355 500 произведений, 25 200 авторов.

Электронная библиотека книг » В. Фролов » Обзор ядерных аварий с возникновением СЦР (LA-13638) » Текст книги (страница 6)
Обзор ядерных аварий с возникновением СЦР (LA-13638)
  • Текст добавлен: 31 октября 2016, 00:19

Текст книги "Обзор ядерных аварий с возникновением СЦР (LA-13638)"


Автор книги: В. Фролов


Соавторы: Б. Рязанов,Норман Прувост,Шан Монахан,Томас Маклафлин,В. Свиридов

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 6 (всего у книги 18 страниц)

14. Завод по химпереработке топлива компании «Юнайтед Нюклеар Фьюелз», шт. Род-Айленд, 24 июля 1964 г. 23 24

Раствор уранилнитрата, U(93 %), в емкости для раствора карбоната натрия; два всплеска мощности; один смертельный исход; два человека получили значительные дозы облучения.

Данная авария произошла на радиохимическом заводе, расположенном в Вуд Ривер Джанкшн, штат Род-Айленд. На заводе осуществлялось выделение высокообогащенного урана из отходов производства тепловыделяющих элементов. Завод работал по трехсменному графику (смены по 8 часов) пять дней в неделю. Материал доставлялся на завод в виде раствора уранилнитрата с концентрацией урана в диапазоне от 1 до 5 г/л в бочках объемом 55 галлонов (208 л). Затем производилась очистка уранилнитрата в экстракционном процессе с использованием трибутилфосфата в смеси с керосином в качестве разбавителя. После реэкстракции кислотой очищенный раствор уранилнитрата пробулькивался через колонну, в которой находилось фиксированное количество (от 4 до 6 л) трихлорэтана (ТХЭ). ТХЭ удалял всю органику, которая содержалась в растворе. Первоначально по проекту завода предполагалась одна заправка свежего ТХЭ на срок от 6 месяцев до одного года.

Типичные при пуске нового производства трудности (завод был пущен 16 марта 1964 г.), большие количества перерабатываемых органических остатков и повышенный выход выделяемого урана привели к сокращению срока использования ТХЭ до примерно 1 недели. Поэтому в начале апреля была разработана технология для извлечения урана из использованного ТХЭ перед его захоронением. Уран выделялся из раствора с очень низкой концентрацией (от 0,4 до 0,8 г/л) путем промывки ТХЭ раствором карбоната натрия. Первоначально операция проводилась путем взбалтывания или встряхивания вручную раствора, разлитого в небольшие бутыли диаметром 5 дюймов (127 мм) и емкостью 11 л. Такой довольно трудоемкий процесс применялся до 16 июля. В этот день вследствие накопившегося необычно большого количества ТХЭ с примесью урана начальник смены разрешил оператору воспользоваться для осуществления данного процесса емкостью, предназначенной для приготовления карбоната натрия, поскольку концентрации урана не превышали 800 ppm. Емкость имела диаметр примерно 18 дюймов (457 мм) и высоту 26,375 дюймов (670 мм). Она располагалась на третьем этаже здания, в котором размещались экстракционные колонны. Выполнение этой процедуры передавалось от одного оператора другому по смене. В течение промежутка времени с 16 по 24 июля каждый из этих двух операторов промыл от 10 до 12 бутылей, используя для этого емкость для приготовления карбоната натрия. Необходимо отметить, что обработка ТХЭ с использованием каких бы то ни было методов не была предусмотрена лицензией, выданной предприятию, т. е. не была утверждена надзорным органом.

За день до аварии заводской выпарной аппарат стал плохо работать, поэтому пришлось его разобрать для очистки. В процессе очистки на соединительной линии была обнаружена пробка из кристаллов нитрата урана. Кристаллы были растворены паром, и получившийся в результате концентрированный раствор урана (256 г/л) был слит в полиэтиленовые бутыли, идентичные тем, в которых обычно содержались растворы ТХЭ очень низкой концентрации. На все бутыли с раствором высокой концентрации были прикреплены соответствующие этикетки.

