Текст книги "Путешествие в страну микробов"
Автор книги: Владимир Бетина
Жанр:
Биология
сообщить о нарушении
Текущая страница: 6 (всего у книги 31 страниц)
В живых клетках происходят многие химические реакции, воспроизвести которые в лаборатории оказалось возможным лишь при создании специфических условий. Одни из них протекают при высоких температурах, другие требуют повышенного давления. Как же совершаются они в живой клетке при нормальных давлении и температуре?
В начале XIX века стало известно о явлении спиртового брожения и участии в нем дрожжевых грибов. Пастер в своих исследованиях доказал, что различные типы брожения вызываются различными видами микроорганизмов. Значительно раньше известный шведский химик Йене Якоб Берцелиус разработал учение о катализаторах, или ускорителях (стимуляторах) различных химических реакций.
Позднее ученые предположили, что микроорганизмы как раз и содержат такие вещества, которые вызывают брожение и в своем действии подобны катализаторам. Их назвали энзимами (от греческих слов en – внутри и zyme – закваска), или ферментами. В 1897 году немецкому химику Эдуарду Бухнеру удалось получать из разрушенных клеток дрожжей смесь ферментов, которую он назвал зимазой. Зимаза вызывала превращение сахара в спирт даже при отсутствии живых клеток.
Теперь нам известно, что все химические реакции в живых клетках протекают лишь в присутствии ферментов; если же последние отсутствуют, то реакции эти совершаются очень медленно или вообще не происходят. Вспомним, например, химическую реакцию молочного сахара (лактозы) с водой, при которой молочный сахар разлагается на глюкозу и галактозу. В отсутствие катализаторов эта реакция протекает чрезвычайно медленно, даже при 100 °C разлагается лишь небольшая часть лактозы. Реакцию можно ускорить, если добавить определенные кислоты. Отдельные дрожжевые грибы обладают ферментом лактазой, в присутствии которого разложение лактозы происходит очень быстро уже при 30 °C. Фермент лактаза действует, таким образом, как катализатор – ускоритель химической реакции.
Ферменты образуются в результате жизнедеятельности клеток. Без ферментов нет жизни, но сами они не являются живой материей. Их способность ускорять химические процессы сохраняется и после гибели клеток.
Ферменты, возникающие в живых клетках, или остаются в них, стимулируя химические реакции, или же выделяются клеткой во внешнюю среду, где также могут влиять на скорость некоторых химических процессов. Каждый фермент принимает участие обычно в нескольких (немногих) реакциях и никогда не бывает приурочен к одной-единственной. Причем следует заметить, что для превращения больших количеств соединений требуется необычайно малая доза фермента.
Не менее интересной особенностью ферментов можно считать их повышенную восприимчивость к различным внешним факторам, которые могут ускорять, замедлять или вовсе прекращать их деятельность.
Ферменты – очень сложные соединения, их относят к белкам. Некоторые ферменты удалось получить в чистом виде, в кристаллической форме, и был точно установлен их химический состав.
Ферменты играют огромную роль не только в жизни микробов, но и в жизни всех других организмов. Важные функции выполняют они и в нашем теле. Ферменты, находящиеся в слюне, желудочном соке и выделениях других органов, разлагают сложные вещества нашей пищи на простейшие составные части; таким путем они способствуют проникновению питательных веществ через слизистую оболочку кишечника в кровь, с которой те разносятся по всему телу. Там эти вещества снова встречаются с ферментами, уже иными, вызывающими сотни других химических реакций.
Микроорганизмы также «вырабатывают» ферменты, необходимые им для усвоения питательных веществ и получения энергии. Одни ферменты обеспечивают процессы разложения, другие осуществляют синтез сложных соединений из простых веществ. В клетках этих мельчайших существ может образоваться такое большое количество ферментов, что человек использует микробы для получения ферментов в промышленных масштабах.
О питании микробовОдно из условий существования живых организмов – наличие достаточных количеств пищи. Рост, размножение и прочие жизненные процессы не могут осуществляться без питательных веществ.
