Текст книги "Эволюция и прогресс"
Автор книги: Владимир Бердников
сообщить о нарушении
Текущая страница: 10 (всего у книги 14 страниц)
Естественно, модель, которую мы здесь исследовали, весьма примитивна. Видовая дифференциация совсем не обязана всякий раз сочетаться с изменением размеров тела на какой-то фиксированный процент. Не вызывает сомнений, что часть видообразований происходит при изменении других признаков особей, и в этом случае виды-потомки остаются в классовых интервалах своих предков. Однако для правомочности рассмотренной модели достаточно, чтобы лишь некоторая доля всех актов видообразования сопровождалась изменением размеров тела.
Конечно, еще легче сдвиг видовых распределений вправо объяснить с позиций ортогенеза (точнее, автогенеза), т. е. действием особых сил, детерминистических законов и стремлений, заложенных в самой природе организмов. В гл. 1 мы пытались вскрыть философско-психологические корни ортогенетических теорий. Приверженцы этих подкупающе простых идей даже вызывают симпатию своей верой в чудесные и таинственные силы природы. Однако ортогенез начисто лишен конструктивности и, по существу, несмотря на свою наукообразную форму, так же далек от объяснения эволюции, как астрология – от предсказания политических перемен.
Итак, можно сформулировать главный вопрос нашего повествования: что же лежит в основе долговременных макроэволюционных тенденций – ортоселекция или рост адаптируемости? Для ответа попробуем перейти к генетической подоплеке этих явлений.
Гены и мощность
Попробуем ответить на вопрос, как изменится величина количественного признака при увеличении числа генов, управляющих его развитием. Всякая морфологическая структура состоит из клеток и внеклеточного вещества – продукта жизнедеятельности тех же клеток. Поэтому размеры структур, органов, да и всего организма определяются числом, объемом и экспортной активностью их клеток.
Наличие гена мы определяем по его экспрессии. Если ген не активен ни в одной клетке организма, ни на одной стадии его развития, то мы можем считать, что его просто нет. Идеи о латентном (скрытом) существовании на протяжении миллионов лет вполне исправных генов ни на чем не основаны. Как селективно-нейтральные, латентные гены должны довольно быстро терять свое информационное содержание, поскольку не проверяются отбором. В чем же выражается генная активность? Прежде всего в транскрипции РНК, хотя это лишь необходимое, но далеко не достаточное условие для генной экспрессии. Обычно РНК должна «созреть» и транслироваться в полипептид, способный узнавать другие молекулы и, исполняя свою специфичную функцию, содействовать успеху организма в его борьбе за жизнь.
Мы уже отмечали, что живое вещество можно рассматривать как катализатор, «пытающийся» ускорить собственное воспроизведение. При этом совокупное действие всех генов генома направлено на увеличение биомассы вида. Однако как быть с отдельными индивидами? Не станем же мы утверждать, что активность всех генов направлена на увеличение массы особи? Ответ здесь, казалось бы, должен быть отрицательным, но не станем спешить.
Обычно особи многоклеточных организмов диплоидны, т. е. каждая хромосома их соматических клеток представлена двумя вариантами (гомологами), хотя для многих видов растений (да и некоторых животных) можно искусственным путем получить ряды форм с измененным числом гомологов. У гаплоидов это число равно одному, у триплоидов – трем, тетраплоидов – четырем и т. д. Оказалось, что триплоиды и тетраплоиды, как правило, крупнее (мощнее) диплоидов, а последние мощнее гаплоидов. Этот эффект обусловлен прежде всего соответствующим увеличением объема клеток всех типов. Таким образом, суммарный эффект генов направлен на прирост вещества цитоплазмы клеток.
Еще в 1908 г. Р. Гертвиг установил «закон» ядерно-плазменного отношения, гласящий, что чем больше объем ядра, тем больше объем цитоплазмы. Но объем клеточного ядра в разных тканях одного организма определяется степенью деконденсации хроматина, которая прямо связана с активностью генов. Таким образом, этот «закон» также указывает на то, что суммарный эффект работы всех генов направлен на увеличение клеточной массы.
