355 500 произведений, 25 200 авторов.

Электронная библиотека книг » В. Фролов » Обзор ядерных аварий с возникновением СЦР (LA-13638) » Текст книги (страница 8)
Обзор ядерных аварий с возникновением СЦР (LA-13638)
  • Текст добавлен: 31 октября 2016, 00:19

Текст книги "Обзор ядерных аварий с возникновением СЦР (LA-13638)"


Автор книги: В. Фролов


Соавторы: Б. Рязанов,Норман Прувост,Шан Монахан,Томас Маклафлин,В. Свиридов

Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 8 (всего у книги 18 страниц)

20. Сибирский химический комбинат, г. Северск, 13 декабря 1978 г

Слитки металлического плутония в контейнере для хранения; один пик мощности; один случай серьезного облучения.

В цехе № 1 завода (здание 901) выполняли различные технологические операции со слитками металлического плутония, включая измерения характеристик металла. В цехе находились 16 связанных между собой камер, управляемых 7 операторами. Хотя подготовка операторов предполагает знание всех операций, выполняемых на оборудовании, каждому оператору индивидуально в начале смены предписывается выполнение только конкретных операций. По установленному порядку оператору не разрешается отклоняться от выполнения предписанных ему заданий, даже если это отклонение обусловлено оказанием помощи другим лицам при выполнении их заданий.

Составной частью технологических процессов были передачи слитков по установкам цеха и их временное хранение, для чего использовали цилиндрические контейнеры специальной конструкции (рис. 28). Контейнеры внутри были облицованы кадмием (толщина 0,5 мм) и имели внешний слой полиэтилена толщиной 3 см. Такая конструкция контейнера позволяла снизить нейтронное взаимодействие настолько, что отпадала необходимость ограничения на количество или расположение контейнеров внутри камеры.

Рисунок 28. Контейнер.

Слитки получали в процессе восстановления из окислов, и они имели форму правильного цилиндра. В зависимости от состава исходного материала, один слиток плутония согласно технологии имел массу либо не более 2 кг (восстановление из отходов, осаждение/прокаливание), либо не более 4 кг (относительно чистый оксид). Норма загрузки в контейнер составляла не более 4 кг, т. е. разрешалась загрузка или одного слитка большей массы, или двух слитков меньшей массы. Полагали, что персонал с высоким уровнем профессиональной подготовки и дисциплины не допустит нарушений установленного регламента в цехе № 1. Однако размеры внутренней полости контейнера не исключали случайного размещения в ней нескольких слитков с общей массой, превышающей критическую.

Установка 13 цеха 1, где произошла авария, предназначалась для взвешивания слитка на весах и для отбора пробы плутония массой до 0,1 г способом сверления с последующим химическим анализом элементного состава примесей. Все производимые на заводе слитки проходили через установку 13. Устройство контейнеров снимало ограничение на их количество на установке и на условия их хранения и транспортирования в цехе № 1. Однако для установки 13 был установлен более жесткий регламент: загрузка в контейнер только одного слитка независимо от его массы.

Рисунок 29. Схема установки 13.

К установке 13 относились три камеры (1391А, 1391В и 1392 на рисунке 29). Камера 1391А использовалась для операции по отбору проб, а 1391В – для взвешивания и временного хранения. В камере 1392 слитки извлекались для выполнения измерений размеров и возвращались в те же контейнеры для отправки на другие установки цеха № 1. Для передач слитков камеры и отсеки имели люки в смежных стенках и были оснащены четырьмя парами проемов с резиновыми перчатками. Обзор рабочего пространства осуществлялся через свинцовое стекло толщиной 50 мм. Фронтальная сторона установки 13 имела свинцовую защиту толщиной 30 мм от γ-излучения плутония. Камера 1392 была соединена с установкой 6 транспортером, а камера 1391 со смежной установкой 12 – люком.

13.12.1978 г. в начале рабочей смены в камере 1392 находились 4 контейнера, а в отсеке 1391В – три контейнера, по одному слитку плутония в каждом. На рисунке 29 все семь слитков пронумерованы в последовательности 1…7. На рисунке, для простоты восприятия, показано линейное расположение контейнеров, на самом же деле контейнеры со слитками 4 и 5 располагались за контейнерами со слитками 6 и 7.

