Текст книги "Обзор ядерных аварий с возникновением СЦР (LA-13638)"
Автор книги: В. Фролов
Соавторы: Б. Рязанов,Норман Прувост,Шан Монахан,Томас Маклафлин,В. Свиридов
Жанр:
Физика
сообщить о нарушении
Текущая страница: 2 (всего у книги 18 страниц)
А. Описание аварий
В данном отчете 22 аварии описаны в хронологическом порядке независимо от того, в какой стране они произошли. Рисунки 2, 3, 4 и 5 приведены для того, чтобы сориентировать читателя по поводу мест расположения объектов соответственно в Российской Федерации, Соединенных Штатах, Великобритании и Японии, где произошли эти аварии. Указаны столицы государств, а также показано расположение г. Обнинска, где в Физико-энергетическом институте работают российские авторы данного отчета. В состав ФЭИ также входит Отдел ядерной безопасности, осуществляющий надзор за четырьмя производственными предприятиями (г.г. Озерск, Северск, Электросталь и Новосибирск), где имели место аварии при производственных процессах.
Рисунок 2. Карта Российской Федерации с указанием мест расположения предприятий, на которых произошли аварии в ходе производственных процессов; показаны столица страны (г. Москва) и г. Обнинск, где находится Физико-энергетический институт.
Рисунок 3. Карта Соединенных Штатов с указанием мест расположения предприятий, на которых произошли аварии в ходе производственных процессов; показана столица страны (г. Вашингтон).
Рисунок 4. Карта Великобритании с указанием места расположения предприятия, на котором произошла авария в промышленности; показана столица страны (г. Лондон).
Рисунок 5. Карта Японии с указанием места расположения предприятия, на котором произошла авария в промышленности; показана столица страны (г. Токио).
1. ПО «Маяк», г. Озерск, 15 марта 1953 гРаствор нитрата плутония в контейнере для временного хранения; одна вспышка; один оператор перенес острую лучевую болезнь, другой серьезно переоблучился.
Авария произошла в здании, где перерабатывались растворы плутония. Бетонный каньон был сооружен в мае 1952 года и был оборудован для приема по коммуникациям азотнокислых растворов плутония. Растворы плутония получались после растворения облученных блоков из природного урана и операций очистки плутония от примесей. Работы проводились в 4 смены по 6 часов каждая. Каньон не был оснащен приборами непрерывного контроля радиационной обстановки и аварийной сигнализации. Оборудование каньона предназначалось для смешивания растворов, измерения их объемов, взятия проб на анализ концентрации плутония, временного хранения и передачи растворов для дальнейшего использования. Плутониевые растворы, которые не удовлетворяли требованиям по чистоте, возвращались на переочистку.
На рисунке 6 показана схема каньона с прилегающими к нему коридором и помещениями.
На участке использовалось 15 цилиндрических контейнеров из нержавеющей стали, каждый из которых имел свой учетный номер. Контейнеры имели диаметр 400 мм и высоту 320 мм и располагались вертикально.
Ядерная безопасность обеспечивалась ограничением массы плутония в контейнере (не более 500 граммов). Операторы не проходили обучения по ядерной безопасности.
Рисунок 6. Схема расположения контейнеров и оборудования на участке.
На рисунках, относящихся к 22 промышленным авариям, зеленым цветом обозначен содержащий плутоний делящийся материал, с которым произошла авария.
Контейнеры располагались в два ряда. Вдоль стены каньона были установлены в один ряд 7 контейнеров. Емкость каждого из них составляла 40 литров. Эти контейнеры были установлены в мае 1952 года, и к ним была подведена стационарная линия подачи растворов.
Каньон имел размеры 3 X 2 метра и высоту 2,5 метра. Верх контейнеров был не выше 1 метра от пола. Для радиационной защиты персонала от нейтронного и γ-излучения была сооружена чугунная стена толщиной 0,2 м с верхним перекрытием также из чугуна толщиной 0,125 м. В верхней чугунной плите были предусмотрены отверстия для вывода штуцеров шлангов. Между контейнерами были установлены вертикально кадмиевые пластины.
