Текст книги "Обзор ядерных аварий с возникновением СЦР (LA-13638)"
Автор книги: В. Фролов
Соавторы: Б. Рязанов,Норман Прувост,Шан Монахан,Томас Маклафлин,В. Свиридов
Жанр:
Физика
сообщить о нарушении
Текущая страница: 17 (всего у книги 18 страниц)
Литература
1. W. R. Stratton, «A Review of Criticality Accidents,» Los Alamos Scientific Laboratory report LA-3611 (September 1967).
2. W. R. Stratton, revised by D. R. Smith, "A Review of Criticality Accidents," Lawrence Livermore National Laboratory report DOE/NCT-04 (March 1989).
3. H. C. Paxton, "Glossary of Nuclear Criticality Terms," Los Alamos National Laboratory report LA-11627-MS (October 1989).
4. F. Y. Barbry, "SILENE Reactor: Results of Selected Typical Experiments," CEA Institut de Protection et de Surete Nucleaire, Departement de Recherches en Securite, Centre d'Etudes de VALDUC, Service de Recherches en Surete et Criticite Report SRSC no223 (September 1994).
5. P. Lecorche and R. L. Seale, "Review of the Experiments Performed to Determine the Radiological Consequences of a Criticality Accident," Oak Ridge Y-12 Plant report Y-CDC-12 (November 1973).
6. M. S. Dunenfeld and R. K. Stitt, "Summary Review of the Kinetics Experiments on Water Boilers," Atomics International, North American Aviation, Inc. report NAA-SR-7087 (February 1963).
7. F. S. Patton, et al., "Accidental Radiation Excursion at the Y-12 Plant, June 16, 1958," Oak Ridge Y-12 Plant report Y-1234 (July 1958).
8. A. D. Callihan and J. T. Thomas, "Accidental Radiation Excursion at the Oak Ridge Y-12 Plant – I, Description and Physics of the Accident," Health Physics 1, 363–372 (1959).
9. "Oak Ridge Y-12 Accidental Excursion, June 16, 1958," Nucleonics 16 (11), 138–140, 200–203 (November 1958).
10. G. S. Hurst, R. H. Ritchie, and L. C. Emerson, "Accidental Radiation Excursion at the Oak Ridge Y-12 Plant – III, Determination of Radiation Doses," Health Physics 2, 121–133 (1959).
11. H. C. Paxton, R. D. Baker, W. J. Maraman, and R. Reider, "Nuclear Critical Accident at the Los Alamos Scientific Laboratory on December 30, 1958," Los Alamos Scientific Laboratory report LAMS-2293 (February 1959).
12. H. C. Paxton, R. D. Baker, W. J. Maraman, and R. Reider, "Los Alamos Criticality Accident, December 30, 1958," Nucleonics 17 (4), 107–108, 151–153 (April 1959).
13. W. L. Ginkel, et al., "Nuclear Incident at the Idaho Chemical Processing Plant on October 16, 1959," Phillips Petroleum Company, Atomic Energy Division report IDO-10035 (February 1960).
14. R. C. Paulus, et al., "Nuclear Incident at the Idaho Chemical Processing Plant on January 25, 1961," Phillips Petroleum Company, Atomic Energy Division report IDO-10036 (June 1961).
15. J. W. Latchum, F. C. Haas, W. M. Hawkins, and F. M. Warzel, "Nuclear Incident at the Idaho Chemical Processing Plant of January 25, 1961," Phillips Petroleum Company report LA—54—61A, (April 1961).
16. A. R. Olsen, R. L. Hooper, V. O. Uotinen, and C. L. Brown, "Empirical Model to Estimate Energy Release from Accidental Criticality," Transactions of the American Nuclear Society 19, 189–191 (October 1974).
17. D. L. Hetrick, letter to Thomas McLaughlin (14 July 1999).
18. A. D. Callihan, "Accidental Nuclear Excursion in Recuplex Operation at Hanford in April 1962," Nuclear Safety 4 (4), 136–144 (June 1963).