Без пищи не могут обойтись и микробы. Уже при нашем первом посещении микробиологической лаборатории мы обратили внимание на своеобразное «меню» микробов. Все элементы, из которых состоит живое вещество клеток, они должны получать извне в виде питательных веществ. Это означает, что микробы должны иметь источники углерода, азота и других биогенных элементов. В природе микроорганизмы находят питательные вещества в самой различной форме. Одни из них питаются отмершими частями растений или животных; это так называемые сапрофит ы, играющие огромную роль в круговороте жизненно необходимых элементов на Земле. Другие значительно более требовательны. Они нападают на живые организмы и ведут паразитический образ жизни. К ним относятся и возбудители многих болезней.
Переходной формой от сапрофитов к паразитам являются симбиоти-ческие микроорганизмы, с которыми мы познакомимся в дальнейшем. Классификация всех организмов по способу их питания представлена в табл. 4.
Из таблицы видно, что бактерии имеют своих представителей во всех группах организмов, различающихся по способу питания.
Основным источником питания большинства микроорганизмов служат сахара. При их разложении выделяется энергия; они же являются и главным источником углерода. Правда, некоторые микробы удовлетворяются простым соединением углерода и кислорода – углекислотой, а необходимую для жизни энергию черпают из других источников.
Микробы, которые в своем питании «довольствуются» углекислотой или некоторыми другими простыми углеродными соединениями, называются автотрофными. Они строят живую материю своих клеток из минеральных соединений. Если они при этом в результате химических преобразований получают еще и необходимую энергию, мы относим их к хемосинтезирующим микроорганизмам; если же они получают энергию непосредственно от солнечной радиации, мы называем их фотосинтезирующими.
Растения вырабатывают пищуСамая важная группа автотрофных организмов – зеленые растения. Им достаточно таких питательных веществ, как углекислота из атмосферы, вода и минеральные соли из почвы.
В зеленых растениях протекает чрезвычайно важный процесс – фотосинтез. Во время этого процесса из углекислоты к воды образуются сахара, основные углеводные соединения, из которых затем под действием ферментов создаются все остальные сложные вещества растительного организма. Фотосинтез осуществляется в листьях и других зеленых частях растений.
Неутомимый ученый-экспериментатор и гениальный художник Леонардо да Винчи, живший на рубеже Средневековья и Нового времени, писал: «Лицевая сторона листьев обращена к небу, она улавливает пищу в росе, выпадающей по ночам».
Своей зеленой окраской листья обязаны зеленому пигменту – хлорофиллу, который находится в хлоропластах клеток листа. По химическому составу хлорофилл близок к гемоглобину, красному пигменту крови. Но роль хлорофилла не только в том, что он окрашивает растения в зеленый цвет. Его главное значение в том, что, поглощая энергию солнечного света, он использует ее в химических реакциях, в результате которых образуются сахара. Таким образом, помимо углекислоты и воды, для синтеза сахаров необходимы еще присутствие в зеленых частях растений хлорофилла и действие солнечного света. В темноте фотосинтез осуществляться не может.
На поверхности листьев находятся микроскопические отверстия, называемые устьицами, через которые происходит газообмен. Из атмосферы в листья проникает углекислый газ. Вода, усваиваемая корнями из почвы, поднимается к листьям, и там часть ее используется в реакциях фотосинтеза, а часть испаряется через устьица в атмосферу. Через устьица же выделяется в атмосферу и кислород, представляющий собой «отход» фотосинтеза.
Наиболее простая форма сахара, образующегося при фотосинтезе, – глюкоза. Каждая молекула глюкозы состоит из 24 атомов: 6 атомов углерода (С), 12 атомов водорода (Н) и 6 атомов кислорода (О).
Весь ход процесса фотосинтеза можно представить следующей упрощенной химической формулой:
6С02 + 6Н20 + Энергия света → С6Н1206 + 602, или
Углекислота + Вода + Энергия света → Глюкоза + Кислород.
Таким образом, из 6 молекул углекислого газа и 6 молекул воды образуются 1 молекула глюкозы и 6 молекул кислорода. Из 6 молекул углекислого газа в атмосферу возвращаются 6 молекул кислорода, причем потраченная на это энергия не теряется, а «консервируется» в глюкозе.