В технологических инструкциях имелось указание о том, что с целью снижения нейтронного взаимодействия между контейнерами, контейнеры № 2, 4, 6 не должны были использоваться.
В связи с тем, что от промывки оборудования образовывались некондиционные растворы плутония, объем семи контейнеров в каньоне оказался недостаточным. Поэтому в коридоре между каньоном и бетонной стеной здания были установлены 8 аналогичных контейнеров за чугунной защитой толщиной 0,175 м, которая закрывала контейнеры с 4 сторон, a две оставшиеся стороны примыкали к стене и полу. В эти контейнеры растворы передавали по длинным, до 7 метров, резиновым шлангам, используя единственную вакуумную ловушку, находящуюся в каньоне. Ловушка была изготовлена из стекла, что делало возможным визуальный контроль ее заполнения. Вакуумный насос располагался в соседнем помещении. Операции подсоединения шлангов выполнялись вручную.
Перед началом работы сменный персонал (2–3 человека) должен был знать результаты анализов растворов и иметь письменное разрешение на проведение операций с ними.
В воскресенье 15 марта 1953 года было необходимо принять продукцию от двух операций растворения облученных блоков и аффинажа плутония.
В таблице 1 приведено содержание плутония в семи контейнерах согласно записям в оперативном журнале до начала работ. Необходимо отметить, что в нарушение регламента в операциях использовались контейнеры 2 и 4, а также нарушалась установленная норма загрузки (500 граммов).
Таблица 1. Содержание плутония в контейнерах 1–7 по данным оперативного учета
Таблица 2. Ожидаемые значения содержимого контейнера № 18 после передачи растворов
Два оператора подготовили временную схему передачи растворов из контейнеров № 2 и № 4 (в каньоне) в контейнер № 18 (в коридоре). По данным оперативного учета, контейнер № 18 был пустым. Основываясь на данных таблицы 1 и на предположении, что контейнер № 18 пуст, следовало ожидать, что объем раствора и концентрация плутония станут такими, как приведено в таблице 2.
Один оператор во время передачи находился рядом с контейнером № 18 и был защищен чугуном толщиной 0,175 метра, другой – в каньоне. После окончания операции передачи первый оператор отсоединил вакуумный шланг от штуцера контейнера № 18, увидел бурное выделение газа (пену), а также почувствовал (ощутил) руками, что температура раствора в контейнере значительно повысилась по сравнению с комнатной температурой. Оператор в каньоне заметил появление раствора в стеклянной ловушке. Оператор в коридоре немедленно подсоединил шланг к штуцеру и удерживал его руками короткое время. Оба оператора решили передать раствор из контейнера № 18 обратно в контейнер № 4. Раствор из контейнера № 18 был возвращен в контейнер № 4 и разбавлен водой и азотной кислотой для его охлаждения.
Выброс части раствора в ловушку во время вспышки объясняет, почему не произошло второй вспышки во время передачи.
Затем операторы разделили раствор из контейнера № 4в контейнеры № 22 и № 12, стоящие в коридоре.
Оба оператора заметили попадание раствора в вакуумную ловушку, выполненную из прозрачного стекла. Этот факт, как и наблюдение газовыделения из открытого штуцера контейнера № 18 и нагрев раствора, явно свидетельствовал о возникновении критичности. Однако оба оператора не были подготовлены к действиям в такой аварийной обстановке, полагая, что нет опасности их здоровью и что возможно скрыть последствия своих действий. Они приняли в контейнер № 5 новую порцию растворов объемом 15,5 литров с массой плутония 0,614 кг согласно сменному заданию.
