412 000 произведений, 108 200 авторов.

Электронная библиотека книг » В. Фролов » Обзор ядерных аварий с возникновением СЦР (LA-13638) » Текст книги (страница 12)
Обзор ядерных аварий с возникновением СЦР (LA-13638)
  • Текст добавлен: 31 октября 2016, 00:19

Текст книги "Обзор ядерных аварий с возникновением СЦР (LA-13638)"


Автор книги: В. Фролов


Соавторы: Б. Рязанов,Норман Прувост,Шан Монахан,Томас Маклафлин,В. Свиридов

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 12 (всего у книги 18 страниц)

4. Лос-Аламосская национальная лаборатория, 18 апреля 1952 г. 38, 42, 44, 46

«Джемайма» – цилиндрическая сборка из металлического урана (93 %) без отражателя; ход энерговыделения неизвестен; незначительные дозы облучения.

Система, в которой произошел разгон мощности, представляла собой цилиндрическую сборку из металлического урана с обогащением, равным 93 %, составленную из нескольких пластин диаметром 26,7 см и толщиной 0,8 см.

Полная сборка состояла из двух частей, причем нижняя часть была собрана из шести пластин, а верхняя собиралась сначала из трех, а потом из четырех пластин.

График обратного умножения в зависимости от числа пластин, или общего количества урана в системе, явно указывает на то, что систему не следовало делать из 11 пластин. Тем не менее, такую систему попытались собрать после того, как два человека независимо сделали одну и ту же ошибку в расчетах. В нарушение правил эксплуатации данные не были представлены в виде графика. Энерговыделение в пике составило 1,5 х 1016 делений.

Без воспроизведения условий эксперимента невозможно установить, как изменялась мощность, выделяемая в массе урана, равной 92,4 кг. В тот момент, когда система была близка к критичности на мгновенных нейтронах, нижняя часть сборки двигалась по инерции вверх, и ввод реактивности, наверное, не превышал 2 или 3 р/с. Такая скорость ввода реактивности может дать пик в 1015 делений. После этого мощность стабилизировалась на уровне около 1017 делений/с, что было как раз достаточно для компенсации введенной реактивности. Большая часть из 1,5 х 1016 делений должна была произойти на этом плато. Мощность упала практически до нуля, когда автоматическая система аварийной защиты развела в стороны две массы металла.

Система была оборудована дистанционным управлением, никакого механического повреждения системы или делящегося материала не было. Никто из персонала не облучился, экспериментальная зона осталась чистой. Очевидное свойство самогашения, продемонстрированное при данном всплеске мощности, стимулировало дальнейшие исследования на сборке «Леди Годива» 47,48,49, которая использовалась в качестве установки для генерации мощных импульсов нейтронов деления с длительностью менее 100 микросекунд.

5. ВНИИЭФ, г. Саров (Арзамас-16), 9 апреля 1953 г. 50

Активная зона (центральная часть сборки) из плутония массой ~8 кг с отражателем из природного урана; управление экспериментом дистанционное из пультового помещения с биологической защитой.

Авария произошла при проведении эксперимента, целью которого являлось изучение ядерно-физических характеристик размножающей системы (РС), содержащей плутониевую центральную часть (активную зону) внешним диаметром ~100 мм в отражателе из природного урана внешним диаметром 300 мм. Активная зона (АЗ) состояла из четырех полусферических слоев плутония в δ-фазе, покрытых слоем никеля толщиной ~0,1 мм.

Отражатель из природного урана состоял из шести полусферических слоев, вкладывающихся друг в друга. В плоскости разъема в урановых оболочках имелся канал диаметром 26 мм.

В центре АЗ в полости диаметром 28 мм находился нейтронный источник мощностью ~107 н/с.

Рисунок 46. Схема опыта с исследуемой РС на стенде ФКБН.

В диаметральной плоскости слои РС разделялись диском из дюралюминия толщиной 5 мм с радиальным пазом, в котором располагались 24 таблетки из U3O8 (90 % обогащения по 235U) весом 80 мг каждая.

PC была собрана на установке ФКБН 51, первый вариант которой в 1950–1953 гг. представлял собой гидравлический подъемник с дистанционным управлением. Стенд ФКБН размещался в здании Б реакторной площадки, удаленной от жилой зоны на расстояние ~7 км. Управление стендом осуществлялось из смежного пультового помещения (рис. 47).

Исследуемая PC была разделена на две части (рис. 46):

• верхнюю, содержащую урановые слои диаметром от 120 мм до 300 мм, установленную неподвижно на трех опорах, сцентрированных относительно вертикальной оси подъемника с нижней частью PC;

• нижнюю, содержащую плутониевую A3 и остальные урановые оболочки.