Что же происходит далее с глюкозой, образовавшейся в результате фотосинтеза? Уже через сутки она преобразуется в более сложные сахара и наконец в крахмал. Ночью, когда процесс фотосинтеза прекращается, крахмал частично снова превращается в глюкозу, которая переходит из листьев в другие части растения, где используется для образования различных соединений. Одни из них (например, целлюлоза и пектин) формируют опорные части растений, накапливаясь преимущественно в клеточных стенках, другие откладываются «про запас». Таким резервным веществом является, например, крахмал в клубнях картофеля и зернах хлебных злаков, масло в семенах, сахар (сахароза) в сахарной свекле и сахарном тростнике. Глюкоза служит также основным сырьем для образования аминокислот, белков, витаминов и других соединений. Во многих из них мы найдем азот и другие элементы, которые в виде солевых растворов всасываются корнями из почвы и распространяются по всему растению.
Растительноядные животные питаются травой, листьями, молодыми побегами и плодами растений. Хищники поедают растительноядных животных. Человек с давних пор сеял хлебные злаки в долине Нила, выращивал рис в странах Дальнего Востока, кукурузу в Америке. Микроорганизмы питаются плодами растений и их отмершими остатками. Кроме автотрофных микробов, все организмы, населяющие земной шар, потребляют пищу, которую создают из минеральных солей, воды и углекислого газа зеленые растения.
Углерод и энергия жизниНам уже известно, что углерод – один из важнейших биогенных элементов. Обычно он связан в соединениях, находящихся во всех клетках организма. Кроме того, мы встречаемся с ним и в атмосфере, где он входит в состав углекислого газа – важного сырья, используемого в процессе фотосинтеза. Связанный углерод содержат и такие горные породы, как известняк или доломит. Всех известных нам в природе углеродных соединений не меньше полумиллиона. Мы находим углерод в сырой нефти, подземных газах, минеральных водах, газообразных веществах, выделяемых вулканами. Но в природе углерод встречается и в чистом виде. Алмаз, самое твердое в природе вещество, – чистый кристаллический углерод. Каменный и древесный уголь, торф – все это формы углерода растительного происхождения.
При горении угля, торфа или древесины выделяется тепловая энергия. Это и есть та энергия, которая была «законсервирована» в соединениях углерода. При сгорании в присутствии кислорода эти соединения снова переходят в простые вещества – углекислый газ и воду, из которых они образовались.
Процесс «сгорания» происходит и в живых организмах. При этом освобождается энергия, используемая обычно в синтезе сложных соединений, например белков. «Сгорание» в клетках живых организмов идет значительно медленнее, чем при настоящем горении, так как, если бы тепловая энергия освободилась сразу в большом количестве, организм погиб бы. «Горение» осуществляется за счет постепенного разложения сложных сахаров на все более простые соединения, вплоть до конечных продуктов – воды и углекислого газа, уходящего в атмосферу. Огромную роль в этом процессе играют ферменты. При постепенном разложении сахаров скрытая в них энергия освобождается понемногу и клетки имеют возможность расходовать ее очень экономно, сообразно с потребностью организма.
Происходящий в живых клетках процесс разложения сложных сахаров на более простые соединения называется диссимиляцией. Если диссимиляция происходит при достаточном доступе кислорода, мы говорим о дыхании.
Другой пример диссимиляции – брожение, при котором клетка лишена достаточного количества кислорода. При спиртовом брожении образуется спирт, при молочнокислом – молочная кислота.
Чем питаются автотрофные микроорганизмы?«Приверженцы» фотосинтеза находятся и среди микробов. Кроме зеленых водорослей, ассимилирующих углекислый газ подобно высшим растениям, сюда относятся еще и сине-зеленые водоросли. Это очень непритязательные микроорганизмы, которые не требуют для своего питания никаких органических соединений. Нередко их находят в толще известковых и других горных пород. В 1883 году на острове Кракатау, между Суматрой и Явой, произошло извержение вулкана, уничтожившее 36 000 человек и все живое на острове. Сине-зеленые водоросли были первыми живыми организмами, вновь появившимися здесь после грозной катастрофы.