Большинство мутаций с качественным эффектом на фенотип ведет к уменьшению размеров какой-либо морфологической структуры или всей массы тела особи. Примерно так же влияют и микроделеции, связанные с утратой гена. Увеличение размеров структур в результате серьезного повреждения гена наблюдается гораздо реже. У многих генетически изученных объектов известен ряд локусов, потеря или серьезное повреждение которых ведет к ступенчатой редукции одной и той же структуры. Например, у гороха известна большая серия подобных генов, определяющих массу семян.
В качестве меры развития структуры следовало бы выбрать ее вклад в реализацию основных функций организма. Однако непонятно, как этот вклад измерить; гораздо проще в качестве искомой меры взять относительнуювеличину структуры, т. е. отношение ее размера к размеру всего тела, олицетворяющего собой мощность всех функций организма.
Как мы убедились выше (см. гл.2), сложность структуры коррелирует с ее мощностью. Многочисленные складки, карманы, выпячивания обеспечивают увеличение площади функционально активных поверхностей. Естественно, каждая складка появляется в определенном месте и в определенное время и является следствием «срабатывания» конкретного гена (или группы генов). Разнообразие клеточных элементов тоже коррелирует с генетической сложностью программы развития структуры. В итоге, возникает простая логическая цепь: чем больше генов контролирует развитие структуры, тем выше ее морфологическая сложность, чем выше эта сложность, тем больше ее относительные размеры и мощность.
Все органы обладают рациональным строением, т. е. развивают максимальную мощность при минимальных энергетических затратах. Этот принцип симморфоза объясняет многократное возникновение в разных эволюционных стволах практически идентичных (в морфологическом отношении) структур, построенных как бы по одному плану. Поразительно, что тот же «план» довольно часто можно обнаружить и в конструкциях машин, созданных инженерной мыслью людей. Единственное разумное объяснение такой двойной конвергенции заключается в ограниченности спектра решений, обеспечивающих рабочую структуру максимальной мощностью при минимуме энергетических затрат.
Рассмотрим такую техническую задачу, как идентификация объекта на расстоянии. Важность ее для организмов очевидна. Внешний предмет может быть и хищником, и жертвой, и особью противоположного пола, и совершенно нейтральным объектом. Если на него падает свет, то есть одно универсальное решение – зарегистрировать особенности отражения лучей от отдельных частей объекта. Очевидно, что для этого необходимо иметь светочувствительную структуру и устройство, направляющее на него отраженный свет. Всем этим снабжены многие оптические приборы, например фотокамера.
Создавая такие приборы, человек руководствуется законами геометрической оптики и свойствами доступных ему материалов. В качестве светочувствительной структуры он использует фотоэмульсию, и фокусирует на нее лучи с помощью преломляющих свет прозрачных тел – прежде всего линз. Для получения четкого изображения объекта на фотоэмульсии мы должны уметь изменять или величину зазора между нею и линзой, или фокусное расстояние последней. Кроме того, мощность светового потока также нужно плавно регулировать, для чего оптические приборы снабжаются диафрагмой.
Животные решают задачу идентификации удаленного предмета точно так же. Глаз с высокой разрешающей способностью обладает слоем светочувствительных клеток – сетчаткой – и всеми устройствами, которыми снабжен хороший оптический прибор: диафрагмой в виде радужины, системой линз (роговица, хрусталик, стекловидное тело), мышцами, способными изменять или фокусное расстояние линз, или их отстояние от сетчатки. Мощность органа зрения, таким образом, прямо зависит от светосилы системы его «линз», количества светочувствительных клеток сетчатки, эффективности устройств фокусирования лучей и регуляции интенсивности светового потока, а также от ряда других технических моментов.
«Мощные», т. е. зоркие глаза устроены удивительно сходно у таких разных групп животных, как головоногие моллюски и высшие позвоночные. Орган зрения эти группы приобрели совершенно независимо, поскольку их эволюционные пути разошлись не позднее раннего кембрия от общего предка, который вместо глаз имел в лучшем случае лишь рассеянные по телу светочувствительные клетки. Соображения некоторых эволюционистов о возникновении глаз под действием неких внутренних факторов, толкающих орган зрения по пути прогресса, в настоящее время выглядят по меньшей мере анахронизмом.
