355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Бетина » Путешествие в страну микробов » Текст книги (страница 25)
Путешествие в страну микробов
  • Текст добавлен: 26 сентября 2016, 19:35

Текст книги "Путешествие в страну микробов"


Автор книги: Владимир Бетина


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 25 (всего у книги 31 страниц)

Дело продолжается в Оксфорде

Эстафету дальнейшего изучения пенициллина приняла в 1939 году группа исследователей с кафедры патологии Оксфордского университета: Г. У. Флори, Э. Б. Чейн и Н. Г. Хитли с несколькими сотрудниками.

Флори еще в 20-х годах в Кембридже, а затем и в Шеффилдском университете исследовал лизоцим. Попав в Оксфорд, он вместе с Чейном изучал его действие. А поскольку Чейн интересовался антибактериальными веществами, у них была собрана вся литература об известных в то время антибиотиках. Чейн предложил Флори заняться изучением их свойств. Для исследований были выбраны три вещества, одним их них был пенициллин. Хотя Райстрик и характеризовал его как вещество неустойчивое, Чейн нашел в статье того же автора указание о том, что раствор пенициллина сохраняет свою активность в течение нескольких месяцев. Поэтому Флори счел возможным попытаться получить его в чистом виде. Так была намечена ближайшая задача.

Скоро к Флори и Чейну присоединился Хитли, исследовавший условия выращивания Penicillium notatum в жидкой среде, в которую гриб выделял пенициллин. Исходя из опытов Райстрика, Хитли предложил основные методы выделения, которые с применением более совершенной техники используются и в наше время. Он разработал широко известный ныне метод определения содержания пенициллина, количество которого измеряется точно установленными «оксфордскими единицами».

В самые тяжелые военные годы эти ученые получили первые сотни миллиграммов «сырого» пенициллина, использованные ими для изучения его химических и бактерицидных свойств, а также для первых опытов на животных. Этот сырой препарат, содержавший, как было позднее установлено, не более 1 % (!) пенициллина, оказался лишь в ничтожной степени токсичным для животных, но при этом отличался сильным бактерицидным действием. Было показано, что при введении под кожу он затем выделяется с мочой, а это означало, что он попадал в цикл кровообращения и в почки. Этот факт, взволновавший ученых, открывал новые перспективы его применения.

Продолжались и его химические исследования. Успешные результаты были получены Д. Ходжкин, установившей при помощи рентгенографии структуру пенициллина.

Почему так важно было выяснить прежде всего его структуру? Исследования открывали путь к более дешевому синтетическому способу получения пенициллина. Но хотя через несколько лет этот синтез был осуществлен, он оказался дорогостоящим. Поэтому даже сегодня пенициллин получают с помощью микроскопического гриба Penicillium.

12 февраля 1941 года пенициллин был испытан на первом пациенте с тяжелым стафилококковым заражением. Потом последовали другие – и вот пенициллина уже не хватает. Однако ученым повезло. Оказалось, что его можно вторично получать из мочи пациентов, причем в более чистом виде, чем тот, который вводят.

Впервые это было показано на примере больного полицейского из Оксфорда. Со свойственным англичанам чувством юмора студенты-медики Оксфордского университета заметили: «Коллеги! Стоит заинтересоваться пенициллином. Это же замечательное вещество! Оно порождается плесенью, а очищается пропусканием через кишки оксфордских полицейских!»

Между тем в Оксфорде стали ощущаться определенные трудности при продолжении исследований. И тогда Флори и Хитли отправились в Соединенные Штаты Америки, где вскоре наладили промышленное производство этого препарата.

Рождение новой промышленности

Флемминг и оксфордская группа ученых выделяли пенициллин весьма несовершенным способом. Жидкую питательную среду стерилизовали в колбах и засевали спорами гриба Peniclllium notatum. Споры прорастали, через неделю на поверхности жидкой среды разрастался мощный слой мицелия гриба, после чего жидкость фильтровали. Содержание пенициллина в фильтрате было чрезвычайно низким – на миллион частей жидкости приходилась одна часть антибиотика. Из 1 л культуральной жидкости можно было получать лишь 1 мг, а из 10 гл – 1 г пенициллина. Такие ничтожные количества вещества ограничивали перспективы использования антибиотика.

