355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Бетина » Путешествие в страну микробов » Текст книги (страница 10)
Путешествие в страну микробов
  • Текст добавлен: 26 сентября 2016, 19:35

Текст книги "Путешествие в страну микробов"


Автор книги: Владимир Бетина


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 10 (всего у книги 31 страниц)

Микробы – вредители

Древесина, в которой содержится достаточное количество влаги, становится объектом бурной деятельности микробов. В сырых квартирах, на судах и в шахтах на древесине растут в первую очередь различные виды микроскопических грибов, а нередко и бактерий, разлагающих целлюлозу или иные составные части древесины. Древесина гниет, окрашиваясь в необычные для нее цвета или обращаясь в порошок.

Волокна различного текстильного сырья также нередко становятся объектом разлагающей деятельности микробов. Гриб Ashbya gossypii разрушает волокна хлопка еще в семенных коробочках. Разлагается микроорганизмами и овечья шерсть. Эти микробы, как правило, распространены в навозе или на загнивающих растительных остатках и представлены бактериями, актиномицетами и микроскопическими грибами.

В тропиках различные микроскопические грибы часто находят на лаке, которым покрыты машины. Слой лака разъедается, и металл подвергается коррозии. Электрические моторы, экспортируемые в тропические области, должны быть защищены особыми лаками, содержащими фунгицидные вещества[16]16
  Фунгициды – неорганические и органические ядовитые химические вещества, применяемые для борьбы с грибными заболеваниями растений. – Прим. ред.


[Закрыть]
. Вредному влиянию микробов подвержены различные ткани и изоляционные материалы.

Микробы часто бывают причиной недолговечности водопроводных труб. Железобактерии окисляют железо, что приводит к закупорке труб. Серобактерии, в результате жизнедеятельности которых образуется серная кислота, также способствуют коррозии железа и других металлов, растворяющихся в этой кислоте. Обе группы бактерий встречаются в сырой нефти и повреждают трубы нефтяных вышек и насосов. По мнению некоторых специалистов, микробы являются неотъемлемой частью среды, поэтому играют важную роль в процессах коррозии бурильных установок.

Они участвуют также в процессах разложения каучука, нефти и многих других природных материалов, а также бумаги, текстиля и пластмасс. Итак, микробы открывают свое новое лицо – лицо опасных вредителей.

Космическая микробиология

Наша эпоха получила много наименований, связанных с успехами естественных наук. Говорят об «атомном веке», «эре антибиотиков», «эпохе кибернетики». В последнее время начинают говорить и о «космическом веке». Без преувеличения можно сказать, что мы находимся на пороге волнующей страницы человеческой истории. За очень короткий срок мы стали свидетелями запуска сотен искусственных спутников. Первые посланцы Земли взлетели к Луне, Венере и Марсу, подобно планетам Солнечной системы бороздят космос пилотируемые корабли, увеличивается семья космонавтов. Появились проекты полетов к другим планетам нашей Солнечной системы, о межпланетных путешествиях написано много увлекательных романов.

Космический век принес с собой и новые проблемы в области биологических наук. Рассмотрим некоторые вопросы, возникшие в связи с этим в микробиологии. Микроорганизмы – эти мельчайшие представители живого – призваны сыграть важную роль в освоении человеком Вселенной.

Читатели, наверное, еще помнят, что в экспериментальных космических полетах участвовали и живые организмы. Самыми маленькими «пассажирами» были культуры микроорганизмов. Они позволили изучить влияние космических лучей на мелкие живые существа. Полученные сведения были использованы для решения сложных вопросов, связанных с полетом человека в космическом пространстве, в частности вопросов защиты от пагубного влияния космических излучений.

На борту первых космических кораблей были и микроскопические зеленые растения – одноклеточные водоросли. Мы знаем, что зеленые водоросли осуществляют фотосинтез, при котором из воды и углекислоты под влиянием солнечного света образуются основные, энергетически наиболее важные соединения – сахара. Преобразование световой энергии в химическую, связанную в молекулах сахаров, обеспечивает хлорофилл, находящийся в клетках водорослей. Упрощенное представление о получении глюкозы в процессе фотосинтеза дает следующая формула:

2O + 6CO2 + Энергия → С6Н12O6 + 6O2, или

Вода + Углекислый газ + Энергия → Глюкоза + Кислород.