Специальные гены в эволюции
Адаптируемость – это способность вида поднять уровень своей абсолютной приспособленности в неоптимальных условиях среды. Что же такое абсолютная приспособленность вида и как определить ее уровень? Пока не существует строгого определения этих понятий. По-видимому, лучше всего представление об абсолютной приспособленности передает величина биомассы (или количество особей), производимой видом за единицу времени. Очевидно, что эта характеристика прямо связана с биомассой вида (или с численностью его особей).
Для того чтобы проследить за динамикой уровня абсолютной приспособленности вида, мы должны иметь возможность наблюдать за ним в течение многих десятков (и даже сотен) поколений. Фактически нам следовало бы наблюдать всего за двумя характеристиками вида – географическим ареалом и числом особей в его популяциях. Обычно плотность популяций максимальна в центре ареала, откуда некоторый «избыток» особей перебрасывается миграционным потоком на периферию, где гибнет под влиянием неблагоприятных факторов. Если мощность производства биомассы в центре ареала ослабевает, то падает средняя плотность популяций и сокращается площадь видового ареала. Конечно, при ежегодных наблюдениях мы бы заметили довольно резкие колебания обеих характеристик, но если бы их средние многолетние значения достоверно не снижались, то можно было бы сказать, что данный вид неплохо приспособлен к среде своего обитания.
Теперь проведем один мысленный эксперимент: истребим всех особей вида, кроме одной оплодотворенной самки. Поместим ее в искусственно созданные идеальные условия, многократно размножим потомков и выпустим их обратно в места обитания предков. Едва ли кто усомнится в исходе этого предприятия: вероятнее всего, вид вскоре восстановит свой прежний ареал и численность. В успехе подобного эксперимента нас убеждают многочисленные случаи восстановления совсем было истребленных видов (выхухоль, бобр, зубр, бизон и т. д.). Кроме того, о силе жизни, заключенной в считанных штуках особей, свидетельствуют примеры успешной интродукции вида (иногда совсем нежелательной) в новые места обитания. Кролики в Австралии, лошади в Америке, колорадский жук в Европе, рапана в Черном море и масса других подобных случаев. Везде мы видим, что основные характеристики, определяющие абсолютную приспособленность вида, заключены в геноме типичной, т. е. фактически любой особи.
Пожалуй, наиболее ярко об этом свидетельствует «успех» канадской элодеи, впервые обнаруженной в Ирландии в 1836 г. У себя на родине эта элодея представлена мужскими и женскими растениями, т. е. ей вполне свойственно половое размножение, кроме того, каждое растение (точнее, любой фрагмент его стебля с несколькими мутовками) способно к неограниченному росту и ветвлению. Завезенный в Европу женский экземпляр, размножаясь только вегетативно, породил столько потомков, что их биомасса вскоре стала мешать судоходству в каналах Англии. В настоящее время канадская элодея уже достигла рек и озер Восточной Сибири. Сила этого единственного генотипа отражена в названии, данному растению в Европе, – «водяная чума». Правда, сейчас его мощь явно ослабела, вероятно, стал сказываться мутационный груз, для сброса которого нужен половой процесс.
По-видимому, главное, что несет в себе типичная особь вида, заключается в скорости, с которой организм в конкретных условиях среды воспринимает извне вещество и энергию, преобразуя их в биомассу потомков. Что же определяет эту скорость? Очевидно, только мощность рабочих структур типичной особи. Напомним, что в гл. 2 мы определили такую мощность, как объем работы, выполняемой структурой за единицу времени в режиме максимальной нагрузки. При ухудшении среды мощность какой-то рабочей структуры может оказаться недостаточной, поэтому численность вида и его ареал сократятся, и восстановить их будет возможно, лишь усилив мощность лимитирующей структуры, ставшей фактически одной из главных компонент приспособленности. Выходит, абсолютную приспособленность вида можно было бы выразить в единицах мощности.
В данной ситуации мутации, повышающие мощность лимитирующей структуры, очевидно становятся благоприятными, так как они повышают уровень относительной приспособленности их носителей. Поэтому коэффициент отбора ( s) в пользу этих мутаций должен быть близок к относительному приросту мощности лимитирующей структуры, во всяком случае, он должен быть ему пропорционален, т. е.