Рисунок 47. Планировка здания Б.

В исходном состоянии расстояние между нижней и верхней частями РС составляло 200 мм. Минимальное расстояние, на которое могли быть сближены части РС, определялось толщиной стальных упоров (прокладок), которые перед началом сближения устанавливались оператором вручную на горизонтальном срезе нижней части PC (подъемнике). При достижении заданного зазора подъемник автоматически отключался, и оператор производил замер величины потока нейтронов из PC и расчет соответствующей подкритичности.

Комиссия, расследовавшая причины аварии, констатировала:

"…Устройство ФКБН и его предохранительной автоматики таковы, что обеспечивается защита только от медленных переходов через критическое состояние. ФКБН не защищен от небрежной работы, и поэтому инструкция предусматривает ведение работы так, как если бы никакой предохранительной автоматики не было.

Непосредственной причиной аварии и выхода ФКБН из строя 9 апреля 1953 г. явилась халатность, допущенная оператором, который, проводя работу один, установил прокладку толщиной 5 мм вместо прокладки толщиной 10 мм".

В результате поток нейтронов при сближении частей PC резко возрос, что привело к значительному выделению тепла, плавлению и вытеканию части плутония (масса ~70 г) из A3 в горизонтальный канал уранового отражателя.

По сигналу аварийной тревоги нажатием кнопки на пульте управления оператор опустил стол подъемника с нижней частью PC в исходное положение и остановил цепную реакцию. Указанные события произошли в обеденный перерыв, когда основная группа экспериментаторов (~10 чел.) отсутствовала. Спустя ~2 часа прибывший руководитель работы вместе с оператором зашли в помещение ФКБН и произвели внешний осмотр установки. По результатам дозиметрического контроля интегральная доза за время осмотра составила у них 1,6 P и 1 P, соответственно.

Последующий осмотр РС комиссией специалистов показал, что три (из четырех) плутониевых полусфер сплавились с дюралюминиевым диском, разделяющим РС, поэтому для дальнейшей разборки РС была направлена на комбинат "Маяк".

Обработка урановых индикаторов, имевшихся в РС, подтвердила первоначальную оценку интегрального энерговыделения, составившего ~1016 делений.

3начительного радиоактивного загрязнения помещения стенда установки не произошло, и в дальнейшем, после дезактивации, на этом месте был установлен новый стенд для работы с РС.

По результатам анализа обстоятельств аварии было признано, что установка ФКБН в ее первоначальном варианте не удовлетворяет техническим требованиям по обеспечению безопасности работ с критическими системами, и установка была демонтирована. Взамен ее во ВНИИЭФ были спроектированы и сооружены новые варианты: ФКБН-1 (1955 г.), ФКБН-2 (1963 г.), ФКБН-2М и др., снабженные быстродействующей аварийной защитой.

6. Лос-Аламосская национальная лаборатория, 3 февраля 1954 г. 38 42 48

Сборка «Леди Годива», голая сфера из металлического урана (93,7 %); сбой в работе стержня регулирования; единичный всплеск мощности; незначительные дозы облучения.

7. Лос-Аламосская национальная лаборатория, 12 февраля 1957 г. 42 48 49–52 53-54

Сборка «Леди Годива», голая сфера из металлического урана (93,7 %), добавлен отражатель; единичный всплеск мощности; незначительные дозы облучения.

Эти два разгона мощности произошли на критсборке без отражателя с металлическим топливом «Леди Годива», состоящей из трех секций, которые в сборе образуют сферу. На рисунке 48 показана сборка «Леди Годива» в подкритическом состоянии. Центральная секция неподвижно закреплялась с помощью маленьких трубчатых стальных опор, а верхняя и нижняя секции могли перемещаться с помощью пневматических цилиндров, и таким образом обеспечивались две независимые системы аварийной защиты. Критическая масса составляла приблизительно 54 кг урана с обогащением, равным 93,7 %. Система управлялась дистанционно с расстояния 1/4 мили (402 м).

Первый всплеск мощности произошел во время приготовлений к плановому эксперименту, входящему в программу измерений параметров разгона. Обычно такой нейтронный импульс получали, приводя сборку в состояние критичности на запаздывающих нейтронах. Достигалось это следующим образом: выбиралось положение стержней регулирования, верхняя секция поднималась для снижения реактивности и спада потока нейтронов, после чего нижняя часть приводилась в нужное положение и быстро вводился стержень с весом, превышающим 1 β, для того чтобы инициировать вспышку нейтронов.

