Текст книги "Обзор ядерных аварий с возникновением СЦР (LA-13638)"
Автор книги: В. Фролов
Соавторы: Б. Рязанов,Норман Прувост,Шан Монахан,Томас Маклафлин,В. Свиридов
Жанр:
Физика
сообщить о нарушении
Текущая страница: 9 (всего у книги 18 страниц)
Раствор уранилнитрата, U(18,8 %), в отстойнике; многократные всплески мощности; двое погибших; один человек получил значительную дозу облучения.
Авария произошла в здании, предназначенном для проверки опытной технологии конверсии топлива на производственной площадке компании JCO в городе Токай-мура, префектура Ибараки, Япония. В здании находилось оборудование для производства или порошка диоксида урана, или раствора уранилнитрата из гексафторида урана или закиси-окиси урана (U3O8). Это было одно из трех зданий на площадке, для которых была выдана лицензия на проведение работ с делящимися материалами. В двух корпусах размещалось крупномасштабное производство по переработке UF6 в UO2, предназначенный для использования в коммерческих легководных реакторах. Работы велись с ураном, имевшим обогащение не более 5 %. Здание для проверки опытной технологии конверсии топлива было гораздо меньших размеров по сравнению с остальными двумя, оно использовалось редко, только для специальных задач. В здании разрешалось работать с ураном, обогащенным до 20 %. Во время аварии происходила переработка уранового топлива U(18,8 %). Продукт предназначался для экспериментального реактора-размножителя Joyo, расположенного на территории Оараи Японского института по разработке ядерного топливного цикла (JNC). Малый размер производственной площадки Токаи компании JCO (~300 X 500 метров), а также то, что она расположена внутри города, сделали эту аварию уникальной: это была первая авария с возникновением критичности в радиохимическом производстве, в результате которой произошло облучение населения.
В ходе работы требовалось приготовить приблизительно 16,8 кг U(18,8 %) в виде уранилнитрата с концентрацией урана, равной 370 г/л. Уранилнитрат должен был быть отправлен с завода в виде раствора для последующего изготовления реакторного топлива. Процесс проводился отдельными партиями, в соответствии с требованиями по ядерной безопасности. Инструкции устанавливали различные предельные значения массы урана в партии для различных диапазонов обогащения. В диапазоне обогащения от 16 до 20 % предельная масса урана в партии составляла 2,4 кг. Упрощенная схема основного технологического оборудования и материальных потоков в процессе приготовления и затаривания уранилнитрата приведена на рисунке 34-A в том виде, как это было определено в лицензии, выданной компании JCO федеральным правительством.
Рисунок 34. Разрешенная и реализованная технологии.
Три оператора начали выполнять задание 29 сентября, за день до аварии. При этом они выполняли операции в том порядке, который приведен на рисунке 34-B. Проводившиеся операции осуществлялись с двумя отклонениями от утвержденного регламента. Во-первых, в регламенте, разработанном компанией, которому должны были следовать операторы, указывалось, что растворение должно проводиться в открытых 10-литровых ведрах, сделанных из нержавеющей стали, а не в реакторе-растворителе, как это определялось в лицензии. Было известно, что это изменение позволяло сократить время растворения примерно на 1 час.
Гораздо более серьезным отклонением от утвержденной технологии стало то, что раствор уранилнитрата был перелит в реактор-осадитель опасной геометрии, а не в емкости с безопасной геометрией. Причиной, по которой это было сделано, стало то, что 4-литровые контейнеры было неудобно наполнять растворенным продуктом из колонок, в которых он хранился. Сливной кран внизу колонок был всего на 10 см выше пола. В свою очередь, реактор-осадитель, использованный при выполнении операции, был оборудован мешалкой для обеспечения однородности продукта и позволял легко наполнять бутыли готовым продуктом.
29 сентября операторы закончили последовательное растворение четырех партий, по 2,4 кг каждая. Сначала раствор был помещен в пятилитровую колбу, а затем вручную перелит через воронку в реактор-осадитель. Реактор-осадитель объемом около 100 литров имел 450 мм в диаметре и высоту 610 мм. На рисунке 35 сфотографированы: реактор-осадитель, система трубопроводов, загрузочные люки, через которые добавлялись материалы, и лестница, на ступеньках которой стоял оператор, когда заливал раствор. Второй оператор стоял на полу и держал воронку. Дневное задание для смены из трех человек закончилось после переработки четырех партий раствора.