(5.3)
где Р' – мощность структуры у особей – носителей благоприятной мутации; Р– мощность той же структуры у средней особи популяции. Фактически это означает, что фиксация каждой благоприятной мутации увеличивает мощность лимитирующей структуры в некоторое число раз (на какой-то процент). При продолжающемся ухудшении среды продолжается и процесс накопления благоприятных мутаций. В итоге мощность лимитирующей структуры нарастает вдоль филетического маршрута как ряд:
(5.4)
где Р 0– мощность структуры до начала действия движущего отбора; x i– число раз, в которое увеличивается мощность структуры в ходе фиксации i-й мутации. Это как раз те «незначительные изменения», аккумуляция которых, по выражению Дарвина, ведет к созданию органа «любой мыслимой степени совершенства».
Заметим, что логарифм мощности структуры (ln P) после фиксации и благоприятных мутаций определяется равенством
(5.5)
где стоящий под знаком суммы ln x iпредставляет собой вклад i-й благоприятной мутации в логарифм мощности рабочей структуры; для удобства дальнейшего изложения этот вклад будем обозначать а i'.Если единицей измерения мощности рабочей структуры выбрать ее исходную величину Р 0, то (учитывая, что lnl = 0) уравнение (5.5) можно представить в более простой форме:
(5.6)
Напомним, что а i' – вклад i-й мутации, зафиксированной отбором, направленным на усилениелимитирующей структуры.
Теперь введем одно определение: локусы, по которым шло замещение новых аллелей, повышающих мощность структуры в ее историческом развитии, назовем специальнымигенами структуры. Вполне очевидно, что некоторые из этих генов могут повторно мутировать, порождая новые аллели, усиливающие лимитирующую функцию. Таким образом, среди nблагоприятных мутаций, зафиксированных движущим отбором, далеко не все связаны с увеличением числа специальных генов N.
Представим себе, что изменение среды приняло противоположное направление. В новых условиях мощность структуры, развитой за предыдущий период, может стать избыточной, поэтому ничто не будет препятствовать накоплению мутаций, ослабляющих экспрессию ее специальных генов. Более того, энергия и вещество, которые ранее расходовались на поддержание высокой мощности этой структуры, теперь могут быть направлены на создание дополнительной биомассы, т. е. на повышение абсолютной приспособленности вида. Таким образом, ослабление рабочей структуры в данном случае представляет собой адаптивный ответ вида на «требование» изменившейся среды. Через некоторое время новая среда может снова потребовать усиления функции той же структуры, и снова благоприятными станут мутации, усиливающие экспрессию ее специальных генов.
Таким образом, для вида, предки которого прошли через многократные изменения требований среды к интенсивности функции определенной рабочей структуры, логарифм ее мощности можно представить в виде суммы вкладов Nспециальных генов, где вклад каждого такого гена (его экспрессия) ( а) может изменяться от нуля до какого-то максимального значения, т. е.
(5.7)
Это выражение удобнее представить в несколько иной форме:
ln P = Na,(5.8)
где а– уровень средней экспрессии специального гена, т. е. его средний вклад в логарифм мощности рабочей структуры. У разных видов аможет варьировать в очень широком диапазоне: от нуля, когда все специальные гены «выключены», до величины, соответствующей уровню их максимальной активности. Ясно, что уровень средней экспрессии специального гена рабочей структуры зависит от предыстории вида, от того, как долго среда «требовала» от предков усиления мощности структуры и как долго была к ней безразлична или даже «ждала» ослабления.
Пусть мы имеем дело с совокупностью родственных видов одной филетической группы. Рассмотрим у них какую-нибудь гомологичную структуру с одной и той же функцией. У каждого вида (в соответствии с (5.8)) логарифм мощности структуры равен произведению Na.Теперь перейдем к среднему (для видов филетической группы) логарифму мощности структуры (
Если линии филетической группы уже неоднократно сталкивались с изменениями требований среды к мощности какой-то рабочей структуры, то средневидовой уровень экспрессии ее специальных генов можно считать в какой-то степени стабилизированным. В этом случае соотношение (5.9) упрощается до
Число специальных генов, определяющих развитие структуры, можно принять за меру ее генетической сложности, поэтому соотношение (5.10) означает, что средневидовая мощность структуры, измеренная логарифмической шкалой, пропорциональна ее средневидовой генетической сложности.