Большая часть автотрофных микроорганизмов получает энергию, освобождающуюся в процессе химических реакций между некоторыми неорганическими соединениями. Особую группу составляют пурпурные и зеленые серобактерии, имеющие в клетках пигменты, которые напоминают по своим свойствам хлорофилл. В этих бактериях на свету осуществляется фотосинтез. В других серных бактериях, не имеющих красящих веществ, протекает лишь хемосинтез, при котором сероводород постепенно окисляется до серной кислоты.
При окислении сероводорода и превращении его в серную кислоту освобождается энергия, используемая серобактериями для синтеза сахаров. Нередко процесс окисления прекращается в начальных фазах, и тогда в клетках бактерий откладывается сера. В Черном море, содержащем огромное количество сероводорода, на глубине около 2000 м живут серобактерии, которые окисляют сероводород, препятствуя его проникновению в верхние слои, где этот газ сделал бы невозможным существование морских животных.
В железистых водах или в мелких болотах со стоячей водой живут автотрофные железобактерии, окисляющие соли закисного железа до окисных соединений с освобождением химической энергии. На поверхности болот образуется пленка из гидроокиси железа, придающая воде ржавый цвет.
Жизненная энергияЗеленые растения, аккумулирующие при фотосинтезе энергию солнца, накапливают ее в форме химической энергии в сахарах, где она и сохраняется вплоть до их диссимиляции. Если растения станут пищей других организмов (в том числе и микробов), скрытая в сахарах энергия перейдет в эти организмы и будет способствовать протекающим в них жизненным процессам.
Энергия, освобождающаяся при диссимиляции сахаров, служит не только для внутренних потребностей клеток. Немалая ее часть излучается в окружающую среду в виде тепловой энергии. Такое освобождение тепла нам знакомо, например, когда разлагается влажное сено или конский навоз. Если влажное сено сложить в стога, в нем начнут размножаться бактерии и плесневые грибы, и температура будет повышаться, порой достигая 70 °C. Иногда в результате подобной жизнедеятельности бактерий образуются химические вещества, вызывающие самовозгорание сена.
Микробы и брожениеПроисходящее под влиянием микробов превращение глюкозы в спирт или молочную кислоту – процесс очень сложный. Глюкоза при участии ферментов преобразуется, проходя целый ряд этапов, в «ключевое» соединение – пиро-виноградную кислоту, в молекуле которой ровно в два раза меньше углеродных атомов, чем в молекуле глюкозы. Эта кислота возникает при спиртовом, молочнокислом, а также при других типах брожения.
Количество энергии, выделяемое при разложении одного и того же количества глюкозы, зависит от степени распада вещества. Чем проще конечный продукт распада, тем большее количество энергии высвобождается. Максимальное ее количество выделяется при дыхании, когда углеводы разлагаются, окисляясь кислородом воздуха до углекислого газа и воды.
Соединения, образующиеся при разложении сахаров, по своему химическому составу бывают очень разные. Одни из них возникают в отсутствие кислорода, другие – только в его присутствии. При брожении сахаров с участием микробов образуются органические кислоты (молочная, масляная, лимонная, щавелевая), а также некоторые органические растворители (ацетон, бутиловый и пропиловый спирты и др.).
Микробы и гниениеРазложение сахаров, вызываемое микробами, мы назвали брожением. Но многие микробы участвуют и в разложении белков отмерших организмов или их выделений. Если в этом процессе используется кислород воздуха, белки распадаются на все более простые соединения, вплоть до минеральных (неорганических) веществ; тогда уже говорят о «минерализации» белков. Разложение в присутствии кислорода называется аэробным гниением. Его вызывают чаще всего грибы.
Анаэробное разложение, или гниение, белков происходит в отсутствие кислорода. Когда-то этот процесс считали чисто химическим, пока Пастер не доказал, что гниение – это результат жизнедеятельности микроорганизмов. С процессами гниения мы часто сталкиваемся в повседневной жизни. Им подвержены все продукты, содержащие белки. Так, постоявшие несколько дней молоко или творог приобретают неприятный запах, что указывает на начало процесса гниения.
