Текст книги "Путешествие в страну микробов"
Автор книги: Владимир Бетина
Жанр:
Биология
сообщить о нарушении
Текущая страница: 23 (всего у книги 31 страниц)
Уже более трех десятков лет известно, что инфекция, вызванная одним вирусом, может ограничить или предотвратить заражение другим вирусом. В 1957 году А. Айзекс и Дж. Линдеман из Национального института медицинских исследований в Лондоне показали, что этот феномен определяется веществом белкового характера, которое они назвали интерфероном. Интерферон возникает в клетке, зараженной вирусом, и призван защищать от заражения остальные, неинфицированные клетки.
Открытие интерферона заставило ученых усомниться в том, что самой первой реакцией организма на появление вируса является обычный процесс образования антител. По-видимому, именно интерферон представляет первую линию обороны при вирусной инфекции, с его помощью зараженная клетка как бы сигнализирует другим клеткам о вирусной угрозе. Этот сигнал, переданный молекулами интерферона, дает возможность здоровым клеткам выработать защитные белковые вещества, препятствующие синтезу вирусных частиц. Защитный белок известен микробиологам под названием ТИП (сокращенная форма термина «трансляционный ингибирующий протеин», или передаточный тормозящий белок). ТИП препятствует размножению вируса в клетках, не нарушая при этом нормального синтеза белков.
Индукция образования интерферона. 1-й этап; а – здоровая клетка; б – ДНК клеточного ядра реагирует на присутствие индуктора «сигналом тревоги», в результате чего возникает иРНК для синтеза интерферона; в – соединившись с рибосомой, РНК начинает руководить синтезом интерферона. 2-й этап: г – интерферон перемещается в другие, здоровые клетки, ДНК которых стимулирует образование иРНК для синтеза противовирусного белка; д – соединившись с рибосомой, РНК управляет синтезом противовирусного белка; е – нуклеиновая кислота вируса вынуждает клетку образовывать иРНК для получения вирусного белка, но последний не может образоваться, поскольку рибосома «блокирована» противовирусным белком. Синтез интерферона воспрепятствовал размножению вируса и предотвратил заболевание организма.
Впоследствии было установлено, что образование интерферона можно вызвать (индуцировать) действием различных природных или синтетических веществ, для которых характерна одна общая особенность – все они содержат РНК с двумя спиралями. Обычно молекулы РНК имеют одну спираль, но некоторые вирусы и бактериофаги обладают двуспиральной РНК. Схема индукции дана на прилагаемом рисунке.
Естественно, что после открытия интерферона оптимистично настроенные ученые были готовы видеть в нем мощное средство борьбы с вирусами. Но проведенные в этом направлении опыты принесли разочарование. Однако с открытием возможности искусственной индукции образования интерферона при помощи вышеупомянутых веществ появились новые перспективы. Ученые приступили к сложным опытам, и нам придется терпеливо дожидаться результатов, которые покажут, в какой мере смогут исполниться надежды, связанные с интерфероном.
Вакцина с шифром БЦЖНезадолго до начала первой мировой войны французские бактериологи А. Кальмет и Ш. Герен начали длительные опыты по созданию вакцины против туберкулеза. Долголетними повторными прививками туберкулезных бацилл (Mycobacterium tuberculosis) они получили невирулентные бациллы, сохранившие, однако, свои антигенные свойства. Первый раз они применили противотуберкулезную вакцину 1 июля 1921 года, сделав прививку грудному младенцу, мать и бабушка которого болели туберкулезом. Ребенок остался здоровым.
Их вакцина стала известна под сокращенным названием BCG (БЦЖ: бацилла Кальмета – Герена) и была с воодушевлением принята общественностью. Но потом произошло трагическое событие.
В немецком городе Любеке в период с декабря 1929 по апрель 1930 года вакцинировали 252 ребенка и 71 из них умер. Доверие к БЦЖ было подорвано. Уже значительно позднее установили, что несчастье произошло из-за роковой ошибки в одной лаборатории, где вместо БЦЖ детям ввели вирулентные бациллы туберкулеза!