На следующий день, 30 сентября, три оператора начали растворение последних трех партий, необходимых для окончания работы. После заливки растворов от пятой и шестой партий, около 10:35, началось переливание раствора седьмой партии. Почти под конец заливки (из колбы позже было извлечено 183 г урана) в этом здании и в двух соседних зданиях сработала аварийная сигнализация радиационного контроля. В соответствии с инструкциями, рабочие были эвакуированы из всех производственных корпусов и проследовали на сборный пункт, расположенный на производственной площадке. В этом месте были произведены замеры мощности доз гамма-излучения, которые намного превышали фон; возникло подозрение, что произошла и развивается авария с возникновением критичности.
После этого сборный пункт был перенесен на более удаленную часть производственной площадки, на которой мощности доз были близки к фоновым значениям. Энерговыделение продолжалось в течение почти двадцати часов, после чего оно было подавлено в результате специальных действий, проведенных по предписанию и под контролем официальных представителей правительства. В течение этого времени проявилось несколько заслуживающих внимания аспектов этой аварии. Во-первых, компания JCO не была готова к действиям в случае аварии с возникновением критичности – сигнализаторы уровня гамма-излучения не являлись системой аварийной сигнализации, предусмотренной на случай ядерной аварии. В лицензионном соглашении фактически утверждалось, что ядерная авария невозможна. В результате этого для ликвидации аварии пришлось привлечь специалистов и применить приборы с близлежащих ядерных установок. Различные системы мониторинга на самой установке, а также в Японском исследовательском институте атомной энергии (JAERI) зарегистрировали последовательность событий, имевших место при развитии аварии. Они показали, что после первого большого пика система перешла в квазистабильное состояние, при котором уровень мощности постепенно снизился примерно в два раза в течение первых ~17 часов после возникновения аварии.
Примерно через 4,5 часа после начала аварии измерения уровня радиации возле границы производственной территории, примыкающей к жилому дому и коммерческому учреждению, показали, что комбинированная мощность дозы нейтронного и гамма-излучения составляла приблизительно 5 мЗв/час. В это время мэр города Токай-мура рекомендовал населению, проживающему в радиусе 350 м от завода компании JCO, эвакуироваться в более удаленные места. Через 12 часов местные власти префектуры Ибараки рекомендовали населению, проживающему в радиусе 10 км от завода, оставаться внутри помещений из-за повышенной радиоактивности, вызванной аэрозольными продуктами деления.
Вскоре после полуночи была сделана попытка остановить цепную реакцию. Было решено слить охлаждающую воду из рубашки, окружающей нижнюю половину реактора-осадителя, так как считалось, что это могло снизить реактивность настолько, чтобы перевести систему в подкритическое состояние. Для выполнения этой работы были посланы по очереди несколько бригад, по три оператора в каждой. К трубопроводу, питающему рубашку, был доступ непосредственно с наружной стороны здания, но его было трудно разобрать, потому что время работы ограничивалось величиной допустимой дозы (0,1 Зв).
Когда трубопровод был, наконец, вскрыт примерно через 17 часов после начала аварии, не вся вода была слита из рубашки. Это было установлено с помощью различных устройств мониторинга, которые показали, что мощность упала примерно в четыре раза, а затем снова стабилизировалась, что указывало на то, что цепную реакцию все же не удалось остановить полностью. Наконец, вода из рубашки была полностью удалена путем пропускания через трубопровод аргона, при этом люди в здание не заходили. Примерно через двадцать часов это привело к прекращению цепной реакции. Для обеспечения надежной подкритичности в реактор-осадитель была добавлена через резиновый шланг борная кислота.
