы NTSC. Однако, имеются и некоторые, вполне определенные преимущества: цена обычного видеомагнитофона очень низка и доступна, а изображения записываются в полном объеме, то есть 50 полей в секунду для системы PAL и 60 полей в секунду для системы NTSC.

Из-за последнего обстоятельства некоторые производители матричных видеокоммутаторов разработали специальные аппаратные средства и программные интерфейсы для своих устройств с тем, чтобы можно было управлять работой бытовых видеомагнитофонов. Обычно это делается путем исключения пульта дистанционного управления на ИК-лучах, при этом полное управление видеомагнитофоном осуществляется посредством матричного видеокоммутатора. Для больших систем это сопряжено почти с такими же материальными затратами, как если включать в их состав видеомультиплексоры или time lapse видеомагнитофоны. По этой причине, а также вследствие необходимости обеспечения записи в режиме реального времени на протяжении всего времени работы, такое решение стало особенно привлекательным для больших видеосистем в казино. Имея матричную систему, надлежащим образом разработанную и запрограммированную, можно полностью автоматизировать и контролировать работу сотен и сотен видеомагнитофонов, исключение составляет только замена лент.

Здесь нам следует упомянуть также, что из-за различных скоростей записи в двух телевизионных стандартах, рассмотренных в настоящей книге (системах цветного телевидения PAL и NTSC), мы имеем различную длину видеозаписи, и, следовательно, слегка различное время записи/воспроизведения. Представленная ниже таблица должна дать достаточно полную информацию о таких несоответствиях. Пожалуйста, обратите внимание, что международная маркировка ленты для устройств системы PAL предусматривает букву «Е», а для устройств системы NTSC – букву «Т».



Видеомагнитофоны с прерывистой записью

Time lapse (TL) видеомагнитофоны – это особая категория видеомагнитофонов, которые были разработаны специально для индустрии безопасности.

Основное отличие TL-видеомагнитофонов VHS от бытовых видеомагнитофонов состоит в следующем:

– TL-видеомагнитофоны могут производить запись продолжительностью до 960 часов на 180-минутную (PAL) или 120-минутную ленту (NTSC). Возможны и другие режимы записи от 3 до 960 часов: 12, 24, 48, 72, 96, 120, 168, 240, 480 и 720 часов. Это достигается с помощью шагового двигателя, который позволяет перемещать ленту с дискретным шагом, в то время как барабан видеоголовок непрерывно вращается. Обычно вплоть до режима 12-часовой записи лента перемещается с постоянной скоростью, после которого, начиная с режима «24 часа», она движется дискретными шагами. Время, прошедшее между последовательными кадрами, увеличивается при выборе более длительного режима. Типичные промежутки времени показаны в таблице 8.2.


    Ваша оценка произведения:

Популярные книги за неделю