3а этим следовал всплеск мощности с выходом, который обычно составлял 1016 делений за 100 микросекунд, а через 40 миллисекунд система заглушалась. Поскольку единственным источником нейтронов служило спонтанное деление, сборку, как правило, настраивали на избыточную реактивность в 70 центов, чтобы генерировать достаточное количество нейтронов для определения значений параметров, соответствующих критичности на запаздывающих нейтронах, за приемлемое время. Эта авария произошла, скорее всего, из-за того, что по ошибке после ввода 70 центов была введена дополнительная реактивность до начала цепной реакции.

Энерговыделение в пике составило 5,6 X 1016 делений, что в среднем в шесть раз больше выхода при штатном импульсе нейтронов. При аварии не возникала угроза радиационного поражения, не произошло радиоактивного загрязнения, не было облучения персонала или существенного разрушения основных урановых деталей. Одна деталь была слегка покороблена и потребовала обработки на станке. Погнулись или сломались несколько легких стальных опорных конструкций (рис. 49).

Второй всплеск мощности произошел во время подготовки к эксперименту, во время которого предполагалось получить импульс быстрых нейтронов на сборке «Леди Годива». Вспышка нейтронов в этом случае опять произошла во время сближения секций с достижением опорной точки по избыточной реактивности на уровне 80 центов. Необходимо было выполнить настройку регулирующих стержней для обеспечения определенной величины периода. Дополнительная реактивность, как считают, оказалась внесенной за счет присутствия большой массы графита и полиэтилена, которые предполагалось облучать. Непосредственно перед всплеском мощности эта масса была придвинута к сборке, при этом, возможно, оказалось недооцененным дополнительное отражение нейтронов, или разложенный материал оказался ближе от сборки, чем предполагалось.

Вспышка дала 1,2 X 1017 делений, что почти в 12 раз больше стандартного импульса при эксперименте. Металлический уран сильно окислился, покорежился и, очевидно, подплавился вблизи своего центра. Центральный стержень для быстрого ввода реактивности был почти разорван, в его центре температура, вероятно, не достигла температуры плавления урана примерно на 100 °C. На рисунке 50 показан внешний вид некоторых деталей. Внешние повреждения ограничились опорной конструкцией, радиоактивное загрязнение было в виде чешуек из оксида урана, его удалось быстро убрать. Ремонтировать «Леди Годиву» не имело смысла, поэтому ускоренными темпами приступили к созданию сборки «Годива-II» 54, которая была специально предназначена для получения импульсов нейтронов. Несмотря на масштаб всплеска мощности, персонал не получил существенной дозы облучения, так как сборка и пультовая были расположены на большом расстоянии друг от друга.

Поведение сборки «Леди Годива» во время всплесков мощности при критичности на мгновенных нейтронах хорошо изучено экспериментально и теоретически 48,53,54. На сборке было получено намного больше 1000 безопасных, контролируемых нейтронных импульсов. Расчеты, выполненные с помощью сопряженных компьютерных программ для теплогидравлического и нейтронно-физического расчета, адекватно описывают поведение системы.

Первый всплеск мощности (5,6 X 1016 делений), должно быть, характеризовался периодом, равным 6,4 секунды, что эквивалентно 15 центам избыточной реактивности по отношению к уровню критичности на мгновенных нейтронах. Избыточная реактивность в наиболее мощном пике (1,2 X 1017 делений) составила 21 цент по отношению к уровню критичности на мгновенных нейтронах, что соответствует периоду, равному 4,7 секунды.

Энерговыделение во время второй аварии, равное 1,2 X 1017 делений, эквивалентно по энергии 1,7 фунтам (772 г) взрывчатки, однако причиненный ущерб оказался намного меньше, чем в результате подрыва такого количества взрывчатых веществ. Вышеупомянутая компьютерная программа позволяет рассчитать долю энергии деления, которая переходит в кинетическую энергию. В данном случае только 1,4 % энергии (что эквивалентно 0,024 фунтам (11 г) взрывчатки) перешло в кинетическую энергию и могло вызвать механические повреждения. Реальная картина повреждений согласуется с этой цифрой, отсюда очевидно, что основная часть энергии деления перешла в тепло.

Рисунок 48. Критсборка «Леди Годива» в Лос-Аламосской национальной лаборатории (сфера из обогащенного урана без отражателя) в заглушенном состоянии.
Рисунок 49. Критсборка «Леди Годива» после аварии 3 февраля 1954 г.
Рисунок 50. Регулирующий стержень для импульсного ввода реактивности и несколько секций критсборки «Леди Годива». На деталях видны следы окисления и деформации поверхности в результате второй аварии 12 февраля 1957 г.
8. Лос-Аламосская национальная лаборатория, 17 июня 1960 г

Сборка из металлического урана (93 %), графитовый отражатель; единичный всплеск мощности; незначительные дозы облучения.