Образование сахаров при помощи фотосинтеза – основной процесс, за которым следует синтез остальных жизненно важных соединений из неорганических веществ. Зеленые водоросли при помощи своих ферментов получают из сахаров необходимое количество энергии и образуют белки, нуклеиновые кислоты, витамины и новые молекулы ферментов. Фотосинтезирующие зеленые водоросли – типичные автотрофные организмы, способные из минерального «сырья» получать и накапливать в своих клетках все наиболее важные для жизни вещества.

При длительных космических полетах зеленые водоросли могут быть использованы в качестве важной составной части меню космонавтов. «Наземные» опыты с культурой одноклеточных водорослей и с приготовлением из них питательных продуктов дали очень обнадеживающие результаты.

Кроме того, зеленые водоросли принимают участие в восстановлении состава воздуха в кабинах космических кораблей. Известно, что в процессе фотосинтеза освобождается кислород, используемый в другом важном жизненном процессе– дыхании. С химической точки зрения дыхание – это процесс, как бы обратный фотосинтезу: используются сахара и кислород, а освобождаются энергия, углекислый газ и вода:

С6Н12O6 + 6O2 → 6СO2 + 6Н2O + Энергия, или

Глюкоза + Кислород → Углекислый газ + Вода + Энергия.

Таким образом, космонавты поставляют водорослям углекислоту для фотосинтеза и получают от них взамен кислород для дыхания. Уже сконструированы различные модели аппаратов для культивирования водорослей в космических кораблях. Подобный обмен жизненно необходимых газов (кислорода и углекислого газа) между растениями и животными происходит на нашей планете со времен ее глубокой древности.

К самым интересным проблемам космических исследований, безусловно, относится вопрос о существовании жизни во Вселенной. До сих пор нам доподлинно известно всего лишь одно небесное тело, на котором есть жизнь. Это наша планета. После того как человек побывал на Луне, стало ясно, что там едва ли когда-нибудь могла существовать жизнь. Мы знаем, что химический состав нашей Солнечной системы всюду, по существу, один и тот же. Исходя из этого, мы можем предполагать, что и внеземные живые организмы (некоторые ученые называют их экзобиотами) должны обладать биохимическими и физиологическими свойствами, сходными со свойствами земных организмов. Поэтому и считают, что жизнь может существовать прежде всего на таких небесных телах (планетах), где есть основные условия жизни: вода в жидком состоянии, благоприятная температура поверхности планеты, атмосфера, качественно схожая с земной, достаточное количество света как источника энергии для фотосинтеза. Такие условия в нашей Солнечной системе имеются отчасти на Марсе, в связи с чем некоторые ученые полагают, что жизнь, хотя бы ее низшие формы, возможна на этой планете.

На Земле мы найдем микробов в каждом комочке почвы, в движимых воздушных массах; они живут в полярных областях и в тропиках, на высокогорных вершинах и в глубинах океанов. Не исключено, что и на других планетах, где возможна жизнь, есть свой особый состав микроорганизмов, представляющих низшие формы жизни. Поэтому при изучении образцов, доставленных с иных планет, следует применять и микробиологические методы.

Но тут неизбежен один коварный вопрос: будут ли микробы, найденные в инопланетных образцах, действительно внеземными существами? Очень важно избежать заноса на иные планеты земных микробов или загрязнения образцов, взятых с этих планет, «нашими» микроорганизмами, которые мы ошибочно можем принять за внеземные.

Кроме того, здесь кроется и другая немалая опасность. Представим себе какую-нибудь планету, на которой существует жизнь. На нее прибывает посланный с Земли космический корабль, и в нем находятся «безбилетные пассажиры» – земные микробы. Попадая в подходящие условия, они начинают размножаться. Из каждой бактериальной клетки через 20–30 мин возникают две новые. С помощью ветра и водных течений самые обыкновенные бактерии могут завладеть планетой, по величине близкой к размерам нашей Земли, всего за какие-нибудь несколько недель. Это, безусловно, приведет к резким изменениям в жизни планеты. Многие микробы могут оказаться болезнетворными, и нельзя исключать возможность, что они выживут на этой «живой» планете различные эпидемии. Существует опасность и обратного порядка. Инопланетные микроорганизмы, попавшие в качестве нежелательных пассажиров – «зайцев» – в корабль, вернувшийся на Землю, могут стать серьезной угрозой для нашей планеты.