19. E. D. Clayton, "Further Considerations of Criticality in Recuplex and Possible Shutdown Mechanism," Hanford Atomic Products Operation report HW—77780 (May 1963).
20. C. N. Zangar, "Summary Report of Accidental Nuclear Excursion, Recuplex Operation, 234-5 Facility," Richland Operations Office, U. S. Atomic Energy Commission report TID—18431 (1962).
21. C. N. Zangar, et al., "Final Report of Accidental Nuclear Excursion, Recuplex Operation, 234-5 Facility," Hanford Operations Office report HW—74723 (August 1962).
22. E. D. Clayton, "The Hanford Pulser Accident," Transactions of the American Nuclear Society 46, 463–464 (June 1984).
23. F. R. Nakache and M. M. Shapiro, "The Nuclear Aspects of the Accidental Criticality at Wood River Junction, Rhode Island, July 24, 1964," United Nuclear Corporation report TID-21995 (November 1964).
24. H. Kouts, et al., "Report of the AEC Technical Review Committee," United States Atomic Energy Commission (November 1964).
25. J. T. Daniels, H. Howells, and T. G. Hughes, "Criticality Incident – Aug 24, 1970, Windscale Works," Transactions of the American Nuclear Society 14, 35–36 (June 1971).
26. M. C. Evans, "A Review of Criticality Accidents Within the European Community," Transactions of the American Nuclear Society 46, 462–463 (June 1984).
27. M. C. Evans, "A Review of Criticality Accidents Within the European Community," supplemental material presented at the 1984 Annual Meeting of the American Nuclear Society, New Orleans, Louisiana (June 1984).
28. "Recovery of ICPP from Criticality Event of October 17, 1978, Part II, Support and Safety Justification of the Specific Approach to Emptying H-100," Allied Chemical, Idaho Chemical Programs report ACI—366 (January 1979).
29. "ICPP Criticality Event of October 17, 1978," Nuclear Safety 21 (5), 648–653 (October 1980).
30. R. E. Wilson and W. D. Jensen, "Reflections on the 1978 ICPP Criticality Accident," in Proceedings of the Sixth International Conference on Nuclear Criticality Safety, Versailles, Vol. 4, pp. 1540–1544 (September 1999).
31. "Report of the Uranium Processing Plant Criticality Accident Investigation Committee," The Uranium Processing Plant Criticality Accident Investigation Committee of The Nuclear Safety Commission (December 1999).
32. H. Mizuniwa, et al., "Dose Evaluation to Workers at JCO Criticality Accident Based on Whole Body Measurement of Sodium—24 Activity and Area Monitoring" (in Japanese), Journal of the Japanese Nuclear Power Association 43 (1), 56–66 (January 2001).
33. F. R. McCoy, III, T. P. McLaughlin, and L. C. Lewis, "Trip Report of Visit to Tokyo and Tokai-mura, Japan, on October 18–19, 1999, for Information Exchange with Government of Japan Concerning the September 30, 1999 Tokai-mura Criticality Accident," U. S. Department of Energy (November 1999).
34. J. B. Briggs, Editor, International Handbook of Evaluated Criticality Safety Benchmark
Experiments, Nuclear Energy Agency, NEA/NSC/DOC(95)-03 (September 2002).
35. H. C. Paxton and N. L. Pruvost, "Critical Dimensions of Systems Containing 235U, 239Pu, and 233U, 1986 Revision," Los Alamos National Laboratory report LA-10860-MS (July 1987).
36. E. F. Taylor and J. A. Wheeler, Spacetime Physics (W. H. Freeman and Co., San Francisco), p. 60 (1966).
37. A. D. Callihan, W. J. Ozeroff, H. C. Paxton, and C. L. Schuske, "Nuclear Safety Guide," U. S. Atomic Energy Commission report TID-7016 (1957).
38. D. F. Hayes, "A Summary of Accidents and Incidents Involving Radiation in Atomic Energy Activities, June 1945 through December 1955," U. S. Atomic Energy Commission report TID—5360 (August 1956).
39. L. D. P. King, "Design and Description of Water Boiler Reactors," in Proceedings of the International Conference on Peaceful Uses of Atomic Energy, Geneva, Vol. 2, pp. 372–391 (August 1955).