Через несколько недель после аварии, когда уменьшились уровни радиации, была взята и проанализирована проба раствора из реактора-осадителя. На основании анализа продуктов деления было определено, что полный выход в результате аварии составил примерно 2,5 X 1018 делений. Несмотря на то, что детекторами не были зарегистрированы детали первых нескольких минут всплеска мощности, картина облучения операторов и показания нейтронного детектора на площадке JAERI-NAKA убедительно свидетельствовали в пользу того, что начальная реактивность превысила уровень, соответствующий критичности на мгновенных нейтронах. Результаты экспериментов, поставленных для того, чтобы смоделировать аварии с возникновением критичности в растворах 4,5,6, подтверждали, что энерговыделение в первом пике составило от 4 до 8 X 1016 делений.
Двое рабочих, участвовавших в проведенной операции заливки раствора, были сильно переоблучены, при этом оцененные дозы составили между 16 и 20 Гр и между 6 и 10 Гр, соответственно. Когда произошла авария, третий оператор сидел за столом на расстоянии нескольких метров и получил оцененную дозу облучения от 1 до 4,5 Гр. Всем трем операторам был предоставлен специальный медицинский уход. Оператор, который держал воронку, умер через 82 дня после аварии. Оператор, заливавший уранилнитрат, умер спустя 210 дней после аварии. Наименее облученный оператор покинул госпиталь примерно через три месяца после аварии.
Помимо уже упомянутых нарушений разрешенной технологии, могут быть названы следующие факторы, повлиявшие на аварию.
1) Персонал JCO на всех уровнях слабо понимал факторы, влияющие на критичность. В частности, отсутствовало понимание того, что одни и те же 45 литров раствора, которые далеки от критичности, когда они находятся в регламентных колонках для хранения, могут оказаться надкритичными в опасном реакторе-осадителе.
2) Компания оказывала давление, чтобы заставить людей работать более производительно.
3) В компании JCO и в регулирующем органе на всех уровнях устоялось мнение, что авария с возникновением критичности невозможна. В результате этого принимавшиеся методики, планы, схемы расположения оборудования, учет человеческого фактора и т. д. не получали адекватного изучения как со стороны компании, так и со стороны должностных лиц, выдававших лицензию.
Рисунок 35. Реактор-осадитель, в котором произошла авария.
Правительство решило отобрать у компании JCO лицензию на работы, и компании пришлось согласиться с этим решением ко времени публикации этого отчета.
Из примерно 200 жителей, эвакуированных в радиусе 350 м от производственной площадки, около 90 % получили дозы меньше 500 мбэр; никто из остального населения не получил более 2,5 бэр. Хотя было обнаружено загрязнение, вызванное аэрозольными продуктами деления, на растениях в пределах заводской площадки, максимальные значения мощностей доз составили менее 1 мбэр/час, а продукты деления были короткоживущими.
B. Физические и нейтронные характеристики аварий с возникновением СЦР на технологических установках
В этом разделе мы рассмотрим физические и нейтронные характеристики аварий с возникновением СЦР, которые случились на ядерных промышленных установках Российской Федерации, Соединенных Штатов Америки, Соединенного Королевства Великобритании и Японии. Для того, чтобы оценить достоверность описаний аварий, мы сравнили физические параметры, сообщенные для каждой аварии, с известными из экспериментов условиями достижения критичности.
Восстановление картины аварииПриведенных в документах об аварии данных о геометрии и составах материалов далеко недостаточно для того, чтобы рассматривать их в качестве контрольных параметров критичности, как они принимаются международным сообществом по ядерной безопасности 34. Из-за отсутствия сообщаемых технических деталей возможность точного восстановления аварийной обстановки серьезно ограничена. Восстановление картины аварий с 1 по 22 проводится с использованием интерпретации условий, сообщаемых для каждой такой аварии. Восстановление проводится с целью оценить аварийную конфигурацию, соответствующую критическому состоянию. Оцененные значения параметров, необходимых для такого восстановления, не следует интерпретировать как новые «факты», которые нужно добавить в документы об авариях.
