Текст книги "Путешествие в страну микробов"
Автор книги: Владимир Бетина
Жанр:
Биология
сообщить о нарушении
Текущая страница: 11 (всего у книги 31 страниц)
В 1893 году С. Н. Виноградский сообщил ученому миру интересные данные о другом виде бактерий, выделенном им из почвы и названном в честь Пастера Clostridium pasteurianum. Он выращивал эти бактерии на питательной среде, лишенной азота, и они нормально росли и размножались. Через некоторое время Виноградский обнаружил, что питательная среда обогатилась соединениями азота, отсутствовавшими в ней ранее. Он установил, что С. pasteurianum способны усваивать азот из воздуха и «вырабатывать» из него белки. Этот микроорганизм относится к анаэробным бактериям, которые обитают в бескислородной среде.
Спустя восемь лет после открытия этих бактерий голландский микробиолог Мартин Бейеринк обнаружил в почве еще один вид, способный фиксировать атмосферный азот, и назвал его Azotobarter chroococcum. Это был тот самый Бейеринк, который одновременно с Ивановским открыл существование вирусов, о чем будет рассказано в 10-й главе. Любопытная деталь: будучи убежденным холостяком, Бейеринк свои лекции в университете всегда начинал обращением «Господа и дамы!» Когда один из его ассистентов женился, он прервал с ним всякие отношения, заявив: «Ученый не имеет права жениться!»
Связывание (фиксация) атмосферногр азота бактериями – процесс огромной важности. Молекулярный азот, недоступный никаким другим организмам, преобразуется в соединения, которые могут использоваться как легкоусвояемая пища. Очень любопытен химический механизм этого явления.
При химическом производстве азотных соединений из атмосферного азота применяются методы резких температурных скачков и сложная химическая аппаратура. Химики улавливают азот из воздуха при помощи мощной электрической дуги, сквозь которую прогоняют струю воздуха при температуре 3000 °C. Затем образующийся газ пропускают через воду, и азотные соединения, связываясь с водой, превращаются в азотную кислоту. По другой методике воздух охлаждают до —194 °C; азот отделяют от остальных составных частей воздуха, смешивают с водородом в отношении 1:3, подогревают до 550 °C, и тогда под высоким давлением в присутствии катализатора образуется аммиак. В результате взаимодействия аммиака с кислородом в присутствии платинового катализатора образуется азотная кислота[18]18
В настоящее время ведутся исследования по созданию химических катализаторов, подобных азотфиксирующим комплексам микроорганизмов, которые могли бы применяться для получения азотных удобрений из атмосферного азота. – Прим. ред.
[Закрыть].
Насколько же проще делают все это мельчайшие клетки бактерий, усваивающие атмосферный азот! Им достаточно одних остатков растений, служащих источником углерода и энергии. Они живут во мраке, во влажной, теплой почве и, невидимые, неслышные, усваивают азот из богатейшей природной кладовой. При помощи своих ферментов они преобразуют его в значительно более сложные соединения, чем может даже представить человек. И в результате всех этих превращений в клетках бактерий создаются белки, без которых невозможна жизнь на нашей планете.
Связывание атмосферного азота имеет и огромное хозяйственное значение. Согласно некоторым подсчетам, бактерии поставляют в почву до 9 830 000 т азота в год. В пересчете этого количества азота на такое промышленное азотное удобрение, как натриевая селитра, мы получили бы астрономическую цифру. Если бы бактерии не обогащали почву азотом, нам пришлось бы тратить на удобрение до 150 000 000 т натриевой селитры в год. Только на транспортировку такого количества потребовалось бы 300 000 поездов по 50 вагонов.
Естественно, что эта способность азотфиксирующих бактерий уже давно привлекала к ним внимание микробиологов. Они использовали эти организмы в виде так называемых бактериальных культур, которые заделываются в почву. Почва обогащается азотом, и ее плодородие значительно повышается.
В Японии и Индии при выращивании риса в последние годы стали применять новое микробное удобрение. Это удобрение содержит культуры сине-зеленых водорослей, очень быстро размножающихся на заливаемых водой рисовых полях. К тому же они не только связывают атмосферный азот, в них происходит еще и процесс фотосинтеза, что поддерживает деятельность других микроорганизмов и влияет на повышение урожаев риса.