40. B. R. Leonard, Jr., "A Study of the Radiation Burst in the Hanford Homogeneous Reactor," Hanford Works report HW—24327 (May 1952).
41. J. T. Thomas and A. D. Callihan, "Radiation Excursions at the ORNL Critical Experiments Laboratory, I– May 26, 1954, II– February 1, 1956," Oak Ridge National Laboratory report ORNL-2452 (May 1958).
42. H. C. Paxton, "Booby Traps," Los Alamos Scientific Laboratory report AECD-4240 (June 1957).
43. A. D. Callihan, "Excursion at the Oak Ridge Critical Experiments Facility, January 30, 1968," Oak Ridge National Laboratory report ORNL-TM-2207 (January 1968).
44. H. C. Paxton, "Critical-Assembly Booby Traps," Nucleonics 16 (3), 80–81 (March 1958).
45. R. W. Paine, Jr., et al., "A Study of an Accidental Radiation Burst," Los Alamos Scientific Laboratory report LA—1289 (March 1951).
46. E. C. Mallary, G. E. Hansen, G. A. Linenberger, and D. P. Wood, "Neutron Burst from a Cylindrical Untamped Oy Assembly," Los Alamos Scientific Laboratory report LA—1477 (July 1952).
47. R. E. Peterson and G. A. Newby, "An Unreflected U-235 Critical Assembly," Nuclear Science and Engineering 1 (2), 112–125 (May 1956).
48. T. F. Wimett, et al., "Time Behavior of Godiva Through Prompt Critical," Los Alamos Scientific Laboratory report LA—2029 (April 1956).
49. H. C. Paxton, "Godiva, Topsy, Jezebel – Critical Assemblies at Los Alamos," Nucleonics 13 (10), 48–50 (October 1955).
50. A. M. Voinov, S. V. Vorontsov, V. T. Punin, and I. G. Smirnov, "Criticality accidents at VNIIEF," in Proceedings of the Sixth International Conference on Nuclear Criticality Safety, Versailles, Vol. 2, pp. 874–887 (September 1999).
51. А. М. Воинов и др., "Стенд для исследования нейтронно-физических характеристик простых критических сборок", ВАНТ, серия Физика ядерных реакторов, вып. 2, с. 21–29, 1992 г.
52. H. C. Paxton, "Godiva Wrecked at Los Alamos," Nucleonics 15 (4), 104 (April 1957).
53. W. R. Stratton, T. H. Colvin, and R. B. Lazarus, "Analysis of Prompt Excursions in Simple Systems and Idealized Fast Reactors," in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Vol. 12, pp. 196–206 (September 1958).
54. T. F. Wimett, and J. D. Orndoff, "Applications of Godiva II Neutron Pulses," in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Vol. 10, pp. 449–460 (September 1958).
55. A. D. Callihan, "Criticality Excursion of November 10, 1961," Oak Ridge National Laboratory report ORNL-TM-139 (February 1962).
56. М. И. Кувшинов и др., "Экспериментальные исследования связанных систем, содержащих импульсный реактор БИР и подкритическую сборку", ВАНТ, cерия Импульсные реакторы и простые критические сборки, № 2, с. 3—15, 1988 г.
57. R. L. Kathren, W. C. Day, D. H. Denham, and J. L. Brown, "Health Physics Following a Nuclear Excursion: The LRL Incident of 26 March, 1963," Lawrence Radiation Laboratory report UCRL-7345, Rev. 1 (June 1963).
58. P. D. O'Brien, "Fast Burst Reactor Operational Incidents," in Proceedings of the National Topical Meeting on Fast Burst Reactors, Albuquerque, NM, (U. S. Atomic Energy Commission), pp. 373–384 (January 1969).
59. V. A. Teryokhin, V. D. Perezhogin, and Yu. A. Sokolov, "Criticality Measurements at VNIITF – Review," in Proceedings of the Fifth International Conference on Nuclear Criticality Safety, Albuquerque, NM, Vol. 1, pp. 4.44—4.47 (September 1995).