Позднее, уже в США, для культивирования гриба стали применять бутылки из-под молока. При этом появилась возможность использовать аппаратуру молочного производства для дозирования питательной среды, мытья и стерилизации посуды. На самом крупном предприятии использовали до 750 000 бутылок. Если считать, что каждая бутылка содержала пол-литра питательной среды, то после одного производственного цикла (375 000 л) можно было получить 375 г пенициллина. Но этого было недостаточно. Находясь в Соединенных Штатах Америки, Флори и Хитли предложили метод так называемого глубинного культивирования. По существу это был тот же самый метод, который использовался при производстве дрожжей. Большие сосуды наполняются стерилизованной жидкой средой, в которую засевают определенное количество культуры дрожжей. При постоянном перемешивании и в притоке стерильного воздуха происходит размножение дрожжей во всем объеме сосуда.

При аналогичном выращивании продуцента пенициллина необходимо было, однако, решить ряд технических вопросов. Пожалуй, самым важным из них был вопрос о том, как предотвратить проникновение в большие емкости, предназначенные для роста и размножения Peniclllium notatum, других, нежелательных микроорганизмов.

Эта проблема была решена в 1943 году. Главными поборниками внедрения новых методов в производстве пенициллина были Когхилл и его сотрудники; они нашли способ многократного увеличения продукции пенициллина. Для этого в питательную среду добавляли кукурузный экстракт, который являлся отходом при получении кукурузного крахмала и содержал вещества, не только ускорявшие рост гриба, но и стимулировавшие синтез пенициллина.

В марте 1942 года ученые располагали таким количеством пенициллина, которого было достаточно для лечения лишь одного человека. Им оказалась жена одного из профессоров университета. Пенициллин спас ей жизнь. До августа 1943 года в США уже могли лечить одновременно 500 больных. В марте того же года в Великобритании лечили 187 человек. Среди них был и пациент с тяжелым стафилококковым воспалением мозговых оболочек (менингитом), находившийся в 1942 году в больнице Св. Марии. Пенициллин был получен от Флори по просьбе Флемминга. Драматические обстоятельства, связанные с отсутствием этого препарата, и успешное излечение больного дали повод Флеммингу и Райстрику обратиться к правительству с просьбой о финансировании исследований, связанных с применением пенициллина.

Между тем производство первого антибиотика все более совершенствовалось. Микробиологи продолжали поиски наиболее продуктивных штаммов, которые выделяли бы большие количества пенициллина, чем штамм, полученный Флеммингом. Один из таких штаммов был выделен из заплесневевшей дыни, приобретенной на рынке в Пеории (штат Иллинойс) 6 июня 1944 года – в день высадки союзников в Нормандии. Из этой плесени был получен штамм гриба Penicillium chrysogenum, который стал «отцом» и «праотцем» штаммов, используемых ныне на заводах по производству пенициллина. Действием мутагенных факторов из этого штамма впоследствии получили мутанты, дававшие еще большие количества пенициллина. Это классический пример того, как теоретическое изучение мутаций микробов принесло практическую пользу в производстве пенициллина. Если первый штамм, выделенный Флеммингом и примененный затем в Оксфорде, давал 2 единицы пенициллина (приблизительно 0,001 мг) на 1 мл жидкой среды, то современные штаммы при усовершенствованных технических условиях глубинного выращивания дают не менее 10 000 единиц!

Несмотря на войну, сообщения о применении пенициллина дошли до ученых многих стран. В суровых условиях оккупации страны фашистскими захватчиками группа чешских ученых тайно вела работы по производству пенициллина. Они приготовили сырой концентрат, который под шифром Микоин-510 врачи испытывали на больных «под носом» у оккупантов. В Словакии производство пенициллина и других антибиотиков сосредоточено на оснащенной самым современным оборудованием фабрике (Biotia) в городе Словенска-Люпча (фото 60).