К моменту аварии операции с шестью слитками были закончены, и только слиток 3 было необходимо оставить в отсеке 1391В для продолжения работ. Согласно сменному заданию оператор С должен был:

• освободить шесть контейнеров и передать слитки из них на установку 6 цеха 1,

• затем доставить шесть контейнеров (4 – с установки 6 и 2 – с установки 12) на установку 13,

• перегрузить шесть слитков последовательно в контейнеры установки 13 для последующего отбора проб плутония.

Порядок передачи слитков согласно сменному заданию схематично показан на рисунке 30. Реальная схема передачи слитков представлена на рисунке 31. Оператор С освободил два контейнера в камере 1392 и отправил слитки 6 и 7 на установку 6. На установке 6 оператор С загрузил два слитка (8 и 9) в контейнеры камеры 1392 вместо слитков 7 и 6. Эти действия соответствовали письменному сменному заданию.

Руководствуясь стремлением как можно скорее произвести передачу слитков, оператор С (без разрешения и в нарушение регламента) попросил оператора Б оказать ему помощь, поручив ему самостоятельно освободить в отсеке 1391В контейнеры со слитками 1 и 2, доставить с установки 12 два слитка (10 и 11) и загрузить их в два освободившихся контейнера. Оператор Б, не имея письменного задания, нарушил намеченную оператором С схему передачи слитков и перенес слиток 3 из отсека 1391В в камеру 1392, загрузив его в контейнер, в котором уже находился слиток 4, тем самым нарушив правило для установки. Далее оператор Б на освободившееся от слитка 3 место загрузил слиток 10, доставленный в отсек 1391В из камеры установки 12.

Оператор С, который удалялся на некоторое время для выполнения других заданий, вернулся и возобновил выполнение работы по предписанному ему сменному заданию, не согласовав свои действия с действиями оператора Б. Оператор С, вместо того чтобы отправить слитки 1 и 2 на установку 6, начал перегрузку этих слитков, полагая, что это слитки 10 и 11, в камеру 1392 в контейнер, в котором уже находились слитки 3 и 4. Даже если бы контейнер в 1392 был пустой, действия оператора С нарушали правила для установки. На рисунке 31 показаны эти перегрузки.

При загрузке слитка 1 массой менее 2 кг в контейнер, в котором уже находилось три слитка (суммарная масса четырех слитков равнялась 10,68 кг), оператор С почувствовал руками тепловую волну и вспышку света в глазах. При расследовании аварии он не смог уверенно указать, отдернул ли он инстинктивно руку со слитком или слиток был выброшен вследствие мгновенного энерговыделения и теплового расширения из сжатого состояния ("теплового удара"). В тот же момент сработала система аварийной сигнализации (САС) о возникновении ядерной аварии, причем одновременно в двух зданиях (901 и 925) завода. Датчики САС представляли собой счетчики Гейгера с порогом срабатывания 30 мкР/с, что соответствовало их скорости счета около 500 имп./с. Семь человек, находившихся на разных расстояниях от установки 13, были облучены дозами от 5 до 60 рад, причем преобладающий вклад в дозовую нагрузку определялся быстрыми нейтронами.

Рисунок 30. Регламентный порядок передачи слитков с установки 13 и на нее.

Оператор С после срабатывания САС извлек из контейнера два из трех оставшихся слитков и перенес один из них в отсек 1391А, другой – в отсек 1391В.

Были взяты пробы плутония из всех четырех слитков и выполнены их гамма-спектрометрические анализы на содержание лантана-140. С учетом погрешностей метода энерговыделение за аварию с единственным пиком мощности составило 3 X 1015 делений. Доза на тело оператора С составила ~250 рад, доза на кисти рук более 2000 рад, что привело к ампутации рук до локтевого сустава. Позднее у него стало ухудшаться зрение. Семь человек, находившихся на разных расстояниях от установки 13, были облучены в дозах от 5 до 60 рад, причем преобладающий вклад в дозовую нагрузку определялся быстрыми нейтронами. Авария не привела ни к разрушениям, ни к разгерметизации камер, ни к радиоактивному загрязнению оборудования.

Рисунок 31. Фактический порядок передачи слитков с установки 13 и на нее в день аварии. Сплошными линиями показаны действия оператора C, а пунктирными – действия оператора Б.
21. Новосибирский завод химических концентратов, 15 мая 1997 г

Накопление осадка обогащенного урана (90 %) в донных областях двух параллельных емкостей плоской геометрии; многократные разгоны мощности; незначительное облучение персонала.