В пятницу 24 июля примерно в 18 ч 00 мин оператор, направленный на выполнение работ с экстракционными колоннами, спросил своего начальника смены, нужно ли промывать ТХЭ. Поскольку использованный раствор ТХЭ должен был пойти на промывку технологической колонны, начальник ответил оператору, что промывать раствор ТХЭ не обязательно. Тем не менее, оператор пошел искать бутыль с раствором ТХЭ, чтобы промыть его. К несчастью, оператор перепутал бутыли и взял раствор с высокой концентрацией урана вместо ТХЭ низкой концентрации. Бутыль перевезли на тележке к лестнице, а потом вручную подняли на третий этаж, где находилась емкость с карбонатом натрия. Этикетка с этой бутыли, на которой было правильно указано ее содержимое, т. е. раствор урана высокой концентрации, была найдена после аварии на полу возле тележки.

Поднявшись на третий этаж, оператор перелил содержимое бутыли в емкость, содержащую 41 л раствора карбоната натрия, оборудованную механизмом для перемешивания с электроприводом. Критичность была достигнута, когда почти весь уран в растворе был перелит. При всплеске мощности (выход составил от 1,0 X 1017 до 1,1 X 1017 делений) примерно 20 % раствора выплеснулось из емкости, облив потолок, стены и самого оператора. Упавший на пол оператор смог встать на ноги и убежать с участка в убежище (на расстоянии 180 м).

Через полтора часа после аварии в здание вошли начальник производства завода и начальник смены участка для того, чтобы слить раствор из емкости. Когда они поднялись на третий этаж, начальник производства завода вошел в комнату и подошел к емкости для приготовления карбоната натрия, а начальник смены остался в дверном проеме. Начальник производства убрал бутыль (все еще вставленную вверх дном в емкость) и отключил мешалку. После этого он вышел из комнаты, обошел начальника смены и пошел впереди него вниз по лестнице. Для всех в этот момент оставалось неизвестным (поскольку после первого всплеска мощности продолжала работать аварийная сигнализация), что после выключения мешалки произошло изменение геометрии раствора: схлопнулась воронка. При этом добавилась реактивность, достаточная для того, чтобы вызвать второй большой всплеск мощности или, может быть, серию маленьких всплесков. По оценке, энерговыделение во втором всплеске мощности составило от 2 до 3 X 1016 делений, при этом раствор больше не выплескивался из емкости. Начальник производства и начальник смены спустились на второй этаж, потом на первый этаж и начали сливать раствор из емкости через вентили, которые там находились. Когда дренажная линия оказалась забитой осадком, начальник производства вернулся к емкости, снова включил мешалку, а потом вернулся к начальнику смены, который на первом этаже сливал раствор в 4-литровые бутыли.

То, что произошел второй всплеск мощности, осознали только после того, как оценили дозы, полученные начальником производства и начальником смены. Начальник смены получил примерно 100 рад, а начальник производства – примерно 60 рад. Обе дозы намного превысили ожидаемые значения и противоречили данным предоставленных ими отчетов об их действиях. Только после тщательного анализа удалось понять, что оба облучились в результате второго всплеска мощности, который, наиболее вероятно, произошел как раз тогда, когда начальник производства обходил начальника смены на пути к лестнице.

Доза радиации, полученная оператором в результате первого всплеска мощности, составила, по оценке, около 10000 рад. Он умер спустя 49 часов. Остальной персонал завода получил незначительные дозы. В результате проведенного расследования было установлено, что к моменту первого всплеска мощности в 51 литре раствора в емкости для карбоната натрия содержалось 2820 граммов урана. Система не получила механических повреждений, хотя впоследствии понадобилось удалить расплескавшийся раствор. Полное энерговыделение было эквивалентно 1,30 ± 0,25 X 1017 делений.

15. Машиностроительный завод, г. Электросталь, 3 ноября 1965 г

Смесь с водой диоксида урана, U(6,5 %), в водяном баке вакуумного насоса; одна вспышка; незначительные дозы облучения.

Ядерная авария произошла на Машиностроительном заводе, г. Электросталь, в четверг 3 ноября 1965 года. Завод работал 24 часа в сутки в режиме 4 смен по 6 часов. В здании 242, где произошла авария, размещался аппарат «Сатурн», предназначенный для газопламенного восстановления гексафторида урана до окислов в водородно-воздушном пламени. С 23.09.1964 г. по 19.10.1965 г. на установке восстановления получали окислы урана с обогащением 2 % по урану-235. Однако, из-за необходимости обеспечить топливо для двух вновь принятых в эксплуатацию ураново-графитовых энергетических реакторов Белоярской АЭС, было принято решение о переводе на работу с гексафторидом урана 6,5 %-го обогащения. Для этого бункер был зачищен, фильтры заменены новыми, вода объемом 150 л в контуре вакуумного насоса была слита, а контур был заполнен чистой водой. Планировалось смонтировать третий фильтр, помимо двух имеющихся непосредственно перед насосом, однако это оперативно не сделали и ввели установку в эксплуатацию 22.10.1965 г. Ядерная авария произошла 12 дней спустя.