60. N. P. Voloshin, I. S. Pogrebov, and V. A. Teryokhin, "RFNC–VNIITF Physical Experimental
Division and a Short Historical Sketch of Critical Mass Measurements," in Proceedings of the Fifth International Conference on Nuclear Criticality Safety, Albuquerque, NM, Vol. 1, pp. P.31—P.36 (September 1995).
61. A. H. Kazi, H. G. Dubyoski, and R. W. Dickinson, "Preoperational Test Experience with the Army Pulse Radiation Facility Reactor," in Proceedings of the National Topical Meeting on Fast Burst Reactors, Albuquerque, NM (U. S. Atomic Energy Commission), pp. 353–371 (January 1969).
62. Н. П. Волошин, "По материалам заключения комиссии о причинах ядерной аварии в РФЯЦ-ВНИИЭФ в г. Сарове", Атомпресса, № 26 (262), июль 1997 г.
63. В. Т. Пунин, И. Г. Смирнов, С. А. Зыков, "Авария на стенде критических сборок в РФЯЦ-ВНИИЭФ", Атомная энергия, том 83, вып. 2, с. 154–156, август 1997 г.
64. Г. Ф. Ходалев и др., "Доза облучения экспериментатора при аварии на критической сборке в РФЯЦ-ВНИИЭФ", Атомная энергия, том 85, вып. 2, с. 153–158, август 1998 г.
65. H. F. McFarland, Controlled Nuclear Chain Reaction: The First 50 Years (American Nuclear Society, La Grange Park, IL), pp. 52–54 (1992).
66. D. G. Hurst and A. G. Ward, "Canadian Research Reactors," in Progress in Nuclear Energy, Series II, REACTORS (Pergamon Press, London), Vol. 1, pp. 1—48 (1956).
67. R. O. Brittan, R. J. Hasterlik, L. D. Marinelli, and F. W. Thalgott, "Technical Review of ZPR-1 Accidental Transient – The Power Excursion, Exposures, and Clinical Data," Argonne National Laboratory report ANL-4971 (January 1953).
68. W. B. Lewis, "The Accident to the NRX Reactor on December 12, 1952," Atomic Energy of Canada Ltd. report DR-32 (July 1953).
69. W. J. Henderson, A. C. Johnson, and P. R. Tunnicliffe, "An Investigation of Some of the Circumstances Pertinent to the Accident to the NRX Reactor of December 12, 1952," Atomic Energy of Canada Ltd. report NEI-26 (March 1953).
70. J. R. Dietrich, et al., "Experimental Investigation of the Self-limitation of Power During Reactivity Transients in a Subcooled, Water-moderated Reactor, Borax-I Experiments, 1954," Argonne National Laboratory report ANL-5323 (1954).
71. "Reactors, Operational Power Reactors," Nucleonics 13 (9), 40–45 (September 1955).
72. J. R. Dietrich, "Experimental Determinations of the Self-regulation and Safety of Operating Water-moderated Reactors," in Proceedings of the United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Vol. 13, pp. 88—101 (August 1955).
73. J. R. Dietrich and D. C. Layman, "Transient and Steady State Characteristics of a Boiling Reactor, The Borax Experiments, 1953," Argonne National Laboratory report AECD-3840 (February 1954).
74. T. J. Thompson, "Chapter 11 – Accidents and Destructive Tests," The Technology ofNuclear Reactor Safety (The M. I. T. Press, Cambridge, MA), Vol. 1, pp. 609–610, 699 (1964).
75. "Yugoslavian Criticality Accident, October 15, 1958," Nucleonics, 17 (4), 106, 154–156 (April 1959).
76. C. C. Lushbaugh, "Reflections on Some Recent Progress in Human Radiobiology," in Advances in Radiation Biology (Academic Press Inc., New York), Vol. 3, pp. 292–293 (1969).
77. A. N. Tardiff, "Some Aspects of the WTR and SL-1 Accidents," in Proceedings of the IAEA Symposium on Reactor Safety and Hazards Evaluation Techniques, Vienna, Vol. 1, pp. 43–88 (May 1962).