О возможности жизни на Венере среди ученых существуют различные точки зрения. На этой планете есть атмосфера, в составе которой удалось обнаружить углекислый газ, азот и другие газы, а недавно обнаружили и воду. Температура на поверхности Венеры гораздо выше, чем на Земле; по некоторым данным, она превышает 300 °C[17]17
  В соответствии с данными, полученными советскими автоматическими станциями «Венера-9» и «Венера-10», запущенными в 1975 году, температура на солнечной стороне Венеры достигает 465 °C, а давление свыше 90 атм. – Прим. ред.


[Закрыть]
. Такая температура слишком высока для того, чтобы на ней была возможна жизнь.

Недавно в журнале Science появилась интересная статья о возможностях заселения Венеры. Приведем основные мысли, высказанные в этой статье.

Для освоения Венеры высшими земными организмами ее необходимо соответствующим образом подготовить: снизить температуру поверхности планеты и повысить содержание кислорода в атмосфере. Для этого нужно подыскать организмы, способные существовать не непосредственно на ее поверхности, а на высоте нескольких километров, где находится пояс умеренных температур. Здесь процесс фотосинтеза мог бы протекать по основной схеме, причем источником кислорода служила бы вода. Со временем клетки этих организмов опустились бы в нижние слои атмосферы, где под влиянием высоких температур происходило бы разложение органических соединений, таких, как сахара. Схема этого процесса выглядела бы так:

С6Н12O6 + Тепловая энергия → 6С + 6Н2O, или

Сахара + Тепловая энергия → Углерод + Вода.

При этом содержание углекислого газа в атмосфере понижалось бы, запасы воды обновлялись, а количество кислорода – повышалось. Нам известны организмы, способные выполнить подобное задание. Это фото-синтезирующие одноклеточные сине-зеленые водоросли. Некоторые из них живут на Земле в горячих источниках при температуре 80 °C. Другие виды наземных сине-зеленых водорослей, азотфиксирующие, могли бы выполнить еще одну задачу на Венере: связывать азот из атмосферы и получать с его помощью белки и все остальные жизненно важные азотсодержащие органические вещества.

В упомянутой статье говорится о планах засылки на Венеру кораблей с подобным экипажем. За счет снижения в атмосфере содержания углекислого газа можно было бы устранить и так называемый парниковый эффект, который является причиной высоких температур на поверхности планеты. Со временем этот процесс можно было бы приостановить во избежание чрезмерного понижения температуры, в результате которого прекратились бы разложение органических соединений на поверхности планеты и вышеописанные реакции.

8. Микроорганизмы и сельское хозяйство

Тяжек был труд твоего землепашца на поле:

Три лишь зерна на зерно получал с урожая.

Ости одни и колючки подчас пожиная,

Пану оброк семикратный он нес, проклиная…

Так на груди твоей издавна предки трудились,

Вечную муку до ран на руках принимая…

М. Разусова-Mapтакова «К Земле Словацкой»

Неизвестные сотрудники

Очень долгое время мы ничего о них не знали. Землепашцы испокон веков рыхлили землю, сеяли и собирали урожай. Потом наступила эпоха микробиологических исследований и почвоведения и понемногу стала проясняться судьба различных соединений в почве, их круговорот в природе. И человек постепенно узнавал о неизвестных и невидимых сотрудниках из мира микроорганизмов. Так, мы узнали, что именно они– основные поставщики углекислого газа в атмосферу, откуда его в процессе фотосинтеза усваивают растения, добывая пищу для гетеротрофных организмов, в том числе и для человека. Среди микробов мы открыли фиксаторов и преобразователей азота и его соединений, являющихся необходимыми элементами питания всех организмов. Соединения азота, серы, фосфора и большую часть биогенных элементов растения получают в почве прежде всего благодаря деятельности микроорганизмов.