Схематическое изображение установки для производства оксида урана из гексафторида урана и ее вакуумной системы в здании 242 представлено на рисунке 20. Процесс начинается подачей гексафторида урана в аппарат «Сатурн», показанный на схеме. В нем происходит восстановление гексафторида урана в водородно-воздушном пламени с получением оксидов, собирающихся на дне аппарата. Рабочий персонал вспоминает (но документы не подтверждают), что аппарат «Сатурн» был оборудован линией улавливания газообразного фтористого водорода. Оксиды затем передавались к бункеру-накопителю. Передача оксидов из аппарата «Сатурн» в бункер-накопитель осуществлялась при помощи вакуума. Из бункера-накопителя оксиды выгружались в банки безопасной геометрии с объемом, равным двадцати литрам. Процесс выгрузки являлся просто операцией гравитационной пересыпки из бункера-накопителя в двадцатилитровые банки. Вакуумная система выключалась во время загрузки банки. После заполнения банок порошком оксида они транспортировались из здания 242 в другое здание, где порошок загружался в печь прокаливания для обесфторивания и полного восстановления до UO2. В качестве рабочей жидкости в вакуумном насосе использовалась вода, которая циркулировала через бак насоса и трубчатый теплообменник.

Сама вакуумная система была расположена этажом ниже аппарата «Сатурн» и бункера-накопителя. Для предотвращения попадания порошка UO2 в вакуумную систему между бункером и насосом проектом были предусмотрены два фильтра из лавсановой ткани: основной фильтр на бункере и контрольный фильтр перед насосом. Контрольный фильтр, согласно технологическому регламенту, должен был ежесменно проверяться на наличие порошка UO2 и появление возможных дефектов посредством вскрытия и визуального осмотра на просвет. В случае обнаружения непрозрачности лавсанового полотна на просвет должен был вскрываться и осматриваться также и основной фильтр. Помимо осмотра контрольного фильтра, ежесменно должна была отбираться проба воды из контура насоса для анализа на содержание урана.

Рисунок 20. Схема установки для производства оксида урана из UF6 и ее вакуумной системы.

Согласно правилам, от персонала каждой смены требовалось отобрать пробу из вакуумной системы и провести анализ для определения наличия урана. Обычно результаты анализа проб были готовы через полтора часа после их отбора. На заводе не было приборов неразрушающего контроля. Кроме того, такие приборы не применялись для обнаружения отложения урана в вакуумной системе. Вакуумная линия, показанная на схеме, соединяла контрольный фильтр с водокольцевым вакуумным насосом, расположенным этажом ниже.

На схеме показаны также компоненты вакуумной системы. Эти компоненты состоят из самого водокольцевого вакуумного насоса, который, в свою очередь, связан с водяным баком и теплообменником «труба в трубе». Вода из теплообменника затем возвращалась в вакуумный насос. Для предотвращения повышения кислотности воды в случае, если HF поступит в систему, в воду добавлялся гидроксид калия. Водяной бак насоса геометрически представлял собой правильный круговой цилиндр с осью, ориентированной вертикально. Бак имел диаметр 65 см и высоту 90,4 см при объеме бака 300 литров. С боковой стороны бак был снабжен мерным стеклом, что позволяло видеть уровень воды в баке. Обычно бак работал менее чем наполовину заполненным водой. СЦР произошла в этом баке.

Третьего ноября 1965 года в 11 ч 10 мин утра в здании 242 сработала система аварийной сигнализации о возникновении СЦР. Весь персонал здания 242 был немедленно эвакуирован. В блоках детектирования системы использовались счетчики γ-излучения. В соседних зданиях аналогичные системы аварийной сигнализации не сработали. Первым в здание 242 через 50 минут после эвакуации вернулся главный физик. С помощью переносного детектора гамма-излучения он смог определить, что авария произошла в водяном баке вакуумного насоса. В то время измеренная им мощность дозы гамма-излучения составила 103 мкР/с на расстоянии 1,5 м от бака.