Авария произошла в цехе, где методом порошковой металлургии производятся сердечники тепловыделяющих элементов из дисперсионного материала (UO2 + Al), в котором обогащение урана составляет до 90 % по 235U. Конечной операцией перед очехловыванием сердечников в алюминиевую оболочку является их химическое травление. Цель травления – устранить микродефекты на поверхности сердечников и обеспечить плотный контакт между сердечником и его оболочкой.

Принципиальная схема узла травления представлена на рисунке 32.

В процессе травления партия сердечников последовательно погружается в три ванны, заполненные соответственно NaOH, H2O и HNO3. Щелочь NaOH, взаимодействуя с частицами алюминия на поверхности сердечника, образует алюминат натрия NaAlO3, который со временем может частично образовывать осадок в виде Al(OH)3. В этом процессе травления частично выщелачивается диоксид урана, осаждающийся на дно ванны.

Во второй ванне сердечники отмывают водой от щелочи. В третьей ванне с азотной кислотой происходит растворение частиц UO2 с поверхности сердечников и окончательная нейтрализация следов щелочи.

Процесс травления был стандартизирован и контролировался в течение 13 лет до возникновения ядерной аварии только посредством поддержания основных технологических параметров: количества сердечников в партии, температуры, концентрации реагентов, длительности операций. Концентрация урана в растворах не измерялась. Также не контролировалась и не учитывалась возможность образования осадков и отложений урана в оборудовании и коммуникациях.

Отсутствие аналитического контроля концентраций урана объяснялось тем, что все оборудование, за исключением ванн, имело безопасную геометрию согласно конструкторской документации. Однако, как было обнаружено уже после ядерной аварии, сборник травильных растворов 591,2 (рис. 32) не был геометрически безопасным.

После завершения травления одной партии сердечников растворы из ванн направляли самотеком в коллектор в виде трубы диаметром 130 мм. По мере его заполнения раствор перекачивали насосом в сборник 5912 по трубе диаметром 64 мм и длиной около 100 м. Из сборника 591,2 раствор передавали насосом в емкость 28 (рис. 32) на узел регенерации урана.

Впервые образование плотного осадка диоксида UO2 в коллекторе было обнаружено в 1996 году после его вскрытия и обследования. Из коллектора было извлечено 5,5 кг осадка с массовой долей урана -69 %. Осадок был плотным и извлекался постепенно посредством растворения в азотной кислоте. Выполненные анализы показали, что осадок формировался более 10 лет.

Обнаружение осадка в коллекторе не привлекло внимания персонала к поиску отложений урана в коммуникациях и в сборнике 591,2, так как в них условия ядерной безопасности выполнялись без аналитического контроля урана. В то же время зоной ежегодного баланса урана являлся весь цех, в масштабах которого были пренебрежимо малыми и незаметными потери урана вследствие его частичного осаждения в сборнике 591,2.

Сборник 591,2 состоял из двух плоских сообщающихся емкостей 59/1 и 59/2, имевших общий вход и выход растворов урана. Каждая емкость имела следующие внутренние размеры: высота 3,5 м, длина 2 м, толщина 0,1 м, рабочий объем – 650 л. Обе емкости были выполнены из нержавеющей стали толщиной 4 мм. Расстояние между емкостями 0,8 м, расстояние до бетонного пола – 0,75 м. Емкости были оснащены экранами в виде стальных листов, установленных на расстоянии 0,14 м от боковых поверхностей (3,5 X 2 м2) для исключения приближения отражателей к их поверхности.

Рисунок 32. Принципиальная схема узла травления.

Боковые поверхности были скреплены внутри поперечными стальными стержнями, приваренными с шагом прямоугольной квадратной решетки 0,4 м. Днище емкостей имело угол наклона -20° в сторону сливных отверстий.

С 1984 г. емкости использовали для сбора травильных растворов урана с обогащением 90 %, однако без согласования с органами надзора за ядерной безопасностью.