И теперь, окидывая взором поле с созревающим урожаем той или иной сельскохозяйственной культуры, мы знаем, что его обеспечивают многие миллионы микробных клеток, находящихся в почве, где они неустанно, невидимо для нас выполняют свою жизненную задачу. Здесь мы найдем представителей всех групп микроорганизмов, и почвенная микробиология может дать нам в цифрах наглядное представление об их составе в 1 г почвы:

Простейшие 600 000 – 1 500 000

Водоросли 100 000

Микроскопические грибы 8 000 – 1 000 000

Актиномицеты 100 000 – 36 000 000

Бактерии 300 000 – 90 000 000

Рассмотрим роль почвенных микроорганизмов в сельском хозяйстве и их значение для поддержания жизни на нашей планете.

Круговорот углерода в природе

Мы уже знаем, что в процессе фотосинтеза растения поглощают из атмосферы углекислый газ и из него и воды при обязательном участии световой энергии вырабатывают сахара. Дальнейшая судьба полученных сахаров может быть различной. В клубнях картофеля и зернах хлебных злаков из сахаров образуется крахмал. В семенах некоторых растений накапливаются масла. В конопле и хлопчатнике образуются волокна, используемые в текстильной промышленности. Образующиеся в хлоропластах сахара служат, кроме того, вместе с другими веществами материалом для построения различных органов растения.

Биогенный элемент углерод, входящий в состав углекислого газа и сахаров, находится в природе в постоянном круговороте. Если бы его запасы в атмосфере не пополнялись, их хватило бы для жизни растений всего лет на сорок. Процесс фотосинтеза прекратился бы, и как следствие этого наступил бы конец жизни на Земле. Однако мы знаем, что запасы углекислого газа в воздухе постоянно восполняются. Он поступает в атмосферу из вулканических газов, минеральных вод, освобождается при выветривании горных пород и сгорании древесины, угля, торфа, горючих газов и нефтяных продуктов. Живые организмы возвращают его в атмосферу при дыхании. Микробы также честно выполняют свою роль поставщика этого драгоценного продукта – участвуют в разложении остатков животных и растений, минерализуя органические соединения. Можно считать, что бактерии и грибы при дыхании выделяют в атмосферу больше углекислого газа, чем все люди и животные, вместе взятые.

Растения относятся к автотрофным организмам, для питания которых достаточно лишь усвоения углекислого газа, в отличие от гетеротрофов, принимающих углеродную пищу только в форме готовых органических соединений. Мы уже знаем, что автотрофными являются и многие микроорганизмы. Кроме зеленых, диатомовых и сине-зеленых водорослей, нам известны специализированные автотрофные бактерии, использующие для получения и усвоения углекислого газа химическую энергию, которая освобождается в результате реакций, происходящих в неорганических соединениях. Из таких автотрофных почвенных бактерий наиболее известны нитрифицирующие бактерии, которые играют чрезвычайно важную роль в круговороте другого биогенного элемента – азота.

Потребность в азоте

Азот – важный биогенный элемент, присутствующий в каждой живой клетке. В азоте нуждаются все живые организмы, но добывают они его по-разному. Животные получают азот из растительной пищи. Зеленые растения черпают его из почвы в форме минеральных соединений. Газообразный азот, находящийся в атмосфере, для зеленых растений недоступен. Своими надземными органами они буквально купаются в атмосферном азоте, но использовать его не могут. В результате электрических разрядов в атмосфере возникает небольшое количество соединений азота, в частности аммиак; они проникают в почву с дождем и могут служить растениям источником азота. Но на 1 га почва получает таким путем лишь около 3 кг азота в год, тогда как с урожаем мы получаем его с этой же площади раз в 20 больше.

В 1 га почвы содержится около 8000 кг азота, большая часть которого связана с живущими в ней организмами. Если бы растениям был доступен весь находящийся в почве азот, то, например, сахарная свекла исчерпала бы его за 40 лет. И хотя запасы азота в почве невелики, они постоянно пополняются, причем главная роль в этом процессе принадлежит почвенным микроорганизмам.