Действия по ликвидации аварии были направлены на то, чтобы исключить повторное достижение критического состояния. Эту работу выполняли операторы под руководством дозиметристов. С помощью длинного стержня было разбито мерное стекло на боковой поверхности бака. Для сбора воды, вытекающей из бака, были использованы поддоны безопасной геометрии. В этой операции собрали приблизительно 60 литров жидкости. Анализ показал, что жидкость содержала 85 граммов урана на литр, т. е. в целом 5,1 кг урана. Через восемь дней после аварии (11 ноября 1965 г.) бак был вскрыт, и из него было извлечено еще 51 кг урана. Общее количество материала, извлеченного из бака, составило 56,1 кг урана или, при 6,5 % обогащении, около 3,65 кг 235U. Еще 13,9 кг урана было извлечено из теплообменника «труба в трубе» и патрубков, соединяющих их. В итоге было извлечено 70 кг урана, или примерно 4,6 кг 235U.

В результате расследования причин СЦР было установлено, что в основном фильтре лавсановая ткань отсутствовала, а в контрольном фильтре она не была полностью зажата фланцами. Поэтому порошок окислов урана мог проникать в вакуумную систему. Было также отмечено, что за короткое время (~12 дней) работы установки с ураном 6,5 %-го обогащения состояние контрольного фильтра не проверялось, контроль воды в баке на содержание урана не осуществлялся в нарушение действующих инструкций.

Расследование было не в состоянии определить, как долго отсутствовала ткань в главном фильтре или как долго ткань в контрольном фильтре имела дефекты. Анализ рабочих записей, сделанных до перехода системы от урана с обогащением 2 % к урану с обогащением 6,5 %, показал, что такие производственные нарушения в прошлом не случались.

Для того чтобы оценить полную выделенную при аварии энергию, были сделаны анализы двух типов. Анализ первого типа основывался на результатах измерения мощности дозы – 103 мкР/с, выполненного на расстоянии 1,5 м от водяного бака через приблизительно 50 минут после аварии. Результат этого измерения был использован для оценки полного выхода: 5 X 1015 делений. Для определения полного энерговыделения был вырезан участок медного провода, находившийся на расстоянии 1,2 м от бака. По активации меди 63Cu (n, у) 64Cu было определено, что число делений составило ~1016. Однако этот метод, также как и метод, основанный на измерении γ-излучения от продуктов деления, имел значительные расчетные и экспериментальные погрешности.

Восстановление условий протекания аварии показывает, что после очередной остановки насоса 3.11.65 г. в баке начался процесс осаждения взвесей урана из циркулировавшей пульпы. К этому времени в баке уже существовал густой пастообразный осадок окислов урана.

В процессе осаждения взвесей образовалась надкритическая система, вероятно, на запаздывающих нейтронах с коротким периодом разгона мощности цепной реакции. Собственный фон нейтронов в баке составлял около 0,8 X 103 н/с. Самогашение цепной реакции произошло вследствие смешивания части осадка с раствором и переноса (выброса) пульпы в коммуникации и трубы холодильника. Все оборудование осталось герметичным, и радиоактивного загрязнения помещений не произошло. Благодаря тому, что на расстояниях ближе 4,5 м от бака никого не было и персонал быстро покинул здание, а также из-за сравнительно малого числа делений никто существенно не был облучен. Расчет суммарных доз облучения работников показал, что рабочий, находившийся на расстоянии 4,5 м от места аварии, мог получить максимальную дозу 3,4 бэра. Все сотрудники, находившиеся в здании 242, прошли медицинское обследование.

16. ПО «Маяк», г. Озерск, 16 декабря 1965 г

Раствор уранилнитрата, U(90 %), в реакторе-растворителе; многократные вспышки; незначительные дозы облучения персонала.

Авария произошла в цехе переработки отходов химико-металлургического завода. Перерабатываемые отходы поступали с операций растворения, осаждения и восстановления. Схема цеха переработки показана на рисунке 21. Труднорастворимые осадки первоначально подвергались прокалке для превращения урана, содержащегося обычно в количестве меньше одного весового процента, в закись-окись. В соответствии с регламентом, отходы с аномально высокой концентрацией урана, которые иногда возникали в результате переработки бракованных слитков, тиглей с трещинами и пр., направлялись в другие технологические зоны.