Специальные гены в онтогенезе
Нетрудно убедиться в том, что практически каждый элемент сложной рабочей структуры служит усилению ее мощности. Возьмем, к примеру, сердце млекопитающих. Здесь мы видим четыре отдела, четко разделенных по своей функции, несколько весьма сложно устроенных клапанов, особый нервно-мышечный аппарат для обеспечения ритмических сокращений, да и сама ткань сердечной мышцы поражает необычностью своего строения. Повреждение любой из перечисленных структур ведет к ослаблению сердца как насоса и сопровождается симптомами сердечной недостаточности. Той же цели усиления мощности служат и все рассмотренные выше устройства глаза, повышающие остроту зрения.
Еще в гл. 2 мы пришли к заключению, что увеличение массы тела животного ведет к усложнению строения органов, особенно если их мощность зависит от каких-нибудь одно– или двухмерных структур. Любой орган возникает в ходе индивидуального развития, проходя последовательно ряд стадий, – от исходного зачатка до дефинитивного (взрослого) состояния. Из генетики развития хорошо известно, что может быть найдена мутация, прерывающая этот процесс на любой его стадии. Вполне очевидно, что чем больше качественно различных стадий проходит зачаток в онтогенезе, тем больше генов должна включать в себя программа его развития и тем сложнее, а следовательно, и мощнее будет дефинитивная структура. Если гены, управляющие развитием структуры, назвать специальными, то фактически мы снова получаем тот же результат: при возрастании числа специальных генов увеличивается мощность рабочей структуры.
Качественная эквивалентность обоих подходов покоится на так называемом «основном биогенетическом законе» Геккеля – Мюллера, суть которого передается броской формулировкой Э. Геккеля: «Онтогенез всякого организма есть краткое и сжатое повторение филогенеза данного вида». Такое повторение напоминает как бы перечень основных «глав» филогенеза, что объясняет другое название этого явления – рекапитуляция (от латинского capitulum – глава книги).
В формулировке основного биогенетического закона есть нечто мистическое, прямо-таки роковое, к тому же он указывает на подкупающе простой способ восстановления исторического развития организмов, как будто для этого достаточно лишь изучить вполне доступный наблюдению онтогенез. Однако было бы крайне наивно искать в раннем эмбриогенезе человека стадии рептилий, амфибий и рыб, а в нашем младенчестве и детстве – стадии низших обезьян, питекантропа и неандертальца. Тем не менее явление рекапитуляции существует и нуждается в объяснении.
По-видимому, оно основано на том, что филогенез «творится» в ходе онтогенеза. При этом всякая новизна, приведшая к увеличению мощности дефинитивной структуры, обусловлена вполне определенным изменением течения онтогенеза. Довольно часто оно состоит в довершении процесса развития еще одной стадией. Такой путь внедрения эволюционных инноваций А.Н. Северцов назвал анаболиями (т. е. надставками). Несколько реже изменения касаются средних и начальных стадий развития, которые соответствуют северцовским «девиациям» и «архалаксисам».
Ранее мы уже отмечали, что мутации, затрагивающие поздние стадии развития структур, должны фиксироваться чаще, поскольку они в меньшей степени влияют на развитие других структур, т. е., как правило, уровень «благоприятности» анаболий должен быть выше, чем девиаций и тем более архалаксисов. Заметим, что основной биогенетический закон не знал бы исключений, если бы эволюционная новизна всегда возникала только в виде надставок к конечной стадии программы развития предка. Поскольку каждая надставка ведет к усилению рабочей структуры, то фактически это тот же процесс, который мы рассмотрели в предыдущем параграфе (см. (5.4)). Только там речь шла о фиксации отдельных благоприятных мутаций с очень небольшим эффектом, тогда как каждая анаболия – это, скорее всего, серия подобных фиксаций.
Пока мы не получили никаких неожиданных результатов. Все выглядит вполне тривиально, и остается совершенно непонятным, какая сила заставляет увеличивать для некоторых рабочих структур число специальных генов при долговременных эволюционных тенденциях.