Расследование аварии началось через два дня, когда оператор, стоявший рядом с аварийным контейнером № 18, почувствовал резкое ухудшение здоровья и обратился в больницу. Наиболее важным результатом расследования было обнаружение несоответствия реального количества плутония в контейнере № 1 количеству, документированному ранее в журнале пооперационного учета. В контейнере № 1 оказалось 10 литров раствора с концентрацией плутония 44,8 г/л, а не 15 литров. Из опроса персонала не удалось установить кто, когда и куда передал из контейнера № 1 пять литров раствора с массой плутония 224 грамма. Путем сведения баланса плутония было оценено его количество в контейнере № 18 на момент возникновения аварии: объем 31 литр, концентрация плутония 27,4 г/л, масса 848 ± 45 граммов. Эти значения практически точно соответствуют передачам растворов из контейнеров № 2 (10 литров, 58 г), № 4 (16 литров, 566 г) и № 1 (5 литров, 224 г) в контейнер № 18. Таким образом, неучтенная передача 5 литров раствора из контейнера № 1 явилась непосредственной причиной возникновения цепной реакции. В таблице 3 приведены объемы раствора и массы плутония, реально переданные в контейнер № 18.
Таблица 3. Реальное содержимое контейнера № 18 во время аварии
Расследование аварии не выявило, кто сделал передачу и когда она была выполнена.
Во время расследования расчетные и экспериментальные исследования показали, что для достижения критичности необходимо было иметь 30 литров раствора, содержащего 825 граммов плутония (27,5 г/л). Эти величины практически совпадают с оценкой содержимого контейнера № 18 во время аварии: 31 литр раствора, содержащего 848 ± 45 граммов плутония (27,4 г/л).
Одной из причин аварии была неучтенная передача 5 литров раствора из контейнера № 1 в контейнер № 18.
Оценка полного числа делений была сделана, исходя из предположения об адиабатическом нагреве 31 литра раствора от 30 °C до 90 °C, что дает результат около 2 X 1017 делений. Вывод, что раствор нагрелся на 60 °C, был сделан на основании того, что раствор после аварии был близок к температуре кипения.
Оператор, стоявший за чугунной защитой около контейнера № 18, получил дозу до 1000 рад, перенес тяжелую форму лучевой болезни и ампутацию ног, но остался жив и умер через ~35 лет после аварии. Второй оператор был облучен дозой -100 рад.
Физических повреждений оборудования не было.
Требования регламента до аварии однозначно предписывали не принимать растворы в контейнеры 2, 4, 6. Присутствие растворов в контейнерах 2, 4 в начале смены перед аварией показывает, что это требование нарушалось. Данные таблицы 1 показывают, что и норма загрузки (500 граммов) также нарушалась.
2. ПО «Маяк», г. Озерск, 21 апреля 1957 гНакопление осадка с высокообогащенным (90 %) ураном в монжюсе опасной геометрии; один летальный исход, пятеро серьезно облученных.
Эта авария произошла в одной из комнат большого производственного здания, в котором проводились различные операции с высокообогащенным ураном. Операции проводились в типичном в то время режиме шестичасовых смен, по четыре смены в сутки. В комнате находилось несколько камер на расстоянии до двух метров друг от друга, соединенных вакуумными линиями и линиями передачи растворов. Авария произошла в монжюсе камеры осаждения оксалата, входящей в технологическую линию по переработке отходов химико-металлургического процесса получения металлического урана, работающую в циклическом режиме.
Схема камеры и ее оборудования представлена на рисунке 7. Это типичная камера с двумя парами перчаток. Одна пара перчаток использовалась для работы в зоне реактора, вторая – в зоне нутч-фильтра. Обычный технологический процесс был следующим: получающиеся от операций по очистке металлического U(90 %) азотнокислые растворы уранила с примесями вместе с щавелевой кислотой поступали в реактор, оснащенный механической мешалкой и внешней пароводяной рубашкой. Поступающий раствор обычно имел концентрацию 15–20 г/л. Для ускорения образования оксалатной суспензии и исключения ее осаждения на дно реактора мешалка работала непрерывно в ходе операции. Образование тригидрата оксалата уранила происходило по реакции
Затем суспензия оксалата уранила при помощи вакуума передавалась в передаточную емкость, а из нее самотеком стекала в нутч-фильтр. Урансодержащий осадок накапливался на фильтровальном полотне, и фильтрат вакуумом отсасывался через него и поступал в монжюс, в котором и произошла авария. Монжюс представлял собой горизонтальный цилиндрический сосуд диаметром 450 мм и длиной 650 мм с объемом около 100 литров. Как показано на рисунке, фильтрат откачивался через опущенную в раствор трубу и передавался в соседнюю камеру.