После выяснения причин этого трагического случая доверие к БЦЖ стало понемногу восстанавливаться. В 1924 году противотуберкулезную прививку сделали 217 грудным детям. По данным Всемирной организации здравоохранения, за 40 последующих лет в шестидесяти странах было сделано несколько сотен миллионов прививок. Теперь в большинстве стран каждый ребенок получает инъекцию БЦЖ тотчас после рождения. По прошествии трех месяцев применяют туберкулин, при помощи которого узнают, приобрел ли ребенок, которому была привита БЦЖ, иммунитет к туберкулезу. Перед вакцинацией взрослых также производится испытание туберкулином. Если результат положительный, то прививку не делают.
Британский совет по медицинским исследованиям опубликовал результаты вакцинации 65 000 английских детей. Спустя пять лет заболеваемость туберкулезом среди них снизилась на 83 % по сравнению с группой, в которой вакцинация не проводилась.
В одной из предыдущих глав мы уже говорили о. том, что возбудителем проказы является бацилла Mycobacterium leprae. До самого недавнего времени надежного средства против этой болезни не существовало. Несколько лет назад стали применять сульфамидные препараты, которые излечивают до 15 % тяжелых форм кожной и почти все случаи нервной проказы. Курс лечения длится от трех до пяти лет и стоит больших средств. В 1966 году английский медицинский журнал British Medical Journal опубликовал результаты пятилетних опытов, проведенных в Уганде. Советник по вопросам проказы при правительстве Уганды доктор Дж. Броун и его ассистентка М. Стоун отобрали 17 000 детей, бывших в непосредственном контакте с прокаженными и подверженных опасности заболевания. Произвольным отбором они отделили из них половину и сделали им прививку БЦЖ. Вторая половина детей служила контролем. С двухлетними перерывами проводили осмотр 94 % всех детей. Количество заболевших в группе, которой была сделана прививка, оказалось на 80 % меньше, чем в контрольной. Таким образом, вакцина БЦЖ играет двойную роль: предохраняет от заболевания туберкулезом и обеспечивает защиту населения от проказы.
Так спустя 170 лет был как бы повторен опыт Дженнера, в свое время доказавшего, что вакцина коровьей оспы может защитить и от натуральной оспы.
Анатоксин БерингаОткрытию возбудителя дифтерии мы обязаны ученикам Коха и Пастера. Немецкий ученый Фридрих Леффлер обнаружил и изучил возбудителя болезни, дифтерийную палочку Corynebacterium diphteriae. Леффлер высказал предположение, что непосредственной причиной заболевания является токсин, выделяемый этим микробом. Французский исследователь Эмиль Ру доказал, что этот токсин действительно существует и что бацилла дифтерии выделяет его при выращивании на мясном бульоне. Немецкий ученый Эмиль Беринг установил, что малые дозы токсина, введенные подопытным животным, обеспечивают их невосприимчивость к этой болезни. В крови иммунных животных он нашел вещество, нейтрализующее токсин, и назвал его анатоксином. В 1895 году им был разработан метод получения анатоксина из крови иммунных животных, и с тех пор его стали применять для профилактической прививки против дифтерии.
В наши дни анатоксин вырабатывается в больших количествах. Культура дифтерийной палочки вносится в соответствующую жидкую питательную среду, где в результате размножения бацилл создаются большие количества токсина. Затем бактерии убивают, культуральную среду фильтруют и полученный фильтрат прививают молодым лошадям в такой дозе, чтобы токсин вызвал у них образование антител (анатоксинов). Находящийся в их крови анатоксин обезвреживает выделяемый микробами токсин. Когда накопится достаточное количество анатоксина, от каждого животного берут до 10 л крови и в строго асептических условиях получают сыворотку, которую после соответствующей проверки используют для так называемой пассивной иммунизации человека. Дифтерийный анатоксин является по существу антителами дифтерийного токсина, которые организм человека получает уже в готовом виде.
Средства прививки и иммунизацияИтак, теперь мы уже знаем, что кроме врожденного иммунитета, присущего определенным организмам, невосприимчивость к инфекциям можно создать и искусственным путем – так называемой иммунизацией. Для этого применяют вакцины или иммунные сыворотки.
Иммунизация иммунной сывороткой является пассивной, поскольку организм человека сам не вырабатывает действенные антитела, а получает их готовыми. Сыворотку получают, как уже говорилось, из крови вакцинированных или переболевших животных, у которых образование антител вызывается заражением антигенами. Последние обычно представлены токсинами болезнетворного микроба.
Совсем иная сущность процесса активной иммунизации, когда в организм вводятся в виде прививочных вакцин убитые или ослабленные возбудители инфекционных заболеваний.
При изготовлении вакцины болезнетворные микробы обрабатываются так, чтобы их патогенные свойства были уничтожены, а антигенные сохранились. Прививка такой вакцины приводит к образованию соответствующих антител.
В таблице 12 приведены примеры создания активного и пассивного иммунитета против некоторых широко распространенных заболеваний.
В Чехословакии детям в обязательном порядке делаются следующие прививки. При рождении они получают вакцину БЦЖ (от туберкулеза). Спустя некоторое время почти одновременно им делают прививки против дифтерии, столбняка и коклюша. Затем проводят вакцинацию против оспы, несколько позднее – против полиомиелита и против кори (последняя введена совсем недавно). Таким образом, дети иммунизируются против четырех болезней бактериального происхождения (туберкулез, дифтерия, столбняк и коклюш) и против трех заболеваний, возбудителями которых являются вирусы (оспа, полиомиелит и корь).
18. «Волшебные пули»
Эрлих посвятил себя поискам таких «волшебных пуль», которые могли бы точно и надежно поражать определенных возбудителей инфекций… В его понимании стрелять этими целебными пулями означало искать и количественно оценивать проявления болезни химическими средствами.
Й. Фонкеннель, 1956
Поиски
Проблема лечения болезней – столь же древняя, как и само человечество. Вместе с открытием их возбудителей шли поиски эффективных средств лечения. К методам лечения, которыми мы привыкли пользоваться сегодня, вел тернистый путь, усеянный и многими ошибками, и значительными успехами. И, конечно, современное состояние здравоохранения – всего лишь этап на пути дальнейшего решения этой проблемы.
Римский врач и естествоиспытатель Гален, живший во II веке, рекомендовал от многих болезней порошок из человеческих костей. Ибн Сина (латинизированное Авиценна), знаменитый таджикский врач, стал крупнейшим авторитетом в Средней Азии.
Болезни не оставались и вне внимания алхимиков, из которых многие стали создателями «чудотворных» лекарств. Новые пути врачевания искал в XVI веке и выдающийся немецкий врач и химик Филипп Ауреол Теофраст Бомбаст фон Гогенгейм, называвший себя Парацельсом. Он отвергал древнюю медицину и символически сжег на площади в Базеле труды Галена и Авиценны, заявляя, что природа может дать лучшие лечебные средства, чем отвары из трав. Значительно более действенными средствами лечения, по его мнению, могли быть такие вещества, как ртуть, железо, сера и свинец. В 1537 году Парацельс посетил Братиславу, где ему был оказан торжественный прием.
Однако вера в целебную силу растений сохранилась до наших дней. Словацкая область Турьец была родиной известных далеко за ее пределами врачей, которые готовили из различных растений целебные масла.
В XVII веке в Европу проник метод лечения малярии, уже давно и с успехом применявшийся индейцами Южной Америки. В 1660 году корой хинного дерева была вылечена жена перуанского вице-короля[35]35
По другим данным вице-королева Перу Эль-Цинхона была вылечена корой хинного дерева в 1638 году (П. Каррер, Курс органической химии, Л., Гос. н.-т. изд-во хим. лит., 1962, стр. 1084). – Прим. ред.
[Закрыть]. Английские врачи Сиденхем и Уиллис распространили это новое средство в Старом Свете. Действующее вещество коры хинного дерева – хинин – выделили в 1820 году французские ученые Пельтье и Кавенту[36]36
В 1816 году русский ученый Ф. И. Гизе впервые получил хинин в кристаллическом виде. – Прим. ред
[Закрыть]. С тех пор хинин стал незаменимым средством в аптечке путешественников, отправлявшихся в неизведанные края, где царила малярия.
Химические препараты все больше и больше привлекали внимание ученых, они исследовали их возможные целебные свойства. В 1902 году французам А. Лаверану и Меснилю удалось при помощи арсенита калия излечить мышь, зараженную сонной болезнью. Но действие этого соединения мышьяка, к тому же сильно ядовитого, оказалось преходящим, и от лечения им пришлось отказаться. Лучших результатов добился английский врач Томас, применивший в целях лечения другой препарат мышьяка под названием атоксил. В то же время вопрос о химических средствах лечения очень волновал одного немецкого ученого, справедливо заслужившего вскоре титул основателя химиотерапии.
Соединение № 606Пауль Эрлих, о котором мы уже знаем из рассказа о его спорах с Мечниковым по поводу иммунитета, всегда возлагал большие надежды на химию. Он был уверен, что она поможет ему найти «волшебную пулю», которая уничтожит возбудителя сифилиса. Соединение, которое он искал, должно было обладать сильным бактерицидным действием и в то же время не повреждать клетки человеческого организма. Это была очень притягательная мысль, но осуществить ее было нелегко. Немецкие химики в то время уже создали высококачественные красители, и некоторые из них с успехом применялись в молодой науке бактериологии. Поскольку Эрлих разрабатывал методы "окраски бактериальных препаратов, он знал, что некоторые красящие вещества легче вступают в контакт с бактериальными клетками, чем с тканями человека. Красители стали первыми помощниками в поставленной им цели – найти «волшебные пули» против бактерий.
Одно из таких красящих веществ – метиленовый синий – уже использовалось в качестве лечебного средства против малярии. Усложнение молекулы метиленового синего путем присоединения группы атомов, называемых радикалами, позволило химикам создать сильнодействующее противомалярийное средство.
Эрлих и его японский коллега Шига проверили в 1904 году действие красителя трипановый красный в борьбе с простейшими. Испытания проводились на мыши, инфицированной Trypanosoma equinum. Казалось, что лечение проходит успешно. Однако после его прекращения болезнь возобновлялась. «Волшебная пуля» не достигала цели. Эрлих лишний раз убедился, что применение случайных средств не дает желаемого результата.
В то время для борьбы с сифилисом уже пытались использовать мышьяковистое соединение атоксил. Хотя опыты с животными, зараженными спирохетами, дали обнадеживающие результаты, лечение человека атоксилом было безуспешным. Излечив одну болезнь, атоксил вызывал другую – вредно влиял на центральную нервную систему и повреждал зрительный нерв. Тем не менее этот препарат привлек внимание Эрлиха. Будучи высококвалифицированным химиком, он понимал, что малейшее изменение в составе вещества влечет за собой изменение его свойств. Вот если бы удалось так изменить химическую структуру вещества, чтобы его противомикробное действие усилилось, а вредное влияние на человеческий организм уменьшилось!
При изучении атоксила Эрлих обнаружил нечто новое для себя. Лечебное действие этого вещества связано с химическим преобразованием мышьяка. Аток-сил содержит пятивалентный мышьяк, изменяющийся в организме на трехвалентный – именно в этой форме он и убивает всех простейших. Необходимо было синтезировать такое соединение, в котором мышьяк сразу был бы трехвалентным. Стала ясна ближайшая цель, и Эрлих со своими сотрудниками принялся за работу.
Ученые использовали весь имевшийся в то время арсенал химических методов: взвешивание, кипячение, охлаждение, кристаллизацию, очистку и т. д. В результате получали новые, родственные атоксилу соединения мышьяка. Их было уже свыше пятидесяти, но все они, пройдя испытания, не удовлетворяли необходимым требованиям. Однако Эрлих не сдавался и разрабатывал самые различные пути синтеза. Его письменный стол был завален бумагами, исписанными химическими формулами, в лаборатории под его руководством создавались все новые и новые соединения. Их уже перевалило за третью сотню, а положительных результатов не было.
Неужели он ошибался? Не следовало ли попытать счастья в другом направлении?
Но Эрлих отбрасывал подобные мысли и с упорством исследователя, уверенного в правильности выбранного им пути, продолжал опыты. Его поддерживали энтузиазм и прирожденная пунктуальность. Уже было синтезировано 600 соединений, в процессе работы получены ответы на многие важные вопросы. Эрлих чувствовал, что недалек день, когда будет получен первый экстракт долгожданного лекарства.
И, действительно, этот день вскоре наступил. Эрлих и его сотрудник Хата[37]37
По-видимому, у автора ошибка. Синтез сальварсана был осуществлен Эрлихом совместно с Бертхеймом, а не Хатой, который приступил к совместной работе с Эрлихом позже и проводил эксперименты над животными. – Прим. ред.
[Закрыть]наконец синтезировали соединение под номером 606. Оно представляло собой долгожданную «волшебную пулю», получившую название сальварсана.
После успешных испытаний на животных в 1909 году препарат впервые испробовали на человеке, страдающем сифилисом. Результат был отличным – лечение сальварсаном оказалось успешным.
Но ученый на этом не успокоился. Он напоминал поэта, наконец закончившего после долгих, мучительных поисков свое творение: произведение еще несовершенно, гладкость стиха в одной из строф не удовлетворяет, некоторые слова и выражения могли бы быть лучше – и он начинает снова ненова шлифовать и исправлять свою поэму. Эрлих еще три года работал не покладая рук и продолжал совершенствовать полученный препарат. Было испытано около трехсот новых соединений и наконец получено вещество под номером 914, названное неосальварсаном. От сальварсана оно отличалось несколькими новыми атомами, лучше растворялось в дистиллированной воде и было значительно менее токсично.
Но еще до создания неосальварсана, в 1908 году, за работы в области иммунологии Эрлиху была присуждена Нобелевская премия по медицине. Это было признанием и достойной оценкой необыкновенного упорства в поиске «волшебных пуль», которые получили благодаря Эрлиху научное название химиотера-певтических средств. Его лозунг «без спешки, без отдыха» оправдал себя. На Международном медицинском конгрессе, где происходило чествование Эрлиха, он высказал предположение, что ликвидация остальных болезней – вопрос каких-нибудь пяти лет. Умер он в 1915 году, вскоре после того, как истек установленный им срок.
Так медицина нашла в химии союзника в борьбе с болезнетворными микробами. С Эрлиха началась эра химиотерапии.
ИнтермеццоАтоксил, сальварсан и неосальварсан зарекомендовали себя как эффективные средства против многих болезнетворных простейших. Было установлено, что даже такой сильный яд, как мышьяк, может быть введен в соединения, безопасные для человека (за исключением атоксила), но убивающие микробы. Последовательные химические реакции, исходным продуктом которых был атоксил, позволили Джекобсу и Хейдельбергеру создать в 1919 году новый лекарственный препарат трипарсамид, успешно примененный ими в лечении сонной болезни.
Затем были получены и другие химиотерапевтические средства, содержащие сурьму или висмут и входящие в состав органических соединений. Однако все эти средства были эффективны лишь в борьбе с простейшими. Бактерии оставались вне сферы их влияния, и «волшебная пуля» против них не была найдена. Со времени предсказанного Эрлихом пятилетнего срока для победы над инфекционными заболеваниями прошло более двадцати лет, прежде чем появились новые химиотерапевтические средства, которые породили новые надежды.
В период этого «интермеццо» учеными были сформулированы «десять заповедей химиотерапии», в которых изложены требования, предъявляемые к синтетическим лекарственным препаратам. Суть этих требований сводится к следующему.
Химиотерапевтическое лечебное средство должно:
1. Убивать микробы или по меньшей мере прекращать их размножение.
2. Уничтожать токсины.
3. Обладать возможно более быстрым действием.
4. Не нарушать равновесия циркулирующих в организме жидкостей.
5. Проникать внутрь клеток пораженного организма и уничтожать в них микробы.
6. Не повреждать ткани и внутренние органы больного.
7. Даже в больших количествах не быть ядовитыми.
8. Стимулировать активность белых кровяных телец.
9. Не разрушать антитела.
10. Способствовать росту тканей.
Предписание было составлено, ждали лишь появления таких химиотерапевтических средств, которые, отвечали бы этим требованиям.
Сульфаниламиды спасают жизнь человекуЧеловеком, положившим начало эре сульфаниламидов, был Герхард Домагк, немецкий химик, доктор медицины, удостоенный этого звания в шести странах мира, лауреат Нобелевской премии. Родился он в семье учителя 30 октября 1895 года. Во время первой мировой войны работал в холерном отделении военного лазарета, а после войны закончил свое медицинское образование. Спустя три года стал доцентом, а через четыре года – профессором университета в городе Мюнстер.
Вдохновленный идеями «отца химиотерапии» Пауля Эрлиха, Домагк посвятил себя поискам, изготовлению и изучению синтетических веществ для борьбы с инфекционными болезнями, возбудителями которых являются патогенные микробы.
Под руководством Домагка два немецких химика, Мицш и Кларер, получили соединения, содержащие в своих молекулах группу из двух атомов азота (—N = N—), называемую диазогруппой.
Домагк испытывал действие этих соединений в лечении бактериальных инфекций на подопытных мышах. В 1932 году им было отмечено лечебное действие красного стрептоцида, известного в химии под названием пронтозила. Этот препарат вылечивал мышей, зараженных гемолитическим стрептококком, что явилось первым крупным успехом ученого. В 1932–1935 годах он испытал действие пронтозила во многих немецких клиниках и 15 февраля 1935 года опубликовал сообщение о его лечебных свойствах и результатах первых клинических испытаний. Сообщение было помещено в немецком медицинском еженедельнике (Deutsche Medizinische Wochenschrift) под заголовком «Материалы к химиотерапии бактериальных инфекций».
В то время, когда проверяли действие пронтозила еще только на подопытных животных, в семье Домагка произошел случай, ускоривший испытание нового препарата на людях. Ребенок Домагка уколол иглой руку и внес инфекцию стрептококка, вызвавшую интенсивное и болезненное подкожное воспаление, которое не удалось ликвидировать даже вскрытием нарыва. Состояние больного ухудшалось и вскоре стало совсем безнадежным. Тогда отец решил испытать пронтозил на собственном ребенке. Уже первые дозы введенного препарата дали положительные результаты. Ученый со скорбью вспомнил своего отца, умершего несколько лет назад от тяжелого заражения крови и которого он мог бы спасти, будь у него тогда пронтозил.
Выздоровление ребенка в семье Домагка и хорошие результаты клинических испытаний открыли пронтозилу двери целого ряда больниц, где его спасительного действия ожидали многие тяжелобольные.
В исследовании действия пронтозила ученые столкнулись с загадочным явлением. Препарат, убивая болезнетворные бактерии в организме человека или подопытных животных, в лабораторных условиях (в жидкой культуральной среде) не оказывал на них никакого действия. Эту загадку удалось разгадать супругам Трефуэль из Пастеровского института в Париже. Они показали, что в организме человека пронтозил расщепляется на два компонента, один из них – сульфаниламид – обладает бактерицидным действием как в живом организме (in vivo), так и в пробирке (in vitro). Химическая структура сульфаниламида довольно проста, и его синтез был хорошо известен. Вскоре фармацевтическая промышленность многих стран стала поставлять на рынок именно этот действенный препарат. Но химики на этом не остановились. Они пытались путем химического превращения молекулы сульфаниламида сделать препарат эффективным и против других бактерий.
Английские исследователи Эванс и Филлипс добились в этом направлении первого успеха. В сульфамидной группе (—S02NH2) молекулы сульфаниламида они заменили один атом водорода остатком молекулы пиридина, также лишенной одного атома водорода. Так был получен сульфапиридин. В отношении стрептококков он оказался эффективнее сульфаниламида и, кроме того, убивал пневмококки, вызывающие воспаление легких.
Замещением атома водорода в аминогруппе (—NH2) сульфаниламида тиазольным ядром был получен еще один препарат – сульфатиазол, известный как цибазол (по названию швейцарской фирмы ЦИБА). Сульфатиазол оказался препаратом с более широким спектром антибактериального действия, чем сульфапиридин, и был менее токсичным для человеческого организма. Присоединив к молекуле сульфатиазола еще одну группу атомов, химики получили сукцинил-сульфатиазол – соединение, эффективное в борьбе с возбудителем дизентерии Shigella dysenteriae.
Замещением обоих атомов водорода в аминогруппе другим радикалом было получено еще одно действенное средство против возбудителя дизентерии – сульфагуанидин.
Мы могли бы перечислить десятки сульфаниламидов (отличающихся друг от друга радикалами), которые определяют специфику действия препарата на разные виды бактерий и на человеческий организм. Сегодня химиками получено несколько тысяч различных сульфамидных препаратов. Многие из них сразу же нашли применение в медицине. Только в США в 1943 году фармацевтическая промышленность произвела 3000 т сульфаниламидов, и они были применены при лечении 129 миллионов человек.
Но ученых уже волновала новая проблема. Им хотелось знать, почему сульфаниламиды убивают одни микроорганизмы и оказываются бессильными против других. Ученые узнали о многих интересных фактах, а попутно открыли и новый витамин. Но это уже тема другого рассказа.
В послевоенные годы Домагк продолжал работать над противомикробными препаратами. Ему удалось создать два лекарственных средства против туберкулеза, известных под названием контебен и неоконтебен. Занимался он и проблемой лечения рака. Университеты и научные общества многих государств присвоили ему степень почетного доктора и почетного члена обществ. Этот выдающийся ученый скончался 24 апреля 1964 года. Но остались его работы, и они показывают, как много может сделать наука, поставленная на службу человечеству.