В четверг 15 мая 1997 г. в 10 ч 00 мин аппаратчик узла травления завершил щелочную обработку партии сердечников, слил в коллектор отработанную щелочь и включил на -15 мин насос для передачи щелочного раствора в сборник 5912. В 10 ч 55 мин в здании 17 сработала система аварийной сигнализации (САС) о возникновении ядерной аварии, имеющая 12 точек контроля. В каждой точке установлены три блока детектирования гамма-излучения на основе пластмассовых сцинтилляторов, срабатывающих по схеме "2 из 3" при превышении порога -10 мкР/с. По звуковому сигналу САС сменный персонал покинул все установленные зоны эвакуации. Оперативно был закрыт доступ в опасную зону, здание оцеплено охраной, прибыли аварийные службы, дежурные дозиметристы начали обследование радиационной обстановки вне и внутри здания.

По максимальной мощности дозы гамма-излучения, измерявшейся носимым гамма-радиометром, было определено место возникновения аварии – сборник травильных растворов 5912, расположенный на нулевой отметке (первый этаж). Через 25 мин после срабатывания САС мощность дозы составила -10 Р/час на расстоянии -0,5 м от сборника.

Поскольку сборник остался неповрежденным и герметичным, было принято решение о заливании в него борной кислоты по той же штатной схеме, по которой в него поступали растворы урана. Был подготовлен раствор естественного бора путем смешения 20 кг сухой борной кислоты с водой. После операции заливания борного поглотителя нейтронов обе емкости оказались практически полностью заполненными при общем свободном объеме 60 л.

Однако в 18 ч 50 мин 15 мая 1997 года произошло второе срабатывание САС. Третье, четвертое и пятое срабатывания имели место в 22 ч 05 мин, 16 мая ночью в 2 ч 27 мин и утром в 07 ч 10 мин.

После анализа сложившейся ситуации было принято решение об изменении способа заливания нейтрон-поглощающего раствора в сборник 591,2. Для этого осуществили схему принудительной замкнутой циркуляции через сборник высококонцентрированного раствора LiCl, имеющего намного большую растворимость, чем борная кислота. В целях безопасности персонала работы по запуску контура циркуляции отложили до очередного, шестого, срабатывания САС, которое произошло в 13 ч 00 мин. В 14 ч 00 мин был включен контур циркуляции раствора хлорида лития, и система приобрела надежную подкритичность.

После нескольких часов циркуляции и интенсивного перемешивания раствора были отобраны его пробы на элементный анализ и получены следующие значения концентраций: урана – 6 г/л, лития – 6 г/л, бора – 0,5 г/л, водородный показатель рН – (9—11). Оценка массы урана посредством умножения его концентрации Cu = 6 г/л на суммарный объем двух емкостей V59 = 1300 л дает значение Mu = 7,8 кг без учета сравнительно малого объема внешнего контура циркуляции (-50 л).

Выполненные расчеты условий критичности для системы из 2-х взаимодействующих одинаковых емкостей сборника 591,2 при соответствии их геометрических размеров проектным показали, что критическая масса урана при концентрации урана-235 50 г/л и выше превышает 100 кг, т. е. намного больше Mu = 7,8 кг. Такое расхождение, как и само возникновение аварии, можно было объяснять несоответствием размеров емкостей сборника проектным, в особенности увеличением толщины плоских емкостей, наиболее значительно влияющих на критические параметры.

Дальнейшая диагностика аварии выполнялась в следующей последовательности: 1) обнаружение осадков урана и определение зон их локализации; 2) исследование реальных размеров емкостей после полного извлечения из них урана для обеспечения радиационной безопасности работ.

Возможность образования осадков была установлена экспериментально посредством фильтрования проб из циркулирующего раствора. Прошедший через фильтр чистый раствор содержал уран с концентрацией 0,3 г/л, т. е. в 20 раз меньшей, чем до фильтрования. Поэтому циркулирующую жидкую фазу правильнее называть не раствором урана, а пульпой, содержащей уран в виде взвесей частиц UO2.

Для обнаружения осадков UO2 в сборнике 5912 использовался портативный гамма-радиометр с выносным пластмассовым детектором в коллиматоре. Детектор регистрировал гамма-излучение продуктов деления в уране со средней энергией 1 МэВ. Для снижения фона между емкостями был установлен свинцовый экран толщиной 12 мм. В результате гамма – сканирования боковых поверхностей было установлено: 1) зоны осадков расположены в донной части обеих емкостей, имеют близкую геометрию и боковую площадь -1 м2 каждая; 2) масса осадка в емкости 59/1 примерно в 2,8 раза больше, чем в емкости 59/2.