Мертвые животные и растения очень скоро становятся жертвой микробов, которые используют в процессе своей жизнедеятельности эти богатые запасы органических соединений. Одни микробы выделяют ферменты, осуществляющие разложение белков на их составные части – аминокислоты (но процесс разложения на этом не останавливается). Другие микробы под действием ферментов освобождают из аминокислот углекислый газ, большая часть которого возвращается в атмосферу, и аммиак, остающийся в почве. Микробы освобождают аммиак и из выделений различных животных. Процесс, при котором в результате жизнедеятельности микробов из белков и других органических соединений выделяется аммиак, называется аммонификацией. Пахотная почва, в которой находятся растительные остатки, навоз, отмершие мелкие животные и микробы, всегда содержат аммиачные соединения.

Хвойные древесные породы своими корнями поглощают аммиачные соединения из почвы и используют их для образования аминокислот и белков. Так азот, связанный в аммиаке, снова возвращается в живую природу.

В более трудном положении находятся растения, неспособные усваивать аммиак. Они могут использовать только азот, содержащийся в нитритах или нитратах. Но и этим растениям на помощь приходят микробы.

Бактерии, открытые Виноградским

Сергей Николаевич Виноградский, выдающийся русский микробиолог, долгое время работавший в Пастеровском институте в Париже, внес огромный вклад в развитие микробиологии. Центральной темой его исследований было изучение автотрофных бактерий. Вслед за работами, посвященными серобактериям и железобактериям, ученый занялся изучением химических превращений аммиака в почве.

В 1890 году ему удалось выделить из почвы культуру микробов, очень чувствительных к минимальным количествам органических соединений и потому не растущих на обычных питательных средах с желатиной или агаром. Когда же он применил неорганическое студенистое соединение силикагель и, поместив его в чашки Петри, добавил несколько капель минеральных соединений (среди которых был и аммиак), а сверху присыпал комочками почвы, то вскоре увидел, что около них выросли колонии бактерий. Это были автотрофные нитрифицирующие бактерии, обладающие способностью превращать почвенный аммиак сначала в нитриты, а затем в нитраты. В обеих фазах этого окислительного процесса освобождается энергия, используемая нитрифицирующими бактериями при ассимиляции углекислого газа в процессе хемосинтеза.

Нитрифицирующие бактерии чрезвычайно полезны для сельского хозяйства. В течение лета на 1 га хорошо обработанной почвы они преобразуют до 200 кг аммиачного азота в нитраты, делая таким образом этот азот доступным для растений.

Независимые растения

Среди культурных растений есть такие растения, которые не нуждаются в азотном удобрении. Это бобовые. К ним относятся клевер, люцерна, горох, фасоль, соя и др. Уже в Древнем Риме было известно, что бобовые улучшают свойства почвы и что урожай на полях, где предшествующей культурой были бобовые, всегда богаче.

В прошлом веке было установлено, что бобовые растения содержат в 2–3 раза больше азота, чем любые другие культурные растения. Содержание белка в них даже выше, чем в мясе. Каково же происхождение азота в этих растениях? Если мы осторожно выдернем из почвы растения клевера или гороха, то обнаружим на их корешках вздутия – клубеньки. В этих клубеньках живут так называемые клубеньковые бактерии. Они-то и являются причиной высокого содержания белка, поскольку усваивают азот непосредственно из воздуха. Единственной доступной для них фермой азота является молекулярный азот, запасы которого в атмосфере неисчерпаемы. В процессе превращения молекулярного азота в аминокислоты часть этих соединений остается в клубеньках, откуда они распространяются затем по всему растению. Так бобовое растение, неспособное самостоятельно синтезировать органические соединения из газообразного азота, получает их недорогой ценой от клубеньковых бактерий. Взамен оно отдает им воду, минеральные соли и запас энергии в форме сахаров, образующихся при фотосинтезе. Эти вещества в свою очередь служат необходимым питанием для клубеньковых бактерий, нуждающихся в готовых углеродных соединениях. Таким образом, пребывание клубеньковых бактерий на корнях бобовых растений очень выгодно для обоих партнеров – бактерий и высших растений. Такое взаимовыгодное сожительство двух различных организмов мы называем симбиозом.


    Ваша оценка произведения:

Популярные книги за неделю