В наших оценках рассматриваются лишь главные параметры, влияющие на критичность: делящийся материал (235U или 239Pu), его плотность, форма и степень замедления. В случаях аварий 9, 15 и 22 принималась также во внимание степень обогащения урана. Примеры параметров, которых для восстановления картины аварии недостает или которыми пренебрегли, как имеющими второстепенную важность, включают материал емкости, толщину ее стенок, наличие делящихся нуклидов иных, чем 235U и 239Pu, и наличие внешних отражателей вблизи делящегося материала или соприкасающихся с ним. Смеси материалов моделировались как однородные смеси металл – вода, из чего можно оценить степень замедления. Для нескольких аварий (2, 9, 15 и 21), о которых известно, что делящийся материал распределен неоднородно, такое упрощение было чрезмерным.
В таблице 9 представлены оцененные величины параметров для 22 аварий на технологических установках. Насколько мы знаем, этими 22 авариями исчерпывается полный список событий, которые однозначно квалифицируются как ядерные аварии на технологических установках в РФ, США, СК Великобритании и Японии.
Необходимо дать некоторое объяснение заголовков столбцов таблицы 9.
Номер аварии: 22 аварии пронумерованы в хронологическом порядке. Хронологический порядок был выбран в силу признания того, что технологические разработки этих четырех стран развивались во времени параллельно.
Площадка и дата: используется сокращенное наименование страны, в которой имела место авария: РФ, США, СК для аварий, которые соответственно произошли в Российской Федерации, Соединенных Штатах Америки и Соединенном Королевстве Великобритании. Дата аварии приводится в формате день – месяц – год.
ГеометрияФорма емкости: форма емкости, например, цилиндрическая с вертикальной осью. Хотя такое обозначение является точным для большинства аварий, некоторые аварии, как известно, произошли, когда ось симметрии цилиндрического сосуда была не вертикальной и не горизонтальной, а была наклонена под некоторым углом к вертикали.
Объем емкости: объем емкости означает ее полный объем.
Объем делящегося материала: это оцененное значение объема, занимаемого делящимся материалом, имевшим преобладающее влияние на нейтронную реактивность системы. В некоторых случаях (аварии 5 и 18) делящийся материал в низкой концентрации присутствовал и вне этого объема. Этот дополнительный материал имел второстепенное влияние на реактивность системы, и им, следовательно, можно было пренебречь. Для аварий, которые произошли или были смоделированы в условиях, когда цилиндрическая емкость имела вертикальную ось симметрии, а делящийся материал находился в виде раствора или суспензии, приводится дополнительный параметр h/D. В таких случаях делящийся материал моделировался как прямой круговой цилиндр (строчной буквой h обозначается высота цилиндра, а заглавной буквой D обозначается его диаметр).
Формфактор: это коэффициент формы, использовавшийся для преобразования реальной формы в эквивалентную сферическую форму, чтобы таким образом можно было сравнить эти 22 аварии с точки зрения геометрически эквивалентных сферических систем.
Для 18 аварий, для которых отношение h/D указано точно, для определения коэффициента формы была использована кривая «Без отражателя» (т. е. полученная в отсутствие отражателей) на рисунке 36 35. Кривая на рисунке 36 построена непосредственно на основе экспериментальных результатов, что сводит к минимуму зависимость от расчетов. Для остальных 3 аварий (номера 2, 6 и 20) для оценки коэффициента формы использовались лапласиан или другие математически простые аппроксимации.
Таблица 9. Воссоздание аварийной геометрии и конфигурации материала
Материал
Масса делящегося материала: это масса либо 235U, либо 239Pu. Тип делящегося материала приводится рядом с элементом столбца, означающим массу. В трех авариях, 9, 15 и 22, уран имел степень обогащения соответственно 22,6; 6,5 и 18,8 весовых процента. Для этих аварий в столбце «Масса делящегося материала» также приводится атомное отношение водорода к 235U. Для восьми аварий с плутонием было принято, что имелось 95 весовых % 239Pu.
Концентрация делящегося материала: это отношение массы делящегося материала к его объему в предположении, что смесь однородна.
Оцененная критическая масса в сфере: элементы этого столбца представляют собой значения сферической критической массы, определенные как отношение делящейся массы к коэффициенту формы. Эти оцененные массы используются как мера согласованности или согласия условий восстановленных картин аварий с установленными условиями возникновения цепной реакции. Для аварий 9, 15 и 22 критическая масса в сфере была подогнана к величине при полном отражении водой.