Исследовались критические параметры металлических урановых цилиндров (уран высокого обогащения – 93 %), окруженных толстым отражателем из графита (около 9 дюймов, или 23 см) и почти бесконечным отражателем из воды. В ходе рассматриваемого эксперимента было выстроено кольцо из примерно 48 кг урана на графитовом цилиндре, который был установлен на гидравлическом подъемнике. Движение кольца управлялось из пультовой. Кольцо было поднято в графитовый отражатель, установленный на стационарной стальной платформе. Система перешла в состояние критичности до завершения операции, когда кольцо не доходило на один дюйм (2,54 см) до конечного положения. Произошло срабатывание системы управления и защиты по сигналам оператора и автоматики. После срабатывания системы управления и защиты подъемник быстро упал вниз, и система стала подкритической, однако около 1/3 массы металла застряло на несколько секунд в графитовом отражателе перед тем, как упасть вниз. Энерговыход составил около 6 X 1016 делений. Не наблюдалось радиоактивного загрязнения, металл не был поврежден. Дозы, полученные персоналом, были очень малы.

Во многих отношениях эта авария похожа на аварию, произошедшую на критсборке «Джемайма» (часть II, раздел В, авария 4). В этом эксперименте не проводились измерения чувствительности системы к изменению реактивности после разгона, в то же время анализ аналогичных систем указывает на то, что скорость ввода реактивности, скорее всего, не превысила нескольких β в секунду, при этом первый пик мог дать 1015 делений.

Энерговыделение было очень близко к величине в первой аварии на критсборке «Леди Годива» (3 февраля 1954 г., 5,6 X 1016 делений), массы делящегося вещества в обоих случаях вполне сопоставимы. В аварии на критсборке «Леди Годива» вся энергия выделилась в пике мощности, были деформированы части критсборки, наблюдалось повреждение опорных конструкций. В данном же случае металлический уран не был поврежден, что подтверждает мнение о том, что первый пик мощности был мал по сравнению с полным энерговыходом.

9. Окриджская национальная лаборатория, 10 ноября 1961 г. 55

Металлический уран (93 %), парафиновый отражатель; единственная вспышка; незначительные дозы облучения.

Неконтролируемый разгон произошел в блоке из высокообогащенного (около 93 %) металлического урана массой около 75 кг, когда одна часть активной зоны, установленная на платформе вертикального подъемника, приближалась к другой, неподвижной, части. Эксперимент был последним из серии экспериментов, в ходе которых постепенно добавляли уран или парафин, меняя реактивность всей сборки. Все предыдущие эксперименты проходили в подкритическом состоянии при полностью сформированной конфигурации сборки. В данном случае система стала надкритической во время движения подъемника, а полный энерговыход составил от 1015 до 1016 делений.

Скорость подъемника составляла 16 дюймов/мин (41 см/мин), критичность на запаздывающих нейтронах, как это было определено впоследствии, возникла при достижении расстояния между сдвигаемыми частями, равного 2,7 дюйма (6,9 см). В этой точке чувствительность системы равнялась 8,6 β/дюйм (3,39 β/см). Таким образом, скорость ввода реактивности составила 2,3 β/с (0,9 β/с), и замедление движения подъемника, начавшееся на расстоянии, равном 1,94 дюйма (4,93 см), не повлияло на развитие разгона.

Изменение во времени реактивности и мощности должно было проходить так же, как это было в случае аварии на критсборке «Джемайма», однако время срабатывания системы аварийной защиты в этом случае составляло всего 50 миллисекунд. Первый пик не мог превышать 1015 делений, а выделение оставшейся энергии происходило, должно быть, на плато, последовавшем за пиком мощности. Внешний вид металла (гладкий, без следов окисления) и тот факт, что парафин не расплавился, качественно подтверждают оценку энерговыхода в интервале от 1015 до 1016 делений. Персонал получил незначительные дозы, лаборатория была готова к нормальной работе через полтора часа.

10. ВНИИЭФ, г. Саров (Арзамас-16), 11 марта 1963 г. 50

Активная зона (центральная часть сборки) из плутония массой 17,35 кг с отражателем из дейтерида лития; управление экспериментом дистанционное, из пультового помещения с биологической защитой; одна вспышка; два оператора серьезно переоблучились.