На заводе имелся технологический регламент, в котором были описаны, в том числе, технологические нормы на каждую операцию (объем, концентрация подаваемых растворов, объемы реагентов, температура и длительность операций и пр.). Нормы загрузки, обеспечивающие ядерную безопасность, содержались в инструкциях по эксплуатации и памятках, прикрепленных к каждой из камер. Конкретные данные по каждой партии, такие как имя оператора, масса делящегося материала, температура и т. д., регистрировались в технологических картах, которые хранились месяц, после чего ключевые записи из них переносились в основные журналы смен, которые хранились год.
Оборудование камер проектировалось и устанавливалось на основе эксплуатационных соображений, поэтому многие элементы оборудования не имели безопасную, с точки зрения критичности, геометрию. Основным средством обеспечения безопасности в камере было ограничение массы делящего материала в партии. Норма загрузки не превышала 800 граммов. Масса делящегося материала определялась по известным объему и концентрации нитрата уранила, и, по-видимому, имелась возможность контролировать ее относительно точно.
Рисунок 7. Схема расположения оборудования для оксалатного осаждения и процесса фильтрации.
Несмотря на то, что оператор следовал имеющимся правилам и соблюдал установленные параметры, несколько факторов повлияло на накопление урана в монжюсе в количестве, намного превышающем разрешенное.
На рисунках, относящихся к 22 промышленным авариям, красным цветом обозначен содержащий уран делящийся материал, с которым произошла авария.
• Одним из упомянутых факторов была температура осаждающегося раствора. При этом не было прибора точного контроля температуры, такого, например, как термопара. Увеличение температуры контролировалось по времени нагревания, которое составляло обычно 10 минут, до кипения раствор не доводился. Кроме температуры, большое значение имела стехиометрия реагентов, тем не менее, щавелевая кислота отмерялась неточно. Таким образом, пропускаемый через нутч-фильтр маточный раствор, содержащий осадок, мог иметь повышенную температуру или кислотность, а следовательно, и большую концентрацию нитрата уранила, чем ожидалось. Когда этот раствор (теперь уже фильтрат) поступал в монжюс и охлаждался, происходило дополнительное осаждение тригидрата оксалата уранила на внутренних стенках бака.
• Предполагают, что небольшие визуально незаметные дефекты фильтровального полотна способствовали неожиданно высокой скорости накопления осадка в монжюсе. Согласно регламенту, фильтровальное полотно необходимо было заменять, когда возникали видимые дефекты или скорость фильтрования превышала норму.
• Правила эксплуатации предписывали измерения массы входящего и выходящего из камеры делящегося материала. Если разница не превышала 5 %, в камеру можно было подавать следующую партию. Если разница превышала 5 %, требовалось зачистить баки. Эксплуатационные инструкции предусматривали определенный график зачистки баков, однако специально не оговаривалось, сколько можно пропустить партий, если порог в 5 % не превышался. К тому же не отслеживалось накопление делящихся материалов в оборудовании между зачистками.
• На установке отсутствовали приборы непрерывного контроля таких параметров процесса, как концентрация урана или накопление его в монжюсе.
• Последним же в ряду факторов, внесших вклад в никому неизвестное накопление осадка, было отсутствие смотрового люка на монжюсе.
• Явным и, возможно, главным фактором, вызвавшим аварию, было изменение процедуры зачистки. С целью минимизации облучения персонала в ходе периодических зачисток передаточной емкости и монжюса, требующих вскрытия, решили, что простой промывки будет достаточно. Авария произошла через два месяца после введения этого "новшества".