20.05.97 г. были начаты работы по опорожнению емкостей 59/1 и 59/2 от пульпы с ее фильтрацией, растворением осадка с UO2 в безопасной емкости с азотной кислотой. Осадок урана в емкостях оказался очень плотным (-2 г/см3), и для его растворения использовали азотную кислоту. Все полученные азотнокислые растворы были слиты в безопасные емкости и отправлены на хранение. 29.05.97 г. емкости были практически полностью освобождены от урана и продуктов деления, что было проверено гамма – сканированием сборника 5912. Полная извлеченная после аварии масса урана со средним обогащением 90 % составила 24,4 кг.

Рисунок 33. Последовательность и длительность срабатывания аварийной сигнализации.

Для определения реальной толщины емкостей, которая везде должна быть равной 0,1 м, изготовили измерительное устройство больших размеров, которое позволяло охватить две противоположные точки на внешних поверхностях одной емкости. При его испытаниях была определена погрешность контроля, составившая ~3 % для толщины в 0,1 м. Измерения позволили составить подробную картограмму толщин для обеих емкостей сборника 5912. В отдельных точках внутренний зазор составил 132 мм, т. е. был на 32 % выше проектного значения. В среднем по зоне локализации осадков увеличение толщины было около 17 %, или 117 мм, что существенно повлияло на возникновения условий критичности в сборнике 5912. Места обнаружения твердых отложений близко совпадали с местами деформации емкостей. Причины деформаций неизвестны.

Непосредственно перед первым пиком мощности в сборнике 5912 уран находился в трех слоях, располагавшихся друг над другом: осадок, пульпа, слабоконцентрированный раствор. Передачи травильных растворов из коллектора в сборник 5912 и выдачи их из этого сборника происходили с частотой до 300 операций/год. Благодаря гравитационному осаждению частиц диоксида урана, гидроокиси алюминия и других взвесей происходило медленное и постоянное накопление осадка урана в донной части сборника, приведшее в итоге к возникновению цепной реакции. Параметры пиков мощности были оценены по моментам срабатывания датчиков САС, а также посредством анализа содержания изотопов 140La и 235U в пробах пульпы, отобранных 20.05.97 г.

В здании датчики САС были размещены в 12 точках контроля. При возникновении 1-го пика они сработали только в трех ближайших точках: 1) мойка, 1 этаж; 2) ремонтная зона, 2 этаж; 3) склад, 3 этаж. Последовательность пиков, моменты срабатывания и продолжительность состояния превышения порога срабатывания в 10 мкР/с регистрировались оператором на центральном приборном щите (рис. 33).

Вышеуказанные три точки контроля расположены одна над другой. Известны расстояния от сборника до каждой из них и кратности ослабления мгновенного гамма-излучения от цепной реакции в бетонных перекрытиях между этажами. Используя эти данные, были оценены периоды удвоения мощности в первых трех пиках Т1/2, введенные избыточные реактивности ΔKизб, отношения (f) полного числа делений в пиках к числу делений в 1-м пике. Эти результаты представлены в таблице 8.

Таблица 8. Характеристики первых трех пиков

Ввод положительной реактивности был обусловлен увеличением концентрации урана в пульпе благодаря гравитационному осаждению взвесей UO2. Подкритичность системы после пика мощности была результатом уменьшения концентрации урана в пульпе из-за ее перемешивания радиолитическим газом. Абсолютные значения этих двух противоположных по знаку изменений реактивности уменьшались с каждым последующим пиком. После пятого пика система достигала квазистационарного критического состояния, которое без искусственного гашения могло бы существовать неопределенно длительное время.

Полное число делений в системе из двух емкостей, 59/1 и 59/2, было определено по активности 140La и составило за шесть пиков ~5,5 X 1015.

Число делений в каждом пике составило: 1) 4,3 X 1015; 2) 5,6 X 1014; 3) 3,2 X 1014, в последующих 4, 5 и 6 пиках по ~1014.

Дозы облучения персонала были незначительными. Коллективная доза для группы из 20 человек не превысила 4 мЗв. Оборудование осталось целым. Материальный ущерб от аварии определялся остановкой производства в цехе на 3 месяца. Причины деформации сборника неизвестны, хотя есть мнение, что деформация происходила постепенно в течение ряда лет. Сборник был заменен, и были разработаны мероприятия по контролю накопления урана и геометрических размеров оборудования.


    Ваша оценка произведения:

Популярные книги за неделю