Авария произошла при проведении эксперимента, целью которого являлось изучение ядерно-физических характеристик размножающей системы (РС), содержащей плутониевую центральную часть (активную зону) внешним диаметром 135 мм в отражателе из дейтерида лития с внешним диаметром -350 мм, в состоянии, близком к критическому с учетом запаздывающих нейтронов (коэффициент умножения потока нейтронов от центрального источника <= 103). Активная зона (АЗ) состояла из набора вкладывающихся друг в друга полусферических слоев металлического плутония в 5-фазе, покрытых слоем никеля толщиной -0,1 мм.

Отражатель нейтронов состоял из набора полусферических слоев прессованного LiD суммарной толщиной -107 мм.

В центре АЗ в полости диаметром 63 мм находился нейтронный источник мощностью -106 н /с.

Рисунок 51. Схема эксперимента с исследуемой РС на стенде МСКС.

Работа с описанной РС проводилась на стенде установки МСКС (малый стенд критических сборок), принципиальная схема которого приведена на рисунке 51 56. Стенд МСКС размещался в экспериментальном зале здания Б реакторной площадки (рис. 52). МСКС был предназначен для изучения динамических процессов в РС с использованием импульсного нейтронного генератора. Данные эксперименты разрешалось проводить только с предварительно проверенными критическими (с учетом запаздывающих нейтронов) РС, для которых геометрия, состав, максимальный коэффициент умножения потока нейтронов от центрального источника (<= 1000), порядок безопасной сборки-разборки, влияние используемых приспособлений и оборудования уже определены в специальном калибровочном опыте на установке ФКБН, размещенной в том же здании Б реакторной площадки (рис. 52).

9 марта 1963 г. без калибровочного опыта на установке ФКБН описанная РС была собрана на стенде МСКС (рис. 51). Сборку и пробное сближение частей РС производил начальник установки МСКС, которому ассистировал инженер по эксплуатации. Сближение частей РС осуществлялось дистанционно с пульта управления, установленного за биологической защитой (рис. 52).

11 марта 1963 г. начальник установки и ассистент в помещении стенда возобновили работу по подготовке экспериментов с собранной ими ранее РС. Экспериментаторы попытались внести изменения в механическую часть стенда, используя нештатные приспособления и не контролируя состояние сборки (что являлось грубым нарушением правил работы). Аварийный импульс делений возник в тот момент, когда они, находясь рядом со стендом, производили настройку подъемного устройства. Увидев вспышку света, экспериментаторы быстро убежали в пультовую, откуда начальник установки произвел сброс подъемника с нижней частью РС, нажав соответствующую кнопку на пульте.

Рисунок 52. Планировка здания Б.

На основе проведенного анализа обстоятельств аварии было сделано заключение, что РС перешла в критическое (а, возможно, слегка надкритическое) по мгновенным нейтронам состояние. Энерговыделение во вспышке, по оценкам, составило ~5 X 1015 делений. Установка МСКС никаких повреждений не получила и находилась в полностью исправном состоянии. Радиоактивного загрязнения помещения не произошло. Детали РС не получили повреждений, что позволило использовать их для проведения специального эксперимента с целью уточнения доз облучения персонала, находившегося рядом со стендом, а также в смежных помещениях.

Причиной несчастного случая явились грубые нарушения установленных правил работы на МСКС со стороны начальника установки и его помощника. Аварийная вспышка произошла за счет случайного смыкания частей РС при манипуляциях экспериментаторов с механизмом стенда.

Оба сотрудника были немедленно госпитализированы и направлены для лечения в специализированную клинику в Москву.

Начальник установки (1929 г. рождения) получил дозу 370 бэр (острая лучевая болезнь (ОЛБ) средней тяжести (2 степень)). Он вернулся к работе через несколько месяцев. Он работал на ускорителе Ван-де-Граафа. Потом переехал в Москву, где и умер в возрасте ~60 лет.

Ассистент (1932 г. рождения) получил дозу 550 бэр (ОЛБ тяжелой формы (3 степень)). После возвращения на работу периодически проходил курсы лечения в клинике в течение нескольких лет. Он занимался разработкой радиоэлектронной аппаратуры для реакторных исследований. В 1998 г. вышел на пенсию. Сейчас проживает в г. Сарове (Арзамас-16).

В результате аварии облучению подверглись еще 4 сотрудника. Они находились в смежных помещениях, и дозы их были незначительны: ~7, ~1, ~1 и ~0,02 бэр.

Стенд МСКС после описанного случая в течение длительного времени использовался в различных экспериментах.


    Ваша оценка произведения:

Популярные книги за неделю