Лопастная линия аммоноидей
Уже более 100 лет внимание эволюционистов приковано к одной замечательной тенденции, сопровождающей эволюцию аммоноидей, – усложнению их лопастной линии (см. рис. 3). Эта филетическая группа возникла в раннем девоне, достигла огромного таксономического разнообразия в мезозое и полностью вымерла одновременно с динозаврами в конце мелового периода, просуществовав на Земле около 330 миллионов лет.
Аммоноидеи относятся к головоногим моллюскам с наружной раковиной – конической известковой трубкой, свернутой в логарифмическую спираль (рис. 19). Тело моллюска находилось в широкой части трубки – так называемой жилой камере, остальная, нежилая, часть раковины (фрагмакон) была разделена на герметичные отсеки многочисленными поперечными перегородками из перламутра. Отсеки заполнялись газом с давлением, близким к атмосферному, поэтому при погружении на большую глубину наружные стенки раковины испытывали изрядное давление воды, стремящееся раздавить пустотелую часть раковины. Газ в отсеках был необходим для уравновешивания животного в воде. Точная балансировка обеспечивалась специальным жгутообразным органом – сифоном, пронизывающим все поперечные перегородки.
Поперечные перегородки почти наверняка играли роль корабельных шпангоутов, т. е. выполняли функцию крепежных конструкций, работающих на сжатие. Напряжение наружной стенки передавалось на поперечную перегородку через линию их срастания. Эта знаменитая линия, которая очерчивает контур периферического края перегородки, носит разные названия: сутура, перегородочная, лопастная, шовная.
Представим себе, что условия среды «вынуждают» вид переселиться на большую глубину, где на каждый элемент поверхности раковины будет действовать повышенное гидростатическое давление. Ясно, что для успеха такого переселения нужно позаботиться об укреплении раковины. Этого можно достичь четырьмя способами: 1) утолщить стенку раковины; 2) увеличить число поперечных перегородок; 3) уменьшить размеры раковины (так как критическое напряжение, разрушающее полый шар, обратно пропорционально его радиусу); 4) изогнуть лопастную линию, что приведет к ее удлинению без изменения размеров раковины.
Первые два пути ведут к увеличению инерционной массы животного, что должно отрицательно сказаться на маневренности его плавания и, кроме того, утяжеленную особь труднее уравновесить газом в пустых отсеках. Третье средство вполне приемлемо, но тогда животному надо проститься со всеми преимуществами крупных размеров. А что делать, если новая более глубинная среда требует к тому же и увеличения массы тела? Тогда остается только четвертый путь. Действительно, удлиненная за счет изгибов лопастная линия может принять напряжение с большей поверхности, при этом сама раковина не утяжеляется. Именно это решение выглядит наиболее заманчиво, когда среда «требует» увеличения размеров индивида. При этом для компенсации возрастающего давления воды рост длины лопастной линии должен быть аллометричным, в идеале он должен следовать за квадратом радиуса раковины. Во всяком случае, при укрупнении особей должна возрастать степень изогнутости сутуры, ее сложность.
Рис. 19.Раковина аммонита. а– общий вид; б– изолированный фрагмокон. Видны лопастные линии и поверхность перегородки, отделяющей жилую камеру от фрагмокона.
Заметим, что та же проблема вставала и при росте каждой особи. Аммоноидеи начинали свой онтогенез с очень маленького яйца диаметром меньше одного миллиметра, из которого вылуплялась крошечная личинка – амонителла, уже обладавшая раковинкой с двумя перегородками. По мере роста животному приходилось все время надстраивать и расширять свою жилую камеру. При этом сам моллюск передвигался ближе к устью и сооружал за собой новую поперечную перегородку. Таким образом, каждая раковина взрослого животного содержала весь набор перегородок, построенных им за свою жизнь. Это обстоятельство позволяет проследить за изменением лопастной линии в ходе индивидуального развития. Любая последовательность этих линий, упорядоченная по возрасту (онтограмма), демонстрирует их усложнение в онтогенезе (рис. 20). Еще раз заметим, что перегородка сделана из очень прочного, совсем не пластичного материала, и изогнуть ее периферический край чисто механически невозможно.