Таким образом, знания ученых о способах питания микроорганизмов с успехом используются для повышения урожайности культурных растений, то есть теоретические исследования микробиологов и в сельском хозяйстве приносят богатые практические результаты.
Круговорот веществ в природе, в котором деятельное участие принимают микроорганизмы.
Биогенные элементы в движении
Мы убедились уже в том, что микробы играют очень важную роль в превращениях углерода в почве. Clostridium pasteurianum, Azotobacter, клубеньковые бактерии и сине-зеленые водоросли связывают атмосферный азот и способствуют образованию органических соединений. В процессах гниения бактерии осуществляют аммонификацию, освобождая аммиак из отмерших растений, животных, микроорганизмов. Нитрифицирующие бактерии превращают аммиак в важнейшие питательные вещества растений – нитриты и нитраты.
Однако помимо этой полезной деятельности почвенных бактерий нам известна и другая сторона их активности, с хозяйственной точки зрения нежелательная. Дело в том, что некоторые микробы вызывают денитрификацию, при которой из нитратов образуется молекулярный азот, выделяющийся в атмосферу. Процесс денитрификации происходит обычно в плохо обработанных и слабо аэрируемых почвах.
Все превращения азота под влиянием микробов, растений и животных дают нам картину его грандиозного и бесконечного круговорота в природе.
И остальные биогенные элементы постоянно переходят от неживой материи к живому веществу, а от него – под влиянием деятельности микробов – снова возвращаются к мертвой природе. Некоторые из них необходимы микроорганизмам лишь в очень малых количествах. Это так называемые микроэлементы. Железо или медь – важные компоненты некоторых ферментов. Кобальт принимает обязательное участие в образовании молекул витамина В12, открытого уже в послевоенные годы. Его с успехом применяют в лечении острой анемии. В12 образуется в клетках многих микробов, и в настоящее время основным путем получения витамина в промышленности является микробиологический синтез.
Профессор П. Немец так характеризует круговорот веществ в природе и участие в этом процессе живых организмов, в частности микробов:
«Компоненты атмосферы – углерод, азот и кислород – усваиваются живой природой, становясь составной частью живых организмов, точнее живой материи. Со временем эти организмы выделяют их обратно в атмосферу. В процессе дыхания или под влиянием разлагающей деятельности микроорганизмов элементы минерализуются и возвращаются в неживую природу. То же происходит и с остальными минеральными элементами, участвующими в биологическом круговороте. Живое вещество в этом непрестанном цикле использует неживую материю атмосферы и земной коры, а движение цикла обеспечивается солнечной энергией.»
Три тысячи лет назад один древний мудрец выразил ту же мысль гораздо лаконичнее: «…И возвратится прах в землю, чем он и был.»
Микробы ускоряют рост растенийВ различных органах растений образуются вещества, регулирующие и до известной степени ускоряющие их рост. К таким веществам относится, например, f3-индолилуксусная кислота (гетероауксин).
Интересно, что гетероауксин вырабатывают и выделяют в окружающую среду также некоторые бактерии, дрожжи и плесневые грибы. В почве он может стать важным фактором в развитии растений. Образуется гетероауксин и в результате деятельности кишечных бактерий. Человек в сутки выделяет с мочой до 2 мг гетероауксина. Меньшая его часть (около 0,1–1 мг) поступает вместе с растительной пищей человека, но большую часть продуцируют кишечные бактерии.
Есть еще одно интересное вещество, связанное с деятельностью микроорганизмов и сильно влияющее на рост растений. Это гиббереллин. История гиббереллина началась на Дальнем Востоке. В Японии уже больше 150 лет известна болезнь риса баканаэ (шалая болезнь). Это заболевание молодых проростков риса, которые вытягиваются в высоту, становясь в полтора раза длиннее нормальных, здоровых растений. Оно вызывается грибом Gibberella fujikuroi, паразитирующим на рисе.