Оборудование химико-металлургического цеха представляло собой ряд перчаточных камер, в одной из которых располагались три одинаковые технологические цепочки, состоящие из реактора для растворения отходов, передаточной емкости, нутч-фильтра и сборника фильтратов (рис. 22).

Каждый из трех цилиндрических реакторов имел объем 100 л, диаметр 450 мм, эллиптическое днище, плоскую крышку с загрузочным люком, устройство для перемешивания пульсирующего типа и пароводяную нагревательную рубашку толщиной 25 мм.

На рисунке 22 представлены схема размещения оборудования в камере и направления движения реагентов. Каждый реактор был оснащен линией выдачи растворов в передаточную (напорную) емкость, линией вакуума, линиями сдувки и теплоносителя. Загрузка прокаленных отходов осуществлялась через загрузочный люк в крышке, имеющий уплотнение и запорное устройство.

Процесс растворения в азотной кислоте проводился с подогревом раствора во время перемешивания пульсатором. По завершении процесса растворения полученный таким образом раствор передавался с помощью вакуума в передаточную емкость, после чего раствор проходил через нутч-фильтр (для удаления нерастворенных твердых частиц) в сборник фильтратов.

Примерно за сутки до аварии, 15.12.1965 г., технолог смены выдал оператору задание на прокалку партии 1726 «богатых» отходов (содержание урана более 1 %) в камере, печи которой были предназначены только для прокалки «бедных» отходов (содержание урана менее 1 %), что было нарушением инструкции по ядерной безопасности.

После прокалки из этой партии «богатых» отходов была отобрана проба, и до получения результатов анализа контейнер с «богатыми» отходами был передан в другую камеру, в которой уже хранилось много других отходов, на комплектацию партии отходов для последующей передачи на растворение.

В аналитической лаборатории определили массовую концентрацию урана в пробе 1726, которая составила 44 % (весовых). Этот результат был записан в журнале для проб, но не был передан в цех для записи в учетную карточку.

Оператор, комплектовавший отходы на растворение, обнаружил отсутствие результата анализа для пробы номер 1726 и по телефону запросил его в аналитической лаборатории.

В результате взаимного недопонимания между лаборантом и оператором последний записал результат анализа пробы 1826, в которой массовая доля урана была 0,32 %, т. е. в ~138 раз меньше, чем в пробе 1726. Этот результат оператор внес в учетную карточку и на этикетку контейнера с «богатыми» отходами.

Рисунок 21. Схема химико-металлургического цеха.

На следующий день, 16.12.1965 г., отходы массой 5 кг, включая около 2,2 кг урана с обогащением 90 %, были переданы на растворение как «бедные» и загружены в реактор, для которого норма загрузки составляла 0,3 кг урана, т. е. имело место превышение нормы загрузки более чем в 7 раз.

К этому моменту в двух других реакторах проводилось растворение «бедных» отходов.

«Богатые» отходы были загружены в реактор № 1. Согласно технологическому регламенту, растворение должно было производиться при температуре ~100 °C и при непрерывном перемешивании в течение 1,5 часов. Однако этот процесс был остановлен через 40 минут в связи с началом плановой уборки внутри камеры перед сдачей смены.

Примерно через 10 минут после выключения нагрева и перемешивания оператор, производивший уборку, услышал характерный звук кратковременного срабатывания ближайшего аварийного сигнализатора о возникновении ядерной аварии, покинул рабочее место и направился на центральный пульт управления для выяснения причин срабатывания сигнализатора. В этот момент произошло повторное срабатывание ближайшего сигнализатора. В последующие несколько секунд начали срабатывать сигнализаторы, более удаленные от реактора № 1. Всего в цехе сработало несколько десятков сигнализаторов типа УСИД-1.

Различимая во времени последовательность их срабатывания по мере увеличения расстояния между ними и местом аварии указывала на то, что нарастание мощности 1-го пика происходило на запаздывающих нейтронах. Весь персонал оперативно эвакуировался из цеха и укрылся в подземном переходе, как это и было предусмотрено инструкцией и отрабатывалось на противоаварийных тренировках.

Срабатывание сигнализаторов и эвакуация персонала относились к моменту времени около 22 ч 10 мин 16.12.1965 г.