Элементами сложности сутуры являются ее изгибы. Одни из них, обращенные вогнутостью к устью раковины, называют лопастями, другие, изогнутые в противоположную сторону, – седлами. На основании анализа множества вариантов усложнения сутуры в ходе онтогенеза создается впечатление, что каждый изгиб лопастной линии возникал на месте вполне определенного элемента более молодой особи. Углублению изгиба обычно предшествовала фаза рассечения сутуры (ее излома) в совершенно конкретном месте вполне определенного элемента.
Известковое вещество перегородки выделялось специальными клетками мантии моллюска, поэтому за каждым элементом сутуры наверняка стояла особым образом дифференцированная область мантии. Следовательно, появление каждого нового элемента – это новый шаг в морфологической дифференциации мантии.
Сопоставляя онтограммы аммоноидей из одних и тех же филетических пучков на разных этапах их исторического развития, можно заметить, что пути развития изгибов лопастной линии в онтогенезе в основных чертах повторяют пути их филетических предков. При этом увеличение сложности в онтогенезе потомков, как правило, шло за счет анаболий, т. е. добавления новых элементов к взрослой сутуре предков. Таким образом, онтограммы лопастных линий аммоноидей могут служить прекрасной иллюстрацией к явлению рекапитуляции. Вместе с тем, наверняка всегда сохранялось требование отбора к сокращению длительности индивидуального развития, поэтому более «прогрессивные» формы примерно за одно и то же время онтогенеза должны были построить более сложную лопастную линию. Это объясняет тенденцию к переносу взрослых стадий предков на все более ранние обороты раковины потомков. В конце концов зачатки некоторых элементов сутуры взрослых девонских аммоноидей можно обнаружить уже на лопастной линии мезозойской амонителлы.
Рис. 20.Усложнение лопастной линии в онтогенезе мелового аммонита Gaudriceras tenuiliratum(по: [Михайлова, 1983]).
а – д– последовательные стадии развития.
У палеозойских аммоноидей к рассечению были способны только лопасти, причем существовало несколько вариантов их усложнения. Рассечение седел впервые возникло в мезозое и сначала оно затронуло лишь их склоны. Позже всего аммоноидеи «освоили» рассечение вершин седел. Качественный анализ усложнения сутуры в ходе эволюции аммоноидей показывает, что вплоть до начала юры во всех крупных филогенетических стволах шло увеличение числа способов усложнения сутуры. Обычно эволюционно новый способ появлялся в конце онтогенеза и затем начинал «срабатывать» на более ранних стадиях индивидуального развития филетических потомков. Следует отметить, что однажды возникший способ усложнения и перенесенный затем в глубь онтогенеза потомков становился своеобразным маркером филетического пучка.
Не вызывает сомнения, что за каждым способом усложнения сутуры стояли определенные гены, управлявшие развитием железистых клеток различных участков мантии. Таким образом, качественный анализ явления показывает, что в ходе исторического развития аммоноидей действовал процесс аккумуляции генов, осуществлявших усложнение лопастной линии, их можно назвать специальными генами сутуры.
Усложнение лопастной линии
В качестве меры изогнутости лопастной линии можно выбрать отношение l/l 0, где l– длина сутуры, а l 0– длина контура поперечного среза раковинной трубки. Длину l 0имела бы сутура, если реальную перегородку с ее сложным рельефом заменить на совершенно плоскую пластинку. Аммоноидеи произошли от бактритоидей – головоногих моллюсков с прямой толстостенной раковиной. Их поперечные перегородки были практически плоскими и имели ровный периферический край, т. е. для них l~l 0.Вспоминая наше определение мощности (см. гл.2), можно считать степень изогнутости сутуры ( l/l 0) мерой ее мощности (как способности противостоять гидростатическому давлению на стенку раковины). Поскольку естественный отбор «измеряет» величину рабочих структур как бы логарифмической линейкой, в качестве меры сложности лопастной линии Zимеет смысл выбрать величину логарифма ее мощности, т. е. Z = ln( l/l 0). Заметим, что у бактритоидей сложность лопастной линии близка к нулю.