На этом, казалось бы, можно и закончить описание событий, связанных с получением пенициллина. Однако читателю будет интересно узнать, что трое ученых – Флемминг, Флори и Чейн – были удостоены высшей международной награды – Нобелевской премии за открытие, выделение и успешное лечебное применение пенициллина.

Ваксман идет иным путем

Эмигрант из Европы с аттестатом зрелости в кармане, направляющийся в Америку, – таким был в 1910 году, в начале своего жизненного пути, Селман Я. Ваксман. Профессор университета, открывший стрептомицин, лауреат Нобелевской премии по физиологии и медицине – таким он стал к концу 1951 года. Между этими датами пролегли 40 лет. Годы учения и странствий по различным городам Соединенных Штатов Америки, и наконец – постоянное место в Государственном университете Ратджерс в городе Нью-Брансуике (штат Нью-Джерси).

Все это время почти без перерыва Ваксман изучает мало известные почвенные микроорганизмы – актиномицеты, доказывает их участие в создании плодородия почвы и важное место, которое они занимают в почвенной микрофлоре.

В конце 30-х годов он начинает исследовать новое интересное свойство ак-тиномицетов – их способность синтезировать антибиотики. В решении этой проблемы Ваксман шел иным путем, чем Флемминг. Человек чрезвычайно целеустремленный, он хочет узнать, не производят ли актиномицеты антибиотики, которые можно было бы использовать в борьбе с «белой чумой», упорно сопротивлявшейся Эрлиху и Домагку, Он ищет антибиотик против туберкулеза.

В том же году, когда Флори прибыл в США и начал исследования по получению пенициллина, Ваксман публикует сообщение о своем первом антибиотике. Он назвал его актиномицином. Однако этот препарат – красное вещество, сильно токсичное и для микроорганизмов и для животных, – не стал лекарством от туберкулеза.

График открытий антибиотиков до 1960 года с названиями наиболее известных из них. В настоящее время число антибиотиков давно перевалило за тысячу.

Годом позднее Ваксман получает стрептомицин, уже значительно менее токсичный, но еще не обладающий всеми необходимыми свойствами. Только в сентябре 1943 года, когда Когхилл стал получать пенициллин методом глубинной ферментации, Ваксман добился долгожданного успеха – создал стрептомицин, отвечающий всем требованиям. Однако ученому миру об этом стало известно лишь в следующем году. Между тем Ваксман предлагает свое сотрудничество фирме «Мерк», которая охотно соглашается финансировать дальнейшие исследования, связанные со стрептомицином. Любопытно, что продуцентом стрептомицина был актиномицет Actinomyces griseus, известный Ваксману еще с 1915 года.

В 1943 году один из его учеников вновь выделил этот микроорганизм и вместе с Ваксманом установил, что именно он продуцирует антибиотик, подавляющий возбудителя туберкулеза. Ваксман переименовал открытый им микроб в Streptomyces griseus. Сразу же после окончания войны стрептомицин становится признанным и широко распространенным средством против туберкулеза. Через пять лет Ваксман удостаивается Нобелевской премии. При торжественном вручении награды в Стокгольме в его адрес прозвучали и такие слова признания:

«Профессор Ваксман, Нобелевская премия вам присуждается за ваше талантливое, систематическое и успешное изучение почвенных микроорганизмов, которое привело вас к открытию стрептомицина, первого антибиотического средства в борьбе против туберкулеза. Вы не физиолог, не врач, тем не менее ваше открытие исключительно важно для прогресса медицины. Стрептомицин уже спас тысячи человеческих жизней. Мы, врачи, высоко ценим вашу заслугу перед человечеством».

Ваксман открыл новый путь в исследованиях антибиотических средств. Начались интенсивные поиски новых антибиотиков. Их количество резко увеличилось. В этом смысле 30-е годы можно назвать переходными. Во второй половине 40-х годов началась новая фаза в исследовании антибиотиков, продолжавшаяся все 50-е и несколько замедлившаяся в 60-е годы. Но как раз в это время наступил «расцвет» производства полусинтетических пенициллинов.