До прибытия противоаварийной комиссии (23 часа) наблюдение за динамикой СЦР велось по показаниям стационарных дозиметрических приборов (у-излучение) и приборов РНС-6 технологического контроля (нейтронные поля) в другом здании на расстояния ~50 метров от места аварии. Было зафиксировано 4 пика с интервалом 15–20 минут. После прибытия комиссии оценка радиационной обстановки показала, что помещение центрального пульта управления (рис. 21) безопасно для персонала даже в моменты пиков мощности, и дальнейшие наблюдения и руководство противоаварийными работами осуществлялось из помещения центрального пульта управления.

Рисунок 22. Схема размещения оборудования в камере.

Опрос персонала, анализ технологической и учетной документации, анализ диаграммных записей показаний стационарных дозиметрических приборов, диагностика у-полей коллимированным носимым дозиметром «Карагач» позволили установить, что цепная реакция, вероятнее всего, протекает либо в реакторе № 1, либо в передаточной (напорной) емкости (рис. 22).

По результатам измерений мощность дозы γ-излучения через ~1,5 минуты после очередного пика на расстоянии ~2 м составляла в среднем 2,2 мР/с.

Основываясь на том, что имелась техническая возможность для дистанционной подачи раствора кадмия в промежуточную емкость, было принято решение реализовать в первую очередь эту возможность с использованием существовавших коммуникаций. Эта операция была выполнена после 9-го пика мощности.

После заливки раствора кадмия было решено сделать контрольную паузу около 40 минут, чтобы убедиться в эффективности принятых мер. Однако уже через 20 минут был зафиксирован очередной 10-й пик, что позволило однозначно определить место аварии – реактор № 1 (рис. 22).

Дистанционная подача раствора кадмия в реактор № 1 или выдача из него раствора урана, требовавшие сравнительно длительных ручных манипуляций, были признаны слишком опасными для персонала, так как вся запорная арматура (вентили) находилась внутри аварийной камеры и необходимые операции могли быть выполнены только вручную.

Поэтому было принято решение поместить в реактор через его загрузочный люк нарезанные из листа толщиной 0,5 мм полоски (стружки) металлического кадмия, смятые в комок с учетом диаметра загрузочного люка.

Операция была разбита на три последовательных этапа:

• Снятие двух перчаток для обеспечения доступа к загрузочному люку.

• Открывание крышки загрузочного люка.

• Погружение в раствор через загрузочный люк стружки кадмия толщиной 0,5 мм.

Первые два этапа выполнялись после 10-го пика специально проинструктированными опытными операторами, затратившими на эту работу (включая время подхода и ухода) 30 и 60 секунд.

К этому моменту мощность дозы по показаниям дозиметра вышла на постоянный уровень, и все работы были приостановлены.

На последнем этапе после одиннадцатого пика и паузы для существенного снижения мощности дозы старший инженер-физик осторожно опустил кадмий в реактор № 1, стараясь не создать на поверхности раствора волну, которая могла бы вызвать СЦР. На эту операцию было затрачено около 20 с. Немедленно началось растворение кадмиевой стружки в азотной кислоте, о чем свидетельствовало выделение типичного оранжевого дымка.

После введения кадмия в реактор № 1 состояние системы стало подкритическим, и по показаниям дозиметрических приборов наблюдался устойчивый спад мощности дозы γ-излучения.

Все три работника, выполнявшие описанные выше операции, имели при себе индивидуальные дозиметры, показания которых не превысили 0,3 Р.

Дозы облучения персонала составили:

• не более 0,1 Р – 17 человек,

• 0,1–0,2 Р – 7 человек,

• 0,2–0,27 Р – 3 человека.

Полное число делений за 11 пиков мощности было определено по активности проб раствора, отобранных после ликвидации аварии, и составило ~5,5 X 1017.

Через сутки после прекращения цепной реакции раствор из реактора был передан по временной схеме в безопасные емкости, которые затем отправили на хранение в специальное помещение и впоследствии переработали по обычной технологии после предварительной очистки от кадмия. По результатам лабораторного анализа проб концентрация урана в растворе составила 77 г/л. Общее количество материала в емкости составляло 28,6 л.

Оборудование камеры не было повреждено или загрязнено и через несколько дней после аварии было вновь введено в нормальную эксплуатацию.

В течение 2–3 лет почти все опасное оборудование в цехе (примерно 94 %) было заменено на безопасное.


    Ваша оценка произведения:

Популярные книги за неделю