78. W. E. Nyer, G. O. Bright, and R. J. McWhorter, "Reactor Excursion Behavior," in Proceedings of the Third United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Vol. 13, pp. 13–25 (August 1964).
79. R. W. Miller, A. Sola, and R. K. McCardell, "Report of the SPERT I Destructive Test Program on an Aluminum, Plate-type, Water-moderated Reactor," Phillips Petroleum Company report IDO-16883 (June 1964).
80. D. M. Parfanovich, "Summary of Two Criticality Accidents at the Russian Research Center Kurchatov Institute," Idaho National Engineering and Environmental Laboratory report INEEL/EXT-98-00409 (August 1998).
81. A. Yu. Gagarinski and V. D. Pavlov, "Water-moderated Hexagonally Pitched Lattices of U(90 %)O2 + Cu Fuel Rods with GD or SM Rods," HEU-COMP-THERM-004 in International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)-03, Vol. II (September 2002).
82. D. Beninson, "Report of the Accident that Occurred to the Critical Assembly RA—2 Reactor on September 23, 1984," [The accident actually took place September 23, 1983], US NRC Information Notice No. 83–66, Supplement 1 (May 1984).
83. F. Seghers, "Questions Revolve Around Death in Argentine Research Reactor," Nucleonics Week 24 (40), 1 (October 1983).
84. O. R. Frisch, et al., "Controlled Production of an Explosive Nuclear Chain Reaction," Los Alamos Scientific Laboratory report LA-397 (September 1945).
85. F. De Hoffmann, B. T. Feld, and P. R. Stein, "Delayed Neutrons from U235 After Short Irradiation," Physical Review 74 (10), 1330–1337 (November 1948).
86. R. O. Brittan, "Analysis of the EBR-1 Core Meltdown," in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Vol. 12, pp. 267–272 (September 1958).
87. J. H. Kittel, M. Novick, and R. F. Buchanan, "The EBR-1 Meltdown – Physical and Metallurgical Changes in the Core," Argonne National Laboratory report ANL-5731 (November 1957).
88. "Summary Report of HTRE No. 3 Nuclear Excursion," General Electric Company report APEX-509 (August 1959).
89. M. E. Remley, et al., "Experimental Studies on the Kinetic Behavior of Water Boiler Type Reactors," in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Vol. 11, pp. 447–456 (September 1958).
90. R. K. Stitt, "A Summary of Experimental Results of the Spherical Core Investigations in the KEWB Program," Transactions of the American Nuclear Society 2 (1), A Supplement to Nuclear Science and Engineering, pp. 212–213 (June 1959).
91. D. L. Hetrick, et al., "Preliminary Results on the Kinetic Behavior of Water Boiler Reactors," North American Aviation Company report NAA-SR-1896 (April 1957).
92. R. E. Malenfant, H. M. Forehand, and J. J. Koelling, "Sheba: A Solution Critical Assembly," Transactions of the American Nuclear Society 35, pp. 279–280 (November 1980).
93. S. G. Forbes, et al., "Analysis of Self-shutdown Behavior in the SPERT I Reactor," Phillips Petroleum Company report IDO-16528 (July 1959).
94. W. E. Nyer and S. G. Forbes, "SPERT I Reactor Safety Studies," in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Vol. 11, pp. 470–480 (September 1958).
95. F. Schroeder, et al., "Experimental Study of Transient Behavior in a Subcooled, Water-moderated Reactor," Nuclear Science and Engineering 2 (1), 96—115 (February 1957).
96. R. S. Stone, H. P. Sleeper, Jr., R. H. Stahl, and G. West, "Transient Behavior of TRIGA, a Zirconium-hydride, Water-moderated Reactor," Nuclear Science and Engineering 6 (4), 255–259 (October 1959).
97. S. L. Koutz, et al., "Design of a 10-kw Reactor for Isotope Production, Research and Training Purposes," in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Vol. 10, pp. 282–286 (September 1958).
98. И. Х. Ганев, Физика и расчет ядерных реакторов (Энергоиздат, Москва), с. 273–277, 1981 г.