После стрептомицина стали появляться так называемые «антибиотики широкого спектра действия». Пенициллин действовал преимущественно на грамположительные бактерии. Стрептомицин с большим успехом применялся в борьбе с грамотрицательными бактериями и возбудителем туберкулеза. 1945 год был ознаменован открытием хлорамфеникол а и хлортетрациклина. Оба антибиотика оказались эффективными в отношении как грамположительных, так и грамотрицательных бактерий, а первый, кроме того, еще и убивал два вида риккетсий – возбудителей сыпного тифа и лихорадки Скалистых гор. В декабре 1948 года в продажу поступил хлортетрациклин, а в январе 1949 года – хлорамфеникол. В марте 1950 года синтезировано производное хлортетрациклина – окситетрациклин, а через три года была установлена структура третьего члена «семьи» – тетрациклина. Хлорамфеникол по своему химическому строению не относится к группе тетрациклинов.

Поиски новых антибиотиков продолжаются. Стали широко известны эритромицин, затем новобиоцин, олеандомицин… Их число превысило уже несколько сотен. Открытие новых антибиотиков стало самостоятельной отраслью биохимии и микробиологии. Ученые ищут антибиотики для борьбы с бактериями, грибами, простейшими, вирусами, наконец, для борьбы с раковыми заболеваниями. Вак-сман как бы столкнул с горы снежный ком, который, катясь по склону, становится все больше и больше. Наше время не случайно называют веком антибиотиков.

Экспедиция за новыми антибиотиками

Такая экспедиция, безусловно, отличается от тех, что снаряжаются к вершинам Гималаев, переплывают океаны на плоту Кон-Тики или в лодке из папируса. Но и на ее пути встречаются опасности, сложности и всевозможные приключения. Кроме того, в такой экспедиции принимают участие сотни ученых из всех стран мира.

Первый этап поисков новых антибиотиков – это настоящая экспедиция, проходящая в поисках нужных нам микроорганизмов. Еще со времен Пастера известно, что в природе нет таких мест, где бы не было микробов и, применив тот или иной микробиологический метод, мы можем их найти, выделить и вырастить в чистых культурах уже в условиях лаборатории. На кафедре микробиологии и биохимии химического факультета Словацкой высшей технической школы в Братиславе собрана коллекция сотен культур различных микроорганизмов. Кроме местных микробов, здесь можно найти «уроженцев» Болгарии, Китая, Индонезии.

Следующие этапы нашей экспедиции за антибиотиками проходят в тени лабораторий. Здесь упорным и настойчивым трудом ученые стремятся проникнуть в тайны жизни собранных ими микробов. В небольших пробирках содержатся чистые культуры микроорганизмов, выделенных из природной среды. Из пробирок они пересеваются в чашки Петри с полусантиметровым слоем агаризованной питательной среды, приготовленной в соответствии с потребностями данного микроба. После посева микробов чашки Петри помещают в термостат, где в течение десяти дней выдерживают при температуре 25 °C. Там клетки микробов, потребляя питательные вещества, размножаются и разрастаются по поверхности агара. Через десять дней поверхность среды в чашках Петри представляет необыкновенно интересную картину.

Если среди выращиваемых микробов находятся продуценты антибиотиков, их легко узнать. Мы уже говорили, что антибиотики, выделяемые одними микроорганизмами, препятствуют развитию других. Как раз то, что они делают невозможным существование иных организмов, и помогает нам в поисках продуцентов антибиотиков.