В помещении, где располагались камеры, не было стационарных приборов непрерывного контроля радиационной обстановки, поэтому замеры гамма-фона в помещении производились только периодически с помощью портативных приборов. Перед аварией никакого превышения нормального радиационного фона отмечено не было.
Авария произошла при проведении, как предполагалось, обычной операции по вакуумному фильтрованию суспензии оксалата уранила. Через смотровое окно камеры аппаратчица увидела вспучивание фильтровального полотна, за которым последовало бурное газовыделение и выброс части осадка с фильтра на столешницу камеры. Аппаратчица инстинктивно вручную собрала выпавший осадок урана обратно на фильтр и приступила к отмывке (уборке) столешницы камеры. Вскоре она почувствовала ухудшение своего состояния. Эффект газовыделения в осадке продолжался около 10 минут и прекратился из-за выброса раствора из монжюса в вакуумную ловушку, установленную в соседней камере.
В то время в цехе еще не было аварийной сигнализации, которая могла бы предупредить персонал о том, что произошла ядерная авария. Вначале косвенные признаки – газовыделение в нутч-фильтре и резкое ухудшение самочувствия аппаратчицы и других работников – послужили причиной удаления персонала и вызова дозиметриста. Факт возникновения цепной реакции подтвердился, когда вызванный дозиметрист обнаружил интенсивное гамма-излучение из монжюса. Это было через пятнадцать-двадцать минут после аварии, и дозиметрист тут же скомандовал всем эвакуироваться из цеха в подземный тоннель.
Приблизительно через 5,5 часа на расстоянии 1,5 м от монжюса мощность экспозиционной дозы составила 18 Р/час. По оценкам, это значение мощности дозы соответствует полному числу делений за ядерную аварию около 1017. Через 17 часов после аварии была измерена удельная активность 24Na в пробе крови аппаратчицы, которая составила 245 Бк/см3. Согласно полученным в то время результатам, поглощенная доза на все тело аппаратчицы составила около 3000 рад. Она скончалась через 12 дней после аварии.
Во время аварии в помещении на разных расстояниях от монжюса находились 5 человек. По оценкам, они получили дозы свыше 300 рад. Все они перенесли лучевую болезнь, но выздоровели.
Как показали результаты вскрытия оборудования в камере, его зачистки и измерения массы урана, масса отложений в монжюсе составила 3,06 кг по урану-235. Уран находился в двух формах: в форме довольно толстой корки – очевидно, результат длительного накопления – и в виде осадка, плотность которого уменьшалась с высотой. Механических повреждений резервуара не было, и помещение не было загрязнено, потому что камера сохранила герметичность.
Камера была демонтирована, после дезактивации и зачистки оборудования смонтирована вновь с обновленным оборудованием. Работа возобновилась через несколько дней. За это время на камере был установлен прибор контроля радиационной обстановки, пересмотрены технологические инструкции, проведено обучение персонала.
Эта авария привела к решению о проведении критических экспериментов в реальных заводских условиях для определения критических параметров сосудов, используемых в технологическом процессе. Следующая авария на ПО "Маяк" произошла на этом экспериментальном оборудовании.
3. ПО «Маяк», г. Озерск, 2 января 1958 гРаствор уранилнитрата, U(90 %), в экспериментальной емкости; одна вспышка; три летальных исхода, один случай значительного облучения.
Эта ядерная авария была уникальной, потому что она произошла на установке, которая использовалась для проведения внутризаводских критических экспериментов. Однако, в связи с тем, что она произошла после прекращения эксперимента во время передачи раствора с делящимся материалом в емкости безопасной геометрии, ее классифицировали как производственную ядерную аварию.
После аварии 1957 года было решено установить оборудование для измерения критических параметров высокообогащенного раствора уранилнитрата. Считалось, что это необходимо и актуально в свете широкого использования производственных баков опасной геометрии, неопределенностей в критических параметрах перерабатываемых материалов и наличия растворов урана и системы их подготовки. Прежде критические размеры емкостей, равно как и критические концентрации и объемы раствора, оценивались преимущественно на основе расчетов из-за отсутствия прямых критических экспериментов.