99. G. E. Hansen, "Burst Characteristics Associated with the Slow Assembly of Fissionable Materials," Los Alamos Scientific Laboratory report LA-1441 (July 1952).
100. K. Fuchs, "Efficiency for Very Slow Assembly," Los Alamos Scientific Laboratory report LA-596 (August 1946).
101. G. E. Hansen, "Assembly of Fissionable Material in the Presence of a Weak Neutron Source," Nuclear Science and Engineering 8 (6), 709–719 (December 1960).
102. G. R. Keepin, "Integral Solution of Reactor Kinetic Equations," Physics of Nuclear Kinetics (Addison – Wesley Publishing Company Inc., Reading, MA), p. 287 (1965).
103. G. R Keepin and C. W. Cox, "General Solution of the Reactor Kinetic Equations," Nuclear Science and Engineering 8 (6), 670–690 (December 1960).
104. D. P. Gamble, "A Proposed Model of Bubble Growth During Fast Transients in the KEWB Reactor," Transactions of the American Nuclear Society 2 (1), A Supplement to Nuclear Science and Engineering, pp. 213–214 (June 1959).
105. D. P. Gamble, "A Proposed Model of Bubble Growth During Fast Transients in the KEWB Reactor," supplemental material presented at the 1959 Annual Meeting of the American Nuclear Society (June 1959).
Приложение А: Глоссарий терминов по авариям с возникновением СЦР
Несколько лет назад был составлен авторитетный глоссарий терминов по критичности, употребляемых в ядерной науке и технике. Мы решили включить его в данный отчет целиком как приложение, а не только ту часть, которая относится непосредственно к авариям с возникновением критичности. Таким образом, мы надеемся, что настоящий отчет в будущем найдет еще одно практическое применение как своеобразный стандарт для определений и терминов.
Предлагаемый ниже Глоссарий терминов по критичности ядерных устройств составлен Хью Пакстоном (LA-11627-MS)3. Данный глоссарий содержит термины, используемые в литературе по критичности ядерных устройств и по безопасности при возникновении СЦР.
Нижеследующая пара терминов является настолько значимой и часто употребляемой, что мы решили рассмотреть ее отдельно и предоставили ей вводное место.
critical, criticality [критический, критичность]: правильное использование обычно соответствует следующему определению, приводимому в Международном словаре Вебстера, издание второе, полное:
– ity [-сть]: cуффикс, обозначающий состояние, условие, качество, степень, используемый для образования абстрактных существительных от прилагательных, например, кислотность (acidity), несчастье (calamity).
Таким образом, выражения "delayed criticality" (критичность на запаздывающих нейтронах) и "delayed critical state" (критическое состояние на запаздывающих нейтронах) являются эквивалентными. Слово "critical" не используется как существительное, но может употребляться в этой роли в обозначениях, на схемах и графиках, там, где имеется дефицит места, означая "critical state". В случаях, когда значение прилагательного "critical" может быть неправильно истолковано, например, "critical terms", "critical accidents", его можно заменить для ясности существительным "criticality". Использование термина "criticality" для обозначения "critical condition", как мы можем часто это слышать, является неприемлемым. Смотри: критичность на запаздывающих нейтронах, критичность на мгновенных нейтронах.
Albedo, neutron [альбедо нейтронов]: вероятность того, что при определенных условиях нейтрон, входящий в некую область через некую поверхность, вернется обратно через эту же поверхность.
absorbed dose [поглощенная доза]: энергия, переданная веществу прямо или косвенно через воздействие ионизирующего излучения, на единицу массы облученного материала в данной конкретной точке; единицей поглощенной дозы является рад; в настоящее время в Международной системе единиц (СИ) используется грей (Гр). 100 рад = 1 грей. Смотри: рад, грей.
absorption, neutron [поглощение нейтронов]: реакция, инициируемая нейтронами, включая деление, в результате которой нейтрон перестает существовать как свободная частица. Сечение реакции поглощения обозначается как ca. Смотри: захват нейтронный, сечение реакции нейтронов.