ОбсуждениеТрадиционно о методиках такого типа, которые использовались для создания оцененных значений, представленных в таблице 9, говорят как о вычислениях на «оборотной стороне конверта». Эти вычисления характеризуются математической простотой, и их результаты лучше назвать оценками, когда они сопоставляются с компьютерными вычислениями. В некоторых случаях этих оценок достаточно, и нет необходимости проводить более детально расчеты по компьютерным программам. Эти результаты характеризуются как оценки в соответствии с первым моральным принципом Вилера: «Никогда не делайте расчетов, пока вы не знаете ответа. Делайте оценки перед каждым расчетом…» 36.
Рисунок 36. Отношение критической массы растворов U(93 %)O2F2 в цилиндре к их критической массе в сфере (без отражателя и с водяным отражателем) в зависимости от отношения высоты цилиндра к его диаметру.
Рисунки 37, 38 и 39 взяты, с некоторыми изменениями, из отчета Лос-Аламосской национальной лаборатории LA-10860 35. Эти три рисунка содержат точки, соответствующие приведенным в таблице 9 значениям плотности делящегося материала (или атомному отношению) и оцененной сферической критической массы для двадцати двух восстановленных аварий. Рисунок 38 содержит кривые для систем с обогащением урана, соответствующим 2.0, 3.0, 5.0, 30.3 и 93.0 процентам. На этот рисунок также наложены точки для аварий 9, 15 и 22.
Поскольку кривые на рисунке 38 относятся к водяным отражающим системам, эти точки были смещены вниз, поскольку реальные аварии происходили в условиях относительного отсутствия отражателей.
Можно было бы выполнить дополнительную подгонку к реальной концентрации делящегося материала и к оцененной критической массе в сфере. Например, при оценке можно было бы учесть влияние поглощения нитратом и органический, в противоположность водному, базовый состав. Разумеется, требуется решить, имеют ли смысл такие подгонки и приведут ли они к таким оцененным значениям, которые будут находиться в лучшем согласии с кривыми, представленными на рисунках 37, 38 и 39. Проведение таких подгонок не может быть оправданным. Отсутствие технических деталей, представленных в описаниях аварий, препятствует обоснованному уточнению оценок. Недостаток технической информации также мешает любой попытке осмысленного, более детального нейтронного компьютерного моделирования.
Рисунок 37. Критические массы гомогенных сфер.
Аварии с делящимся материалом, содержащим уран; цифры внутри кружка означают номер аварии.
ВыводыПринимая во внимание эффекты частичного отражения и свойственные оценкам погрешности, можно сделать вывод, что положения 19 точек из 22 точек, нанесенных на рисунках 37, 38 и 39, в достаточной степени подтверждают согласие между условиями возникновения аварий, которые приводятся в их описаниях, и известными условиями возникновения самоподдерживающейся цепной реакции. Оцененные значения для аварий 1, 7 и 9 кажутся отчасти сомнительными в том отношении, что для возникновения критичности при гипотетических условиях этих аварий в отсутствие отражения потребовалась бы большая масса, чем та, что приведена в сообщениях об авариях. Однако оценки для аварий 1 и 7 оказались бы в разумном согласии с реальными величинами, если было бы учтено наличие частичного отражения во время аварии. Следует заметить, что в этих двух случаях «недостающая» масса не больше по величине, чем в других восстановленных авариях (особенно в авариях 12, 14 и 17), в которых сообщенная величина массы превышает величину, являющуюся известным условием возникновения критичности. Расхождение в случае аварии 9 также согласуется с большой неопределенностью массы, указанной в отчете об аварии. Нельзя выделить никаких систематических особенностей, которыми отличались бы между собой аварии в РФ, США, Объединенном Королевстве и в Японии.
Рисунок 39. Критические массы гомогенных плутониевых сфер с водяным замедлителем. Точки между кривыми относятся к раствору Pu(NO3)4 с избыточным содержанием HNO3 с концентрацией 1 моль/л и содержанием 240Pu, равным 3,1 %, в системе с водяным отражателем. Аварии показаны кружками с номерами.
Аварии с делящимся материалом, содержащим плутоний; цифры внутри кружка означают номер аварии.