В 1926 году японский исследователь Е. Куросава, изучивший эту болезнь, доказал, что заболевание проростков риса можно вызвать искусственно и в отсутствие гриба. Он выращивал гриб в лаборатории в жидкой питательной среде, затем фильтровал ее и полученным фильтратом (лишенным гриба) опрыскивал молодые растеньица. Проростки начинали расти, значительно опережая необработанные растения и проявляя все признаки уже известного заболевания. Это означало, что гриб выделял в жидкую среду какие-то вещества, которые проникали в организм опрыснутых растений и вызывали заболевание. Спустя десять лет группе японских исследователей удалось получить это вещество в чистом виде из фильтрата гриба. Они назвали его гиббереллином. Долгое время изучением гиббереллинов занимались лишь японские ученые, в последние десятилетия их стали исследовать и в других странах. В настоящее время известны четыре вещества типа гиббереллина[19]19
На сегодняшний день известно уже около 30 веществ типа гиббереллина. – Прим. ред.
[Закрыть], причем наиболее интересной оказалась гиббереллиновая кислота (чаще ее называют просто гиббереллином).
Самые большие трудности для исследователей гиббереллина заключались в том, что его можно было получать лишь в лабораторных условиях и в очень малых количествах. После второй мировой войны положение изменилось. К этсму времени уже началось промышленное производство антибиотиков (пенициллина, стрептомицина и др.). Опыт заводского выращивания организмов, продуцирующих антибиотики, можно было использовать и для получения культур гриба G. fujikuroi, а следовательно, приступить к промышленному производству гиббереллина. Но для чего потребовалось производить гиббереллин, вызывающий болезнь риса? Вопрос логичен и вполне естествен. На него мы сможем ответить, лишь разъяснив действие гиббереллина на организм растений.
Большие дозы гиббереллина действительно вызывают заболевание риса. Иначе обстоит дело с малыми дозами – на многие растения они оказывают вполне положительное действие. Мы уже говорили о том, что болезнь баканаэ вызывает быстрое вытягивание ростков риса. В связи с этим возникла мысль о возможности использования гиббереллина в качестве стимулятора роста культурных растений. Многочисленные опыты показали, что надежда эта вполне оправданна, и началось промышленное производство гиббереллина.
Изучая действие гиббереллина на растения, используют в основном два метода: либо в очень слабом водном растворе этого вещества замачивают клубни, корешки, семена растений, либо опрыскивают этим раствором только что взошедшие растения или их листья, почки, плоды. Концентрация гиббереллина в растворе очень низкая: одна часть вещества на миллион, а то и миллиард частей воды. Действует гиббереллин на различные растения по-разному. Если семена гороха перед высевом намочить в растворе гиббереллина, они раньше прорастут и молодые проростки развиваются быстрее.
Опыты в тепличных условиях показали благоприятное действие гиббереллина на сельдерей. У подопытных растений вес был на 50 % выше, чем у контрольных экземпляров. В полевых условиях всего 3 г гиббереллина на площади 16 га повысили урожай сельдерея на 12 %, причем значительно улучшилось и качество этой культуры.
Один из сортов салата оказался настолько восприимчивым к действию гиббереллина, что стал высоким вьющимся растением.
Гиббереллин ускоряет прорастание риса, ячменя и увлажненных семян зерновых культур. Проводились неоднократные опыты по использованию гиббереллина в пивоварении в целях ускорения производства солода из ячменя.
Известно благоприятное действие гиббереллина на урожай и качество винограда. Средний вес отдельных плодов (ягод) и гроздей значительно повышался. Опрыскивание деревьев апельсина раствором гиббереллина повысило содержание сока в плодах на 9 %, а витамина С – на 13 %.
Обнадеживающие результаты были получены и при выращивании декоративных растений. Одни из них раньше зацветали, у других увеличивались размеры цветков, удлинялся период их цветения и они дольше сохранялись в срезанном состоянии. Опрыскивание листьев пеларгонии вызывало раннее появление бутонов и образование более крупных соцветий по сравнению с контрольными растениями.
Предварительные опыты с различными овощными растениями (картофель, морковь, фасоль, капу ста, томаты) показали возможность использования гиббереллина и в овощеводстве. Кукуруза, обработанная гиббереллином, достигает большей высоты. Рассматриваются возможности увеличения с помощью гиббереллина урожаев клевера, люцерны и других кормовых растений. По мнению специалистов, гиббереллин найдет применение прежде всего в овощеводстве, декоративном садоводстве и виноградарстве.