Небольшая экспериментальная установка, представленная на рисунке 8, находилась в отдельной комнате, но в главном производственном здании. К моменту аварии она проработала всего два месяца. Во время измерений экспериментаторы обычно находились у пульта управления в нескольких метрах от установки и за защитой толщиной 0,5 м, заполненной водой.
Первая серия экспериментов была нацелена на определение критических параметров небольших баков. Этот же эксперимент был первым экспериментом с большим баком. Это был стальной цилиндрический бак с внутренним диаметром 75 см и типичной для технологических баков толщиной стенок, возможно, 2–4 мм. Раствор делящегося материала с известной концентрацией и объемом поступал из находящегося сверху дозатора вместимостью три литра. Экспериментальный бак размещался на расстоянии 80 см от бетонного пола на стальной подставке толщиной 8 мм и не имел существенных отражателей. Его вместимость превышала 400 литров, что позволяло делать измерения критических параметров в широком диапазоне концентраций урана. Центральная труба содержала нейтронный источник, и поток нейтронов регистрировался расположенными снаружи бака пропорциональными счетчиками нейтронов, наполненными газом BF3. В измерениях коэффициента размножения нейтронов применялась стандартная методика обратного умножения. Эксперимент был закончен, когда в бак было залито 64,4 литра раствора уранилнитрата с концентрацией урана 376 г/л.
По окончании каждого эксперимента, согласно регламенту, требовалось сливать раствор в безопасные емкости. Выдав из бака часть раствора, начальник смены, полагая, что бак находится в глубоко подкритическом состоянии, решил ускорить утомительный процесс перелива и вручную слить из него оставшийся раствор. Для этого пришлось извлечь нейтронный источник, снять направляющую трубу и отсоединить бак от подставки. Затем трое экспериментаторов руками подняли бак и начали наклонять его для слива раствора. В это время и произошел всплеск мощности.
Рисунок 8. Схема расположения экспериментального оборудования.
Они ощутили вспышку и увидели выброс раствора из бака до потолка помещения высотой 4 м. Очевидно, раствор был намного ближе к критическому состоянию, чем предполагали экспериментаторы. Дополнительного отражения от троих экспериментаторов (это было и до наклона бака) в комбинации с изменением геометрии раствора в баке было достаточно, чтобы привести систему в критическое состояние на мгновенных нейтронах. Слабый нейтронный фон, по оценкам составлявший лишь сто нейтронов в секунду, по-видимому, также повлиял на запаздывание начала цепной реакции и, таким образом, повысил энергетику всплеска мощности.
Трое экспериментаторов бросили бак и вместе с четвертым экспериментатором, находившимся в 2,5 м от бака, немедленно отправились в раздевалку, приняли душ и были отправлены в больницу. На основе измерений активности продуктов деления в растворе было оценено число делений за единственный пик мощности, которое составило 2,25 X 1017.
Поглощенная доза смешанного нейтронного и гамма-излучений для каждого сотрудника, находившегося вплотную к баку, составила около 6000 рад, все трое скончались через 5–6 дней после аварии. Сотрудница, находившаяся на расстоянии 2,5 м от места происшествия, получила дозу около 600 рад, перенесла острую лучевую болезнь с потерей в последующий период зрения из-за катаракты обоих глаз.
Это случилось в смену с 13:00 до 19:00 в первый рабочий день после новогодних праздников. Хотя завод обычно работал непрерывно в четыре шестичасовые смены, существовала только одна группа специалистов, проводивших критические эксперименты. Подготовку раствора урана, сборку экспериментальной установки выполняли другие работники завода, но критические эксперименты проводились исключительно этой опытной специальной группой. После таких тяжелых последствий экспериментальное оборудование было демонтировано, а программа проведения критических экспериментов на заводе была закрыта.