При разложении белков прежде всего высвобождаются аминокислоты, а уже из них аммиак, углекислый газ и сероводород. Нередко при гниении белков выделяются соединения с резким, неприятным запахом – индол и скатол, – содержащиеся в экскрементах. Они образуются в результате деятельности микроорганизмов, живущих в толстых кишках. К таким микроорганизмам относится и широко распространенная бактерия Proteus vulgaris. Ее родовое название говорит о сильной изменчивости этого микроба. (Протей в греческой мифологии был волшебником-великаном, по желанию изменявшим свой облик.)
Гниению подвержены захороненные трупы; при этом образуются сильноядовитые вещества, которые объединяют под общим названием птомаинов (от греческого слова ptoma – труп). Поскольку по своему химическому составу эти вещества схожи с растительными ядами – алкалоидами, в прошлом они нередко были причиной судебных ошибок: осуждали ни в чем не повинных людей за отравление только потому, что в мертвых телах находили сходные с алкалоидами птомаины, возникшие в результате жизнедеятельности микробов. Гниющие тела разлагаются под действием микроорганизмов до минеральных соединений; даже скелет, более устойчивый к гниению, и тот по прошествии длительного времени превращается в прах.
Живой светЕще Аристотель в IV веке до н. э. писал, что «некоторые тела способны светиться во тьме, например грибы, мясо, головы и глаза рыб».
Светящиеся бактерии излучают зеленый или голубоватый свет, хорошо заметный в темноте. Свечение это возможно лишь в присутствии кислорода. Оно подчас бывает настолько интенсивным, что позволяет без дополнительного освещения фотографировать культуры этих бактерий в лаборатории. Часто такие бактерии обитают и в морской воде. Их выделяют из рыб и некоторых других морских животных. В тропических морях находят и симбиотические бактерии. Органы, на которых поселяются светящиеся бактерии, служат им питательной средой. Помимо глаз, эти так называемые светящиеся органы находят и на других частях тела. Так, у рыб развились особые кожные образования, прикрывающие их светящиеся органы и таким образом регулирующие излучение света.
Известны культуры светящихся бактерий, при свете которых можно в темном помещении читать отпечатанный крупным шрифтом текст или различать стрелки на циферблате карманных часов.
Светятся также и грибы, например опенок. Учеными описаны светящиеся пауки и муравьи, обязанные своим «светом» симбиозу с бактериями.
Микробы вырабатывают красящие веществаИнтересно наблюдать колонии микроорганизмов в чашке Петри. Пытливый глаз человека различит здесь множество разнообразных цветовых оттенков. Колонии грибов, например, могли бы быть поставщиками красящих веществ, как самая совершенная фабрика по производству красителей. Мельчайшие черные головки, словно зернышки мака, покрывают колонию гриба, названного из-за своей черной окраски Aspergillus niger (niger по-латински значит черный). Другой гриб – A. flavus (что значит желтый) – образует колонии красивого желтого цвета, а колонии Penicillium chrysogenum, вырабатывающего пенициллин, окрашены в ярко-зеленый цвет (фиг. IV, вверху справа).
Колонии дрожжей бывают самой различной окраски – желтые, оранжевые, красные, белые, кремовые, розовые, фиолетовые, черные или коричневые (фиг. IV, вверху слева и внизу справа).
Не уступают грибам и бактерии. Окраска их колоний очень разнообразна: Staphylococcus albus образует белые колонии, Bacterium violaceum – фиолетовые, Bacillus janthinus – цвета индиго, Pseudomonas aeruginosa – голубые, Bacterium fluorescens – зеленые, Sarcina lutea – желтые, Serratia marcescens – красные (фиг. IV, внизу слева).
Из микроорганизмов были выделены многие красящие вещества и изучен их химический состав. Некоторые из них, улавливая световую энергию, принимают участие в фотосинтезе. У зеленых водорослей это зеленый хлорофилл, а у сине-зеленых водорослей – голубоватый фикоциан.
В клетках нескольких видов микробов было установлено присутствие красящего вещества крови – гемоглобина! Некоторые из этих красящих веществ являются антибиотиками, как, например, желтый хлортетрациклин или красный актиномицин.