9. Взаимоотношения микробов
Держи, Атлант,
Чудовищную ношу —
Наш шар земной,
Огромный и безликий…
Он – кровь и глыба,
Облаков хаос,
Скалы обломок,
Великан гранитный,
Стихия и бесформенная сила,
Где все перемешалось и кипит,
И атомов в нем мечутся билльоны,
Ни устали не зная, ни сомнений…
Э. Болеслав Лукач «Атлант»
Союз с растениями
В предыдущей главе мы узнали о взаимоотношениях растений с микробами, выгодных для обеих сторон и называемых симбиозом. Рассмотрим подробнее некоторые стороны этого союза.
Бобовые растения могут образовывать сахара в процессе фотосинтеза, но неспособны усваивать атмосферный азот. Клубеньковые бактерии, напротив, хорошо справляются с этой задачей, но не могут осуществлять синтез сахаров, потому что не имеют хлорофилла. Но когда эти два организма объединяются и производят обмен вырабатываемых продуктов, их жизнь обеспечена.
На корнях ольхи также встречаются клубеньки, в которых живут микробы, усваивающие азот из воздуха. Это тоже пример симбиоза, как и у бобовых растений.
Чрезвычайно интересные растения – лишайники. В полярной тундре это почти единственная пища растительноядных животных. Они интересны тем, что представляют сочетания грибов и водорослей: среди клеток грибов живут более мелкие клетки зеленых или сине-зеленых водорослей.
В теле лишайников того или иного вида обычно находится какой-то один постоянный вид водоросли. Правда, у некоторых лишайников, произрастающих в альпийском поясе, имеются два вида водорослей, относящихся к совершенно различным группам (один вид к зеленым, другой – к сине-зеленым водорослям), и здесь мы встречаемся уже с тройным симбиозом: гриб + зеленая водоросль + сине-зеленая водоросль. При этом сине-зеленая водоросль играет особую роль, так как она обеспечивает углеродное питание остальным членам системы за счет фотосинтеза и усваивает азот из атмосферы.
Лихенологам (лихенология – наука о лишайниках) удалось выделить из лишайников обоих партнеров – и гриб и водоросль – и выращивать их отдельно в чистых культурах. Из таких чистых культур они осуществили обратный «синтез» этих организмов в лишайники, что схематически изображено на рисунке.
Схема, показывающая выделение из лишайников чистых культур гриба и водоросли и последующее их соединение.
С помощью радиоактивного углерода. 14С было доказано, что углеводной пищей лишайников обеспечивают водоросли. Последние связывают углекислый газ в процессе фотосинтеза, из углекислоты и воды вырабатывают сахара и переправляют их грибным клеткам. В одном из опытов было установлено, что уже по прошествии 45 мин после поступления радиоактивного углерода в грибных клетках оказалось 60 % углерода, прошедшего через процесс фотосинтеза.
Шведский исследователь К. Мосбах из Лундского университета так описывает скорость синтеза лишайниками сравнительно сложной гирофоровой кислоты. Уже через минуту после поступления радиоактивной углекислоты в ее составе обнаружен углерод 14С. Это можно объяснить тем, что радиоактивный углерод сначала был поглощен клетками водорослей и затем в ходе реакций фотосинтеза был включен в состав молекул сахаров. Молекулы сахаров были переданы в грибные клетки лишайника и там под влиянием ферментов сначала разложились на более простые соединения с двухатомным углеродом, а затем при содействии других ферментов из них образовалась гирофоровая кислота, содержащая в своей молекуле 24 атома углерода. Весь путь атомов радиоактивного углерода можно упрощенно представить в виде следующей схемы:
Сложные процессы фотосинтеза, разложения и повторного синтеза биохимик провел бы по многим этапам и использовал бы для осуществления отдельных химических реакций по меньшей мере 10 ферментов. Но в клетках микроорганизмов все эти операции совершаются меньше чем за минуту; через минуту первые продукты – молекулы гирофоровой кислоты – уже готовы. Сколь примитивен и несовершенен автоматизированный конвейер на наших фабриках в сравнении с «производством» этого вещества в природе! При этом нельзя забывать, что в то же время и в тех же клетках в безупречной гармонии идут сотни других химических реакций!