Для этой цели берут несколько плоских стеклянных сосудов прямоугольной формы, в которые наливают тонкий слой агара, и, после того как он застынет, засевают его теми микробами, против которых требуется найти антибиотик. Из чашек Петри с уже выращенными колониями плесневых грибов вырезают маленькие цилиндры, диаметром около 1 см, и помещают их на поверхность агара, зараженного болезнетворными бактериями. Это сооружение с несколькими десятками разноцветных «грибных» цилиндров наверху напоминает вишневый пирог. «Пирог» помещают в термостат, в котором строго поддерживаются определенные температура и влажность. В этих условиях поверхность агара покрывается сплошным ковром разросшихся микробов, доходящих до самых краев «грибных» цилиндров.

Вокруг некоторых цилиндров можно наблюдать интересное явление (фото 61): они окружены пространством, свободным от развивающихся микробов. Что препятствовало росту микробов внутри этих мест? Антибиотики! Прозрачные пространства, так называемые зоны подавления роста, – это сферы действия антибиотиков. Каково же происхождение этих веществ? Они находились в агаровом цилиндре, на котором росли грибы, проникли в засеянный микробами слой агара и уничтожили микробы в радиусе своего распространения.

Итак, зоны подавления роста вокруг некоторых цилиндров служат доказательством того, что создающие их грибы являются продуцентами антибиотиков. Цилиндры, вокруг которых такие зоны не образуются, вырезаны из культур грибов, не обладающих антибиотическими свойствами.

Культуры микроскопических грибов, изображенные на фиг. IV (вверху справа), выделены в Индонезии. Профессор Н. Немец собрал в этой стране десятки образцов природного материала, из которого затем выделил культуры микроскопических грибов, обладающих антибиотическими свойствами.

Итак, мы уже продвинулись вперед, отделив микроскопические грибы с антибиотическим действием от прочих, не обладающих этим свойством. На следующем этапе нашей экспедиционной работы мы должны ближе познакомиться с выделенными антибиотиками. Среди изучавшихся ранее микроскопических грибов, собранных в окрестностях Братиславы, встречались и продуценты пенициллина. Но мы искали новые антибиотики. От выявления антибиотического действия грибов до получения чудодейственных кристаллов антибиотика проходит часто очень много времени. В арсенале наших методов немало различных химических процедур, помогающих прийти к радостному моменту открытия нового антибиотика.

В экспедициях за этими веществами приходится переживать минуты напряжений, разочарований и радостей, вызванных новыми открытиями. Но не всякий антибиотик можно использовать в лечебных целях. Из сотен открытых до сих пор антибиотиков лишь около тридцати нашли применение в медицине.

Каким образом антибиотики уничтожают микробы

Век антибиотиков поставил перед микробиологами целый ряд вопросов. Рассмотрим один из них. Каким образом антибиотик убивает чувствительные к нему микробы? Уже Эрлих показал, что существует тесная связь между химической структурой «волшебной пули» и ее действием. В химическом отношении антибиотики – вещества очень разнообразные, хотя некоторые из них и являются производными какого-нибудь одного химического соединения, например тетрациклина. Можно ли утверждать, что вещества, сходные по своей химической структуре, сходны и по характеру своего действия на клетки и, напротив, различиям в строении сопутствуют и различия в антибиотических свойствах? Данные, полученные к настоящему времени, позволяют нам дать ответ на этот вопрос.

Теперь уже доподлинно известно, что пенициллин действует на клеточную стенку бактерий и препятствует ее синтезу. Некоторое время бактерии еще размножаются, но, лишенные клеточной стенки, очень скоро погибают.

Стрептомицин, проникнув в клетку, достигает рибосом – места синтеза белков – и блокирует их деятельность. Несколько по-иному действуют на синтез белков тетрациклины, эритромицин, хлорамфеникол и многие другие антибиотики, но каждый своим, только ему свойственным способом, который определяется особенностями строения его молекул.

Актиномицин, первый антибиотик Ваксмана, действует на молекулу ДНК. В результате становится невозможным синтез информационной РНК, переносящей к рибосомам «приказы» ДНК о синтезе белков. Сходное действие проявляет и рифампицин, хотя и несколько иным способом – снижает активность ферментов полимеразы РНК, и РНК не может образоваться.