alarm system, criticality accident [система аварийной сигнализации, авария с возникновением критичности]: система, способная подавать звуковой сигнал при обнаружении нейтронного или гамма-излучения во время аварии с возникновением критичности. Смотри: авария с возникновением СЦР.
alpha particle [альфа частица]: ядро гелия-4, испускаемое в процессе превращения ядра.
beta particle [бета-частица]: электрон или позитрон, испускаемый в процессе превращения ядра.
buckling [лапласиан, оператор Лапласа]: в нашем случае это – алгебраические выражения, устанавливающие соотношение между критическими размерами простых форм (сфера, цилиндр, куб) активной зоны одного состава и такими же отражателями. Например, известный радиус критической сферы можно использовать для определения радиуса и длины соответствующего критического цилиндра. Смотри: активная зона, отражатель.
burst, prompt [импульс на мгновенных нейтронах]: обычно имеет отношение к импульсу энергии при делении в реакторе импульсного типа. Смотри импульсный реактор на мгновенных нейтронах, всплеск (мгновенный всплеск мощности).
capture, neutron [захват нейтронный]: поглощение нейтрона, не приводящее к делению или образованию другого нейтрона. Сечение захвата обозначается как сс. Смотри: поглощение нейтронов, сечение реакции нейтронов.
cent [цент]: единица реактивности, равная одной сотой доли приращения между критичностью на запаздывающих нейтронах и критичностью на мгновенных нейтронах (в). Смотри: бета, реактивность.
chain reaction, fission [цепная реакция деления]: последовательность реакций деления ядра, в которых процесс деления инициируется нейтронами, образованными в предыдущем акте деления. В зависимости от того, является ли число делений, непосредственно инициированных нейтронами одного деления, в среднем меньшим, равным или большим единицы, различают цепные реакции сходящиеся (подкритические), самоподдерживающиеся (критические) и расходящиеся (надкритические).
core [активная зона]: часть делящейся системы, содержащая наибольшее количество делящегося материала, отделяемая от внешнего отражателя. Смотри: система с делящимся материалом, отражатель.
critical infinite cylinder [бесконечный критический цилиндр]: для определенной делящейся среды и окружающего отражателя бесконечно длинный цилиндр с диаметром, способствующим критическому состоянию.
critical infinite slab [бесконечная критическая плита]: для определенной делящейся среды и отражателя на каждой из поверхностей – плита с бесконечными боковыми размерами и толщиной, обеспечивающей ее критичность.
criticality accident [авария с возникновением СЦР]: выброс энергии в результате неожиданно возникшей самоподдерживающейся или неограниченно растущей цепной реакции.
criticality safety [ядерная безопасность]: комплекс мер и средств защиты от последствий аварии с возникновением СЦР, предпочтительно, путем предотвращения этой аварии. Включает методики, подготовку персонала и другие меры дополнительно к физической защите. Смотри: авария с возникновением СЦР.
criticality safety standards [стандарты обеспечения ядерной безопасности]: данные стандарты описывают методы обеспечения ядерной безопасности, общие для промышленности. Их согласование и принятие обеспечивается Американским национальным институтом стандартов.
cross section σ, neutron [сечение реакции нейтронов]: коэффициент пропорциональности, связывающий скорость данной конкретной реакции (например, захвата или деления) с произведением количества нейтронов в секунду, падающих перпендикулярно на единицу площади тонкой мишени, на количество ядер мишени на единице площади. Для каждого ядра мишени рассматривается малая площадь, выражаемая в барнах, т. е. 10—24 см2. Смотри: поглощение нейтронов, захват нейтронный, деление ядра.
decay, radioactive [распад радиоактивный]: процесс спонтанного ядерного превращения, в ходе которого испускаются частицы или гамма-излучение, рентгеновское излучение как следствие захвата орбитального электрона, или в ходе которого происходит спонтанное деление ядра. Смотри: деление ядра, гамма-излучение.
delayed criticality [критичность на запаздывающих нейтронах]: состояние делящейся системы, при котором keff = 1, т. е. устойчивое состояние. Смотри: коэффициент размножения.