Водоросли в лишайниках способны осуществлять процесс фотосинтеза при внешней температуре —5 °C, а в некоторых случаях даже при температуре —24 °C.
Как показали опыты лихенологов, водоросль снабжает своего грибного «партнера» также витаминами, а сине-зеленые водоросли – еще и азотной пищей. Гриб со своей стороны поставляет водорослям водные растворы минеральных солей и обеспечивает защиту от неблагоприятных воздействий внешней среды.
Тем не менее создается впечатление, что водоросли являются своего рода пленниками и подневольной рабочей силой у грибов. При отделении партнеров друг от друга грибы нуждаются в «искусственном» питании, тогда как зеленые и сине-зеленые водоросли – вполне самостоятельные организмы и сами синтезируют все необходимые органические соединения.
Немало в природе и других примеров сожительства микробов с иными организмами. На корнях деревьев в почве живут гифы грибов, проникающие в ткани корней. Грибы – постоянные спутники этих деревьев. Оказывается, их жизнь на корнях имеет большое значение для древесных пород. Растения выделяют в почву через корни углеводы, используемые грибами. Гифы проникают и внутрь корней, но растение регулирует их активность в корневой системе, причем верхушечные клетки гиф иногда растворяются веществами, содержащимися в выделениях корней. Растения в свою очередь используют вещества, находящиеся в гифах, и, таким образом, грибы в известной мере способствуют их питанию. Такое сожительство грибов с растениями называется микоризой. Эта связь хорошо известна грибникам, собирающим плодовые тела микоризных грибов – белых, маслят, лисичек. Плодовые тела вырастают из грибницы (сплетения гиф, находящиеся в почве в тесном контакте с корнями деревьев). Поэтому белый гриб мы чаще всего находим под дубами, подберезовик – под березами, а подосиновик– под осинами.
Дружба с животнымиУ каждого животного есть свой определенный «нормальный» состав микроорганизмов. Интересны взаимоотношения микробов и жвачных животных. В растительной пище жвачных содержится большой процент целлюлозы. И хотя пищеварительный аппарат этих животных не выделяет фермент целлюлазу, расщепляющий целлюлозу вплоть до молекул глюкозы, целлюлоза усваивается организмом полностью.
Желудок жвачных состоит из нескольких отделов, в которых пища подолгу задерживается и перемешивается. Здесь и происходит разложение целлюлозы.
Этот процесс обеспечивают бактерии и простейшие, которые находятся там в огромном количестве. Растительная пища еще в ротовой полости животного перемешивается со слюной, хотя и не имеющей в своем составе ферментов, но содержащей много солей. Соли служат пищей микробам, разлагающим целлюлозу в первом отделе желудка – рубце. Условия для жизнедеятельности микробов здесь благоприятны. Рубец жвачного[20]20
Рубец жвачных можно сравнить с ферментёром, в котором происходит размножение микроорганизмов, являющихся дополнительным (до 30 %) источником белка для животных. – Прим. ред.
[Закрыть] служит своего рода «термостатом», в котором микробы получают все необходимые питательные вещества. В 1 мл здесь может быть до 10 000 000 000 микробов. Целлюлоза и другие полисахариды в результате жизнедеятельности микробов разлагаются на более простые соединения – органические кислоты и газы. Органические кислоты через стенки рубца проникают в кровь, а газы выходят наружу. Микробы, количество которых, естественно, сильно возрастает, с обработанной пищей попадают в следующие отделы желудка, где под действием ферментов микробные клетки разлагаются до аминокислот и освобождают витамины, играющие вместе с аминокислотами важную роль в питании животных.
Не меньшее значение для животных имеют и кишечные бактерии[21]21
В кишечнике человека, так же как и в пищеварительном тракте травоядных животных, разложение целлюлозы происходит в результате жизнедеятельности микроорганизмов, образующих фермент целлюлазу. – Прим. ред.
[Закрыть], образующие, как показали исследования, витамины, необходимые организму животного. Бактерии, живущие в толстой кишке человека, поставляют организму витамины В1 и К, способствующие процессу свертывания крови. Однако витамины, получаемые организмом человека от бактерий, не покрывают всех его потребностей, поэтому человек должен принимать их и с пищей.