На ДНК действуют и молекулы противоопухолевого антибиотика митомицина С: прочно связываясь с ней, они препятствуют дальнейшему синтезу ДНК. Но все это лишь некоторые из наиболее известных и типичных механизмов действия антибиотиков на клетки микробов.

При повторных воздействиях молекул антибиотика клетка микроба погибает. Если же антибиотик вводится в малых количествах или поражает такую часть клетки, которая может быть легко восстановлена, микробы выживают.

Пенициллин и ряд других антибиотиков препятствуют образованию клеточных стенок у растущих бактерий (А). Лишенные стенок бактерии постепенно превращаются в протопласты. Другие антибиотики нарушают функции цитоплазматической мембраны бактерии (Б).

Исследователь Л. Эбрингер (естественный факультет в Братиславе) наблюдал интересные явления, изучая действие стрептомицина, эритромицина и многих других антибиотиков на клетки Euglena gracilis. Этот организм способен к фотосинтезу и поэтому на свету не нуждается в органическом питании. Если же на Е. gracilis подействовать упомянутыми антибиотиками, то фотосинтез прекращается. Процесс фотосинтеза происходит, как известно, в хлоропластах. Антибиотики полностью уничтожают хлоропласты эвглены, и дальнейшие ее генерации существуют уже без хлоропластов. Не будучи в состоянии осуществлять фотосинтез, они потребляют, естественно, лишь готовые органические соединения.

Действие антибиотиков на синтез нуклеиновых кислот и белков. Митомицин С (1), связываясь с молекулой ДНК, делает невозможным процесс ее редупликации под действием полимеразы ДНК и других ферментов. Актиномицин D (2), связываясь с молекулой ДНК, препятствует синтезу иРНК с помощью полимеразы РНК. Рифампицин (3) соединяется с полимеразой РНК и тоже предотвращает синтез иРНК– Вдоль молекулы иРНК группируются рибосомы, образуя полисомы, на которых возникают пептиды. Тетрациклин (4), связываясь с 30 S-субъединицами рибосом, лишает их возможности синтеза пептидов. Таким же образом связывается с ними и стрептомицин, вызывая «неправильное прочтение» генетических записей на иРНК, в результате чего возникают пептиды с аномальным распределением аминокислот. Фузидиновая кислота (5) препятствует перемещению рибосом по молекуле иРНК, делая невозможным добавление дальнейших аминокислот к «растущему» пептиду. Эритромицин и хлорамфеникол (6) связываются с 50 S-субъединицами рибосом и препятствуют деятельности тРНК, несущих с собой аминокислоты, которые необходимы для пополнения пептидов. Пуромицин (7) слишком рано отделяет пептиды от полисом, затрудняя тем самым синтез белков. Борелидин (8) препятствует присоединению «активированных» аминокислот к тРНК, что делает невозможным их перемещение к полисомам.

Мы наблюдали интересное действие антибиотиков на грибы. Оказывается, цианеин, первый из полученных нами антибиотиков (фиг. VIII), влияет нарост гриба Paecilomyces viridis. Как мы уже рассказывали, Ж. Сегретен из Пастеровского института выделил этот гриб из организма больных хамелеонов и доказал, что именно он был причиной их болезни и гибели. В пробирке гриб образует волокнистый мицелий, а в теле хамелеона – дрожжеподобные комочки. При помощи цианеина нам удалось «принудить» гриб образовывать дрожжеподобные формы и в пробирке.

Мы испытывали также действие цианеина на гриб Botrytis cinerea, паразитирующий на виноградной лозе. Гифы этого гриба на агаровых пластинках растут довольно хорошо, а разветвляются очень редко. В присутствии цианеина их рост замедляется, но зато они начинают сильно ветвиться. На рост гиф этого гриба влияют также и некоторые другие антибиотики (фото 63).

Эти морфологические изменения имеют довольно глубокие причины. Антибиотики влияют на ход биохимических процессов в клетках грибов, что проявляется в изменении характера роста.


    Ваша оценка произведения:

Популярные книги за неделю