delayed neutrons [запаздывающие нейтроны]: нейтроны, испускаемые возбужденным ядром в результате бета-распада после деления в интервале времени от секунд до нескольких минут. Смотри: мгновенные нейтроны.
dollar [бета]: единица реактивности, равная разнице между критичностью на запаздывающих нейтронах и на быстрых нейтронах для фиксированной системы осуществления цепной реакции. Смотри: реактивность.
dose equivalent [эквивалентная доза]: поглощенная доза, умноженная на коэффициент качества и другие менее значимые преобразующие коэффициенты с целью сложения доз от различных излучений (альфа, бета, гамма, медленные нейтроны, быстрые нейтроны) для получения эффективной полной дозы в данной конкретной точке. Общепринятой единицей измерения является бэр; в настоящее время, согласно Международной системе единиц (CH), это зиверт (Зв), 100 бэр = 1 Зв. Смотри: бэр, зиверт.
dose rate [мощность дозы]: поглощенная доза в единицу времени. Смотри: поглощенная доза.
excursion, nuclear [внезапное возрастание критичности]: резкое, в виде пика, возрастание скорости деления в надкритической системе с последующим снижением до низкого значения.
excursion, prompt-power [мгновенное резкое увеличение мощности, разгон на мгновенных нейтронах]: внезапное возрастание мощности, возникающее как результат создания критической конфигурации делящегося материала на мгновенных нейтронах. Как правило, это резкий всплеск мощности, за которым следует пологий участок кривой с возможным прерыванием ее небольшими пиками. Смотри: внезапное возрастание критичности, всплеск (мгновенный всплеск мощности).
excursion period (T) [период выбега (Т)]: характерное время, в течение которого мощность ядерного деления возрастает в e = 2,718 раз при ее экспоненциальном росте (et/T) в условиях ядерной критичности до начала действия механизма гашения. Смотри: внезапное возрастание критичности, механизм гашения.
exponential column [экспоненциальная колонна]: подкритический блок или цилиндр из делящегося материала с независимым нейтронным источником на конце. При соответствующих условиях отклик нейтронного детектора снижается экспоненциально с расстоянием от источника. По логарифму скорости снижения отклика и боковым размерам колонны можно определить размеры критической сборки из данного материала без отражателя.
exposure [экспозиция/облучение]: мера ионизации атмосферного воздуха под воздействием рентгеновского или гамма – излучений; сумма электрических зарядов всех ионов одного знака в малом объеме воздуха при полной остановке всех электронов, освобожденных фотонами, на единицу массы воздуха. Обратите внимание, что понятие экспозиция относится к среде, а не к поглощающему материалу. Единицей экспозиции является рентген. Смотри: гамма-излучение, рентген. Другими словами, экспозиция – это воздействие излучения на живые и неживые объекты.
favorable geometry [безопасная геометрия]: геометрические пределы делящегося материала, обеспечивающие его подкритичность в предполагаемых условиях. Примером могут быть ограниченные размеры диаметров труб, содержащих делящийся раствор, или ограниченные объемы контейнеров с делящимся раствором.
fissile nucleus [делящееся ядро]: ядро, делящееся тепловыми нейтронами, при условии, что эффективное сечение деления
превышает эффективное сечение поглощения
Общеизвестными делящимися ядрами являются ядра 235U, 239Pu и 233U. Смотри: поглощение нейтронов, деление ядра.
fissile system [система с делящимся материалом]: система, содержащая ядра 235U, 239Pu или 233U и способная к значительному размножению нейтронов. Смотри: деление ядра, размножение подкритическое.
fission, nuclear [деление ядра]: расщепление ядра (обычно Th, U, Pu, или тяжелых ядер) на две (реже более) массы одного порядка величины, сопровождающееся выделением большого количества энергии и испусканием нейтронов. Хотя некоторые виды деления происходят спонтанно, деление под действием нейтронов представляет наибольший интерес в плане безопасности при возникновении СЦР. Сечение деления обозначается af, V – количество нейтронов, испускаемых в одном акте деления. Смотри: